The $a b c$ conjecture and related topics

David A. Craven

20th May 2009

We begin with polynomials, and then move on to the integers, and finally function fields.
Firstly, if R is a UFD and x is a non-zero element of R, then define $\operatorname{rad}(x)=\prod_{p \mid x} p$, so if one writes out a factorization of x into primes, then $\operatorname{rad}(x)$ is the product of all the primes dividing x with multiplicities removed.

1 Polynomial Rings

We begin with a theorem.
Theorem 1.1 Let $R=F[X]$, where F is a field of characteristic 0 , and let a and b be coprime, non-constant polynomials in R. Write $c=a+b$. Then

$$
\operatorname{deg} a, \operatorname{deg} b, \operatorname{deg} c<\operatorname{deg}(\operatorname{rad}(a b c)) .
$$

Proof: Note that $\operatorname{rad}(a)=a / \operatorname{gcd}\left(a, a^{\prime}\right)$. Firstly, multiply the equation $a+b=c$ by a^{\prime} to get $a a^{\prime}+b a^{\prime}=c a^{\prime}$, and multiply $a^{\prime}+b^{\prime}=c^{\prime}$ by a to get $a a^{\prime}+a b^{\prime}=a c^{\prime}$. The difference of the two yields

$$
a b^{\prime}-b a^{\prime}=a c^{\prime}-c a^{\prime} .
$$

We have that $a b^{\prime}-b a^{\prime} \neq 0$, since else $a b^{\prime}=b a^{\prime}$, and since a and b are coprime this yields $b \mid b^{\prime}$; this expression is divisible by both $\operatorname{gcd}\left(a, a^{\prime}\right)$ and $\operatorname{gcd}\left(b, b^{\prime}\right)$, and by the equality above, $\operatorname{gcd}\left(c, c^{\prime}\right)$ also divides it; i.e.,

$$
\operatorname{gcd}\left(c, c^{\prime}\right) \left\lvert\, \frac{a b^{\prime}-b a^{\prime}}{\operatorname{gcd}\left(a, a^{\prime}\right) \operatorname{gcd}\left(b, b^{\prime}\right)}\right.,
$$

and hence

$$
\begin{aligned}
\operatorname{deg}\left(\operatorname{gcd}\left(c, c^{\prime}\right)\right) & \leqslant \operatorname{deg}\left(a b^{\prime}-b a^{\prime}\right)-\operatorname{deg}\left(\operatorname{gcd}\left(a, a^{\prime}\right)\right)-\operatorname{deg}\left(\operatorname{gcd}\left(b, b^{\prime}\right)\right) \\
& <\operatorname{deg}(\operatorname{rad}(a))+\operatorname{deg}(\operatorname{rad}(b)) \\
& =\operatorname{deg}(\operatorname{rad}(a b))
\end{aligned}
$$

Adding $\operatorname{deg}(\operatorname{rad}(c))$ to both sides gives $\operatorname{deg}(c)<\operatorname{deg}(\operatorname{rad}(a b))+\operatorname{deg}(\operatorname{rad}(c))=\operatorname{deg}(\operatorname{rad}(a b c))$. Symmetry proves the other two statements.

Using this, one may prove Fermat's last theorem for polynomial rings.
Corollary 1.2 Let a, b, c be non-constant polynomials in $R=F[x]$, and suppose that $a^{n}+$ $b^{n}=c^{n}$. Then $n \leqslant 2$.

Proof: Firstly, dividing out by the gcd gives a and b coprime, with $a^{n}+b^{n}=c^{n}$, so that the $a b c$ theorem applies to the triple $\left(a^{n}, b^{n}, c^{n}\right)$. Notice that $\operatorname{rad}\left(a^{n} b^{n} c^{n}\right)=\operatorname{rad}(a b c) \leqslant a b c$, so the $a b c$ theorem yields

$$
\operatorname{deg}\left(a^{n}\right), \operatorname{deg}\left(b^{n}\right), \operatorname{deg}\left(c^{n}\right)<\operatorname{deg}(a b c)
$$

Write d for the element of $\{a, b, c\}$ with the largest degree. Certainly $\operatorname{deg}\left(d^{n}\right)=n \operatorname{deg}(d)$ and $\operatorname{deg}(a b c) \leqslant 3 \operatorname{deg}(d)$, so that

$$
n \operatorname{deg}(d)<3 \operatorname{deg}(d)
$$

yielding $n \leqslant 2$, as claimed.
Another corollary is Davenport's theorem, from 1965.
Corollary 1.3 (Davenport) If u and v are non-constant, coprime polynomials such that $u^{3}-v^{2} \neq 0$. Then

$$
\operatorname{deg} u, \operatorname{deg} v \leqslant 2 \operatorname{deg}\left(u^{3}-v^{2}\right)-2 .
$$

