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We begin with polynomials, and then move on to the integers, and finally function fields.

Firstly, if R is a UFD and x is a non-zero element of R, then define rad(x) =
∏

p|x p, so if

one writes out a factorization of x into primes, then rad(x) is the product of all the primes

dividing x with multiplicities removed.

1 Polynomial Rings

We begin with a theorem.

Theorem 1.1 Let R = F [X], where F is a field of characteristic 0, and let a and b be

coprime, non-constant polynomials in R. Write c = a+ b. Then

deg a, deg b, deg c < deg(rad(abc)).

Proof: Note that rad(a) = a/ gcd(a, a′). Firstly, multiply the equation a + b = c by a′ to

get aa′+ ba′ = ca′, and multiply a′+ b′ = c′ by a to get aa′+ ab′ = ac′. The difference of the

two yields

ab′ − ba′ = ac′ − ca′.

We have that ab′ − ba′ 6= 0, since else ab′ = ba′, and since a and b are coprime this yields

b | b′; this expression is divisible by both gcd(a, a′) and gcd(b, b′), and by the equality above,

gcd(c, c′) also divides it; i.e.,

gcd(c, c′) | ab′ − ba′

gcd(a, a′) gcd(b, b′)
,

and hence

deg(gcd(c, c′)) 6 deg(ab′ − ba′)− deg(gcd(a, a′))− deg(gcd(b, b′))

< deg(rad(a)) + deg(rad(b))

= deg(rad(ab)).
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Adding deg(rad(c)) to both sides gives deg(c) < deg(rad(ab))+deg(rad(c)) = deg(rad(abc)).

Symmetry proves the other two statements.

Using this, one may prove Fermat’s last theorem for polynomial rings.

Corollary 1.2 Let a, b, c be non-constant polynomials in R = F [x], and suppose that an +

bn = cn. Then n 6 2.

Proof: Firstly, dividing out by the gcd gives a and b coprime, with an + bn = cn, so that

the abc theorem applies to the triple (an, bn, cn). Notice that rad(anbncn) = rad(abc) 6 abc,

so the abc theorem yields

deg(an), deg(bn), deg(cn) < deg(abc).

Write d for the element of {a, b, c} with the largest degree. Certainly deg(dn) = n deg(d)

and deg(abc) 6 3 deg(d), so that

n deg(d) < 3 deg(d),

yielding n 6 2, as claimed.

Another corollary is Davenport’s theorem, from 1965.

Corollary 1.3 (Davenport) If u and v are non-constant, coprime polynomials such that

u3 − v2 6= 0. Then

deg u, deg v 6 2 deg(u3 − v2)− 2.

Proof: Again we will apply the abc theorem with a = u3, b = v2 and c = u3 − v2. This

yields

deg u, deg v < deg(rad(u3v2(u3 − v2))) 6 deg u+ deg v + deg(u3 − v2).

It suffices to show therefore that deg u, deg v 6 deg(u3 − v2)− 1, and this is clearly true for

u, and for v it is true unless deg v = 1, and in this case deg(u3 − v2) > 3 since u is also

non-constant.

2 The Integers

A reasonable analogue of the degree function as a measure of size is the logarithm function

for integers, and in this case a direct translation would be the statement that if a and b are

coprime then, writing c = a+ b, we have

log c < log rad(abc),
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so taking exponentials yields c < rad(abc). This is not true however, as the following example

shows.

Example 2.1 Let a = 52n − 1, b = 1, and c = 52n
. Clearly, rad(abc) = 5 rad(a), and so if

52n−1 > rad(52n − 1) for infinitely many n then we are done. However, it is fairly easy to see

that 2n | (52n − 1), and so 5 rad(a) > 5(52n − 1)/2n−1

Firstly, log 5 < 3 log 2, and so if n > 4, we have

log(rad(abc)) = log 5 + log(rad(a)) 6 log 5 + log(52n − 1)− (n− 1) log 2

< log 5 + 2n log 5− (n− 1) log 2

= log 5− (n− 1) log 2 + log c.

< log c.