Proof: Again we will apply the $a b c$ theorem with $a=u^{3}, b=v^{2}$ and $c=u^{3}-v^{2}$. This yields

$$
\operatorname{deg} u, \operatorname{deg} v<\operatorname{deg}\left(\operatorname{rad}\left(u^{3} v^{2}\left(u^{3}-v^{2}\right)\right)\right) \leqslant \operatorname{deg} u+\operatorname{deg} v+\operatorname{deg}\left(u^{3}-v^{2}\right) .
$$

It suffices to show therefore that $\operatorname{deg} u, \operatorname{deg} v \leqslant \operatorname{deg}\left(u^{3}-v^{2}\right)-1$, and this is clearly true for u, and for v it is true unless $\operatorname{deg} v=1$, and in this case $\operatorname{deg}\left(u^{3}-v^{2}\right) \geqslant 3$ since u is also non-constant.

2 The Integers

A reasonable analogue of the degree function as a measure of size is the logarithm function for integers, and in this case a direct translation would be the statement that if a and b are coprime then, writing $c=a+b$, we have

$$
\log c<\log \operatorname{rad}(a b c)
$$

so taking exponentials yields $c<\operatorname{rad}(a b c)$. This is not true however, as the following example shows.

Example 2.1 Let $a=5^{2^{n}}-1, b=1$, and $c=5^{2^{n}}$. Clearly, $\operatorname{rad}(a b c)=5 \operatorname{rad}(a)$, and so if $5^{2^{n}-1} \geqslant \operatorname{rad}\left(5^{2^{n}}-1\right)$ for infinitely many n then we are done. However, it is fairly easy to see that $2^{n} \mid\left(5^{2^{n}}-1\right)$, and so $5 \operatorname{rad}(a) \geqslant 5\left(5^{2^{n}}-1\right) / 2^{n-1}$

Firstly, $\log 5<3 \log 2$, and so if $n \geqslant 4$, we have

$$
\begin{aligned}
\log (\operatorname{rad}(a b c)) & =\log 5+\log (\operatorname{rad}(a)) \leqslant \log 5+\log \left(5^{2^{n}}-1\right)-(n-1) \log 2 \\
& <\log 5+2^{n} \log 5-(n-1) \log 2 \\
& =\log 5-(n-1) \log 2+\log c . \\
& <\log c .
\end{aligned}
$$

This example shows that there are infinitely many counterexamples to the statment that $c \leqslant \operatorname{rad}(a b c)$. However, in number theory often things are only done up to ε. This is justified by taking logs: if we cannot have $\log c \leqslant \log \operatorname{rad}(a b c)$, then perhaps we might be able to get $\log c \leqslant(1+\varepsilon) \log \operatorname{rad}(a b c)$ for arbitrarily small ε. However, if we are to do this, we need to add a constant in to take account of the increasingly many, hopefully finitely many, counterexamples to the statement $\log c \leqslant(1+\varepsilon) \log \operatorname{rad}(a b c)$. Thus we get the $a b c$ conjecture:

Conjecture 2.2 (The $a b c$ conjecture) For any $\varepsilon>0$, there exists $N>0$ such that, for all coprime natural numbers a and b, we have

$$
c \leqslant N \operatorname{rad}(a b c)^{1+\varepsilon} .
$$

This is equivalent to the statement that for a given $\varepsilon>0$ there are only finitely many pairs (a, b) such that $c>\operatorname{rad}(a b c)^{1+\varepsilon}$. Firstly, if there are only finitely many then simply take N to be the largest such c. Conversely, suppose that there are infinitely many triples (a, b, c) satisfying

$$
\operatorname{rad}(a b c)^{1+\varepsilon}<c<N \operatorname{rad}(a b c)^{1+\varepsilon}
$$

then taking $\delta=\varepsilon / 2$ we find that these infinitude of triples are not universally bounded by any N, and hence disobey the $a b c$ conjecture for $\varepsilon / 2$.

Note that it is not known whether for all triples (a, b, c), we have that $c \leqslant \operatorname{rad}(a b c)^{2}$: this would imply Fermat's last theorem, since then (for $n \geqslant 6$), we have (assuming $a^{n}+b^{n}=c^{n}$)

$$
c^{n} \leqslant \operatorname{rad}(a b c)^{2} \leqslant(a b c)^{2} \leqslant c^{6},
$$

so that $n \leqslant 6$. (At this point one needs the small cases of Fermat's last theorem.) The conjecture that there are only finitely many counterexamples to $c \leqslant \operatorname{rad}(a b c)^{1+\varepsilon}$ means that
there is some n such that $c \leqslant \operatorname{rad}(a b c)^{n}$, and so the asymptotic version of Fermat's last theorem would hold for all integers at least $3 n$. (One hopes at this point that the resulting bound in a proof of the $a b c$ conjecture is below the threshold of previous calculations of FLT.) Also notice that the asymptotic version of the $a b c$ conjecture corresponds to the case where $n=3$ for FLT.

As an example of what the abc conjecture says, it claims that numbers like $2^{n} \pm 1$ should be divisible by large primes to a single power, which is indeed what occurs.

Thinking about FLT, we recall one of the main steps in the proof, which was the Frey polynomial: given $a+b=c$, we associate the Frey polynomial

$$
y^{2}=x(x-3 a)(x+3 b)=x^{3}-3(a-b) x^{2}-9 a b x .
$$

The discriminant of the polynomial is $D=3^{6}(a b c)^{2}$. We write $X=x+b-a$ to get rid of the x^{2} term, and so

$$
Y^{2}=X^{3}-\alpha X-\beta
$$

Here, $\alpha=3\left(a^{2}+a b+b^{2}\right)$ and $\beta=(a-b)\left(2 a^{2}+2 b^{2}+5 a b\right)$. Doing this, we get $D=4 \alpha^{3}-27 \beta^{2}$. If a, b, c are coprime then either α and β are coprime or their gcd is 9 . The discrimant of the Frey polynomial is interesting, and so we want to ask questions about $4 \alpha^{3}-27 \beta^{2}$.

Conjecture 2.3 (Generalized Szpiro Conjecture) Let $\varepsilon>0$, and suppose that u and v are non-zero coprime integers, and let $D=4 u^{3}-27 v^{2}$. Then

$$
|u| \leqslant N_{1} \operatorname{rad}(D)^{2+\varepsilon} \text { and }|v| \leqslant N_{2} \operatorname{rad}(C)^{3+\varepsilon} .
$$

Theorem 2.4 The $a b c$ conjecture and the generalized Szpiro conjecture are equivalent.
We will not talk about recent progress on the abc conjecture, and instead discuss a few theorems and conjectures that it implies.

- The first one is the Erdös-Mollin-Walsh conjecture, which concerns so-called powerful numbers. Recall that an integer n is powerful if, whenever p divides n, so does p^{2}; such numbers can obviously be written as $a^{2} b^{3}$, and the conjecture is that there are never three consecutive powerful integers. The $a b c$ conjecture, while it does not imply this, it implies that there are only finitely many such triples.
- Next, we have Wieferich primes. A prime p is called a Wieferich prime if p^{2} divides $2^{p-1}-1$. Such primes are related to FLT again. 1093 and 3511 are the only known Wieferich primes below 4 trillion. The abc conjecture implies the following open problem: Given a positive integer $a>1$, does there exist infinitely many primes p such that p^{2} does not divide $a^{p-1}-1$?
- The Erdös-Woods conjecture asks the following: is there an integer $k>1$ such that all integers x are determined by the sequence $\operatorname{rad}(x), \operatorname{rad}(x+1), \ldots, \operatorname{rad}(x+k)$? In other words, if one knows the prime divisors of $x, \ldots, x+k$, does that uniquely determine x ? The $a b c$ conjecture implies that, with only finitely many counterexamples, $k=3$ will do, and hence there is some $k>3$ that will do with no counterexamples.

3 Function Fields

Another case, besides polynomial rings, for which the $a b c$ coonjecture is not a conjecture but a theorem is function fields. If we want to talk about the $a b c$ conjecture for function fields, we first need to reformulate it over \mathbb{Q}. Rewriting $a+b=c$ as $a / c+b / c=1$. The height of a rational number n / m (in its lowest form) is defined to be ht $(n / m)=\max (\log (n), \log (m))$. Taking logs in the $a b c$ conjecture gives the following: given $\varepsilon>0$, there is some N such that, whenever $u, v \in \mathbb{Q} \backslash\{0\}$ and $u+v=1$, we have

$$
\operatorname{ht}(u), \operatorname{ht}(v) \leqslant N+(1+\varepsilon) \sum_{p \mid A B C} \log p,
$$

where A and B are the numerators of u and v and C is their common denominator.
If we want to convert this into a statement about other fields we will need a substitute for height. For function fields there is such a notion, called the degree. We will define it now, after we have stated the ABC theorem for function fields.