This example shows that there are infinitely many counterexamples to the statment that

c 6 rad(abc). However, in number theory often things are only done up to ε. This is

justified by taking logs: if we cannot have log c 6 log rad(abc), then perhaps we might be

able to get log c 6 (1 + ε) log rad(abc) for arbitrarily small ε. However, if we are to do this,

we need to add a constant in to take account of the increasingly many, hopefully finitely

many, counterexamples to the statement log c 6 (1 + ε) log rad(abc). Thus we get the abc

conjecture:

Conjecture 2.2 (The abc conjecture) For any ε > 0, there exists N > 0 such that, for

all coprime natural numbers a and b, we have

c 6 N rad(abc)1+ε.

This is equivalent to the statement that for a given ε > 0 there are only finitely many

pairs (a, b) such that c > rad(abc)1+ε. Firstly, if there are only finitely many then simply

take N to be the largest such c. Conversely, suppose that there are infinitely many triples

(a, b, c) satisfying

rad(abc)1+ε < c < N rad(abc)1+ε.

then taking δ = ε/2 we find that these infinitude of triples are not universally bounded by

any N , and hence disobey the abc conjecture for ε/2.

Note that it is not known whether for all triples (a, b, c), we have that c 6 rad(abc)2: this

would imply Fermat’s last theorem, since then (for n > 6), we have (assuming an + bn = cn)

cn 6 rad(abc)2 6 (abc)2 6 c6,

so that n 6 6. (At this point one needs the small cases of Fermat’s last theorem.) The

conjecture that there are only finitely many counterexamples to c 6 rad(abc)1+ε means that
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there is some n such that c 6 rad(abc)n, and so the asymptotic version of Fermat’s last

theorem would hold for all integers at least 3n. (One hopes at this point that the resulting

bound in a proof of the abc conjecture is below the threshold of previous calculations of

FLT.) Also notice that the asymptotic version of the abc conjecture corresponds to the case

where n = 3 for FLT.

As an example of what the abc conjecture says, it claims that numbers like 2n± 1 should

be divisible by large primes to a single power, which is indeed what occurs.

Thinking about FLT, we recall one of the main steps in the proof, which was the Frey

polynomial: given a+ b = c, we associate the Frey polynomial

y2 = x(x− 3a)(x+ 3b) = x3 − 3(a− b)x2 − 9abx.

The discriminant of the polynomial is D = 36(abc)2. We write X = x + b − a to get rid of

the x2 term, and so

Y 2 = X3 − αX − β.

Here, α = 3(a2 +ab+b2) and β = (a−b)(2a2 +2b2 +5ab). Doing this, we get D = 4α3−27β2.

If a, b, c are coprime then either α and β are coprime or their gcd is 9. The discrimant of

the Frey polynomial is interesting, and so we want to ask questions about 4α3 − 27β2.

Conjecture 2.3 (Generalized Szpiro Conjecture) Let ε > 0, and suppose that u and

v are non-zero coprime integers, and let D = 4u3 − 27v2. Then

|u| 6 N1 rad(D)2+ε and |v| 6 N2 rad(C)3+ε.

Theorem 2.4 The abc conjecture and the generalized Szpiro conjecture are equivalent.

We will not talk about recent progress on the abc conjecture, and instead discuss a few

theorems and conjectures that it implies.

• The first one is the Erdös–Mollin–Walsh conjecture, which concerns so-called powerful

numbers. Recall that an integer n is powerful if, whenever p divides n, so does p2; such

numbers can obviously be written as a2b3, and the conjecture is that there are never

three consecutive powerful integers. The abc conjecture, while it does not imply this,

it implies that there are only finitely many such triples.

• Next, we have Wieferich primes. A prime p is called a Wieferich prime if p2 divides

2p−1 − 1. Such primes are related to FLT again. 1093 and 3511 are the only known

Wieferich primes below 4 trillion. The abc conjecture implies the following open prob-

lem: Given a positive integer a > 1, does there exist infinitely many primes p such

that p2 does not divide ap−1 − 1?
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• The Erdös–Woods conjecture asks the following: is there an integer k > 1 such that all

integers x are determined by the sequence rad(x), rad(x+ 1), . . . , rad(x+ k)? In other

words, if one knows the prime divisors of x, . . . , x + k, does that uniquely determine

x? The abc conjecture implies that, with only finitely many counterexamples, k = 3

will do, and hence there is some k > 3 that will do with no counterexamples.