Theorem 3.1 (ABC theorem for function fields) Let K be a function field with a perfect constant field F. Suppose that u and v are non-zero elements of K with $u+v=1$. In this case,

$$
\operatorname{deg}_{s} u=\operatorname{deg}_{s} v \leqslant 2 g_{K}-2+\sum_{P \in \operatorname{Supp}(A+B+C)} \operatorname{deg}_{K} P .
$$

In this equation, g_{K} is the genus of K, A and B are the zero divisors of u and v in K, and C is their common polar divisor.

The rest of the talk will be spent defining the various concepts in the theorem.
Recall that a function field K over a constant field F (of degree 1) contains a transcendental element x such that $K / F(x)$ is a finite field extension. A prime in K is a dvr R with maximal ideal P such that $F \subseteq R$ and the field of fractions of R is K. The degree of P is defined to be the F-dimension of R / P, which can be shown to be finite.

In order to simplify these concepts, we will assume that $K=F(x)$. In this case, let $A=F[x]$. Every non-zero prime ideal P in A is generated by a monic irreducible, and the localization A_{P} is a dvr. This maximal ideal P is a prime of $F(x)$, and every prime apart
from one appears in this way. The other prime is got by changing the ring A to $A^{\prime}=F\left[x^{-1}\right]$, and the ideal P^{\prime} generated by x^{-1} is called the prime at infinity, and often denoted ∞. The ord function $\operatorname{ord}_{\infty}$ attaches $-\operatorname{deg}(f)$ to any polynomial $f \in A$ and $\operatorname{deg}(g)-\operatorname{deg}(f)$ to a rational function $f / g \in K$ where $f, g \in A$.

The group of divisors, D_{K} of a function field is the free abelian group on the primes. A typical divisor will be written $D=\sum_{P} a(P) P$. Let $a \in K \backslash\{0\}$. The divisor of a, written (a), is the divisor

$$
\sum_{P} \operatorname{ord}_{P}(a) P
$$

If P is a prime such that $\operatorname{ord}_{P}(a)=m>0$, we say that P is a zero of a of order m, and similarly if $\operatorname{ord}_{P}(a)=-m<0$ we say that P is a pole of a of order m. Let

$$
(a)_{0}=\sum_{\operatorname{ord}_{P}(a)>0} \operatorname{ord}_{P}(a) P, \quad(a)_{\infty}=-\sum_{\operatorname{ord}_{P}(a)<0} \operatorname{ord}_{P}(a) P
$$

the divisor $(a)_{0}$ is called the divisor of zeroes of a and the divisor $(a)_{\infty}$ is called the divisor of poles of a. Note that $(a)=(a)_{0}-(a)_{\infty}$.

Proposition 3.2 Let a be a non-zero element of K. Then $\operatorname{ord}_{P}(a)=0$ for all but finitely many primes P. Secondly, $(a)=0$ if and only if $a \in F$. Finally, $\operatorname{deg}(a)_{0}=\operatorname{deg}(a)_{\infty}=\mid K$: $F(a) \mid$. (Therefore every non-zero element has at least one zero and at least one pole.)

The map $a \mapsto(a)$ is a homomorphism from K^{*} to D_{K}, and the image of this map is denoted by P_{K} and is called the group of principal divisors. A divisor class is a coset of P_{K} in D_{K}. A divisor $D=\sum_{P} a(P) P$ is called effective if none of the $a(P)$ is negative. Define $L(D)$ to be all those $x \in K^{*}$ such that $(x)+D$ is effective, together with $\{0\}$. This carries the structure of a vector space, and its dimension is written as $l(D)$.

We also need to define the genus of a function field. This will be done via the RiemannRoch theorem.

Theorem 3.3 (Riemann-Roch theorem) There is some integer $g \geqslant 0$ and a divisor class \mathcal{C} such that for $C \in \mathcal{C}$ and $A \in D_{K}$, we have

$$
l(A)=\operatorname{deg}(A)-g+1+l(C-A) .
$$

(This integer g is called the genus of K.)
We nearly have enough definitions: the support of a divisor D are the primes that occur with non-zero coefficient, as expected, and $\operatorname{deg}_{s}(a)$ is the separable degree, in the sense that it is the degree of the largest separable extension $|M: F(a)|$. Since $M \leqslant K$, we have that $\operatorname{deg}_{s}(a) \leqslant \operatorname{deg}(a)$.