3 Function Fields

Another case, besides polynomial rings, for which the abc coonjecture is not a conjecture but

a theorem is function fields. If we want to talk about the abc conjecture for function fields,

we first need to reformulate it over Q. Rewriting a + b = c as a/c + b/c = 1. The height of

a rational number n/m (in its lowest form) is defined to be ht(n/m) = max(log(n), log(m)).

Taking logs in the abc conjecture gives the following: given ε > 0, there is some N such that,

whenever u, v ∈ Q \ {0} and u+ v = 1, we have

ht(u), ht(v) 6 N + (1 + ε)
∑

p|ABC

log p,

where A and B are the numerators of u and v and C is their common denominator.

If we want to convert this into a statement about other fields we will need a substitute

for height. For function fields there is such a notion, called the degree. We will define it now,

after we have stated the ABC theorem for function fields.

Theorem 3.1 (ABC theorem for function fields) Let K be a function field with a per-

fect constant field F . Suppose that u and v are non-zero elements of K with u + v = 1. In

this case,

degs u = degs v 6 2gK − 2 +
∑

P∈Supp(A+B+C)

degK P.

In this equation, gK is the genus of K, A and B are the zero divisors of u and v in K, and

C is their common polar divisor.

The rest of the talk will be spent defining the various concepts in the theorem.

Recall that a function field K over a constant field F (of degree 1) contains a transcen-

dental element x such that K/F (x) is a finite field extension. A prime in K is a dvr R with

maximal ideal P such that F ⊆ R and the field of fractions of R is K. The degree of P is

defined to be the F -dimension of R/P , which can be shown to be finite.

In order to simplify these concepts, we will assume that K = F (x). In this case, let

A = F [x]. Every non-zero prime ideal P in A is generated by a monic irreducible, and the

localization AP is a dvr. This maximal ideal P is a prime of F (x), and every prime apart
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from one appears in this way. The other prime is got by changing the ring A to A′ = F [x−1],

and the ideal P ′ generated by x−1 is called the prime at infinity, and often denoted ∞. The

ord function ord∞ attaches − deg(f) to any polynomial f ∈ A and deg(g) − deg(f) to a

rational function f/g ∈ K where f, g ∈ A.

The group of divisors, DK of a function field is the free abelian group on the primes. A

typical divisor will be written D =
∑

P a(P )P . Let a ∈ K \ {0}. The divisor of a, written

(a), is the divisor ∑
P

ordP (a)P.

If P is a prime such that ordP (a) = m > 0, we say that P is a zero of a of order m, and

similarly if ordP (a) = −m < 0 we say that P is a pole of a of order m. Let

(a)0 =
∑

ordP (a)>0

ordP (a)P, (a)∞ = −
∑

ordP (a)<0

ordP (a)P ;

the divisor (a)0 is called the divisor of zeroes of a and the divisor (a)∞ is called the divisor

of poles of a. Note that (a) = (a)0 − (a)∞.

Proposition 3.2 Let a be a non-zero element of K. Then ordP (a) = 0 for all but finitely

many primes P . Secondly, (a) = 0 if and only if a ∈ F . Finally, deg(a)0 = deg(a)∞ = |K :

F (a)|. (Therefore every non-zero element has at least one zero and at least one pole.)

The map a 7→ (a) is a homomorphism from K∗ to DK , and the image of this map is

denoted by PK and is called the group of principal divisors. A divisor class is a coset of PK

in DK . A divisor D =
∑

P a(P )P is called effective if none of the a(P ) is negative. Define

L(D) to be all those x ∈ K∗ such that (x) + D is effective, together with {0}. This carries

the structure of a vector space, and its dimension is written as l(D).

We also need to define the genus of a function field. This will be done via the Riemann–

Roch theorem.

Theorem 3.3 (Riemann–Roch theorem) There is some integer g > 0 and a divisor class

C such that for C ∈ C and A ∈ DK , we have

l(A) = deg(A)− g + 1 + l(C − A).

(This integer g is called the genus of K.)

We nearly have enough definitions: the support of a divisor D are the primes that occur

with non-zero coefficient, as expected, and degs(a) is the separable degree, in the sense that

it is the degree of the largest separable extension |M : F (a)|. Since M 6 K, we have that

degs(a) 6 deg(a).
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