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Notation and Conventions

Throughout this talk,

G is a finite group,

p is a prime,

k of characteristic p, and

P is a Sylow p-subgroup of G .

I will (try to) use red for definitions and green for technical bits that can
be ignored.

This talk is joint work with Olivier Dudas and Raphaël Rouquier.
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Understanding the module category

We want to understand the finite-dimensional kG -modules for a given
group G and field k . This is an abelian category (basically the morphism
sets form abelian groups, we have a zero object, every injective map is the
kernel of some morphism, and we have direct sums).

A very basic question, which might not have any reasonable answer in
general, would be

‘which categories can occur as module categories of finite groups?’
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Some initial thoughts

Since we have a zero object, we can tell which maps A→ B are
injective and surjective homomorphisms, and which are zero maps.
We can also tell which modules are simple, and so can compute the
invariant l(G ), the number of simple kG -modules. This is equal to
the number of conjugacy classes of elements of G whose order is
prime to p.

The direct sum of two modules satisfies a universal property, and so if
we pick two objects in the category we know which object is their
direct sum, just from the category itself. Therefore we can throw
away all direct sums and only study indecomposable modules.
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Some initial thoughts

If we throw away the decomposable objects and think of this category
as a directed graph, the connected components of this each consist of
a collection of (potentially infinitely many) indecomposable
kG -modules. Each of these is called a block of the finite group.

If the field over which the modules were taken is C, then Maschke’s
theorem states that every CG -module is a direct sum of simple
modules, and so after throwing away the indecomposable modules, we
are left with a directed graph consisting of a number of isolated
points and no maps at all. This directed graph for an abelian group
of order n has n vertices, and so we have completely described the
module category in this case. This is why we said that k should have
characteristic p...
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The separation: finite and infinite

We now have seen examples where there are only finitely many
indecomposable objects in the category.

Theorem

There are finitely many (finite-dimensional) indecomposable kG -modules if
and only if the Sylow p-subgroup P of G is cyclic.

If there are only finitely many indecomposable modules, then it is
conceivable that one could write down in some way all possible module
categories when the Sylow p-subgroup is cyclic.

David A. Craven (Birmingham) Module categories 19th November, 2012 6 / 1



From categories to graphs

If M and N are indecomposable (particularly simple) kG -modules, then
one can see whether there is a non-trivial extension between M and N
from the module category, since we can find short exact sequences

0→ N → E → M → 0.

In particular, this allows us to tell whether Ext1(M,N) is non-zero. By the
theorem of Brauer all Ext1-spaces between simple modules are either 0 or
1-dimensional. We therefore get sequences

M1,M2, . . . ,Mr

such that Ext1(Mi ,Mi+1) is non-zero. A theorem of Brauer states that a
given simple module appears in at most two of these sequences.
This allows us to draw a planar-embedded graph: the edges of the graph
are labelled by the simple kG -modules, and we order the edges around
each vertex according to the Ext-sequences above. (Since each module lies
on at most two of these, this makes sense.)
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The Brauer tree

It turns out that the graph above is a forest, and specifying the Brauer
trees of a group is equivalent to specifying its module category.

As an example, the module category of the cyclic group of order p is a line:

Mp → Mp−1 → · · · → M1 = k → 0.

(Here we omit composite arrows.) The Brauer tree is a single edge.

If G = Cp o Cd then there are d simple kG -modules, and the module
category has d lines of length p emanating from the zero module. The
Brauer tree is a star.
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p-soluble groups completed

In fact, a general theorem now gives us the Brauer trees of all soluble
groups: it states that the situation on the previous slide is typical.

Theorem

If G is a p-soluble group then the Brauer trees of G are all stars with the
same number of edges.

This result suggests we focus on groups that are not soluble, the most
common being simple groups.
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Unfolding the tree

The star with d edges can be thought of as d copies of a single edge, all
identified at a single vertex. Such a process is called an unfolding of the
tree sonsisting of a single edge. Hence another way of writing the previous
theorem is that the Brauer trees of p-soluble groups is that they are
unfoldings of an edge. Another result that makes us focus on simple
groups is the following, proved by Feit in 1984.

Theorem

The Brauer trees of any finite group are unfoldings of trees for quasisimple
groups.

The classification of finite simple groups now means we might be able to
actually answer this question: simply determine all Brauer trees for all
finite simple groups, and then we are done!
Recall that the classification of finite simple groups states that every finite
simple group is an alternating group, a group of Lie type (like GLn(q)) or
one of twenty-six sporadic groups.
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The alternating groups

It is easy to see, since all characters of Sn are real, that the Brauer trees of
Sn are lines. It is also easy to show that, if χ lies in a p-block of cyclic
defect, then χ restricts to an irreducible ordinary character of An, so the
Brauer trees of An are also lines.

Much more recently, Jürgen Müller about 10 years ago computed the
Brauer trees of the double cover of the alternating groups, and found that
they were unfoldings of lines. Apart from the double covers of the
alternating groups, there are exceptional triple covers for A6 and A7, and
these can easily be determined.

So alternating groups are done!
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The sporadic groups

For sporadic groups, the only real way to deal with them is direct
computation, and so far this has been done for all but the Baby Monster
and Monster.

One way to remove this obstacle is to assume that p > 71, in which case
there is no sporadic group with a non-trivial Sylow p-subgroup. Eventually,
we aim to get all of the Brauer trees for these groups.
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Groups of Lie type

If G is a group of Lie type, say G = G (q), then we could have that p | q,
or that p - q. If p | q and G has cyclic Sylow p-subgroups, then
G = PSL2(q) and the Brauer tree is a line.

If G is classical (i.e., PSLn(q), PSpn(q), PΩ2n+1(q), PΩ±2n(q), PSUn(q)),
then the Brauer trees are lines.

So we are left with the case where G is an exceptional group of Lie type,
i.e., G2, F4, E6, E7, E8, 2E6, 2B2, 2G2, 2F4, 3D4.

The order of G is
|G | = qN

∏
d∈I

Φd(q)ad .

If p | |G | then p | Φd(q) for some d . In light of the previous slide, let us
simplify matters and assume that p > 71. This means that p divides
exactly one Φd(q).
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The Φd -cyclotomic theory

Broadly speaking, if p | Φd(q) and p′ | Φd(q′) then the representation
theory of G (q) and G (q′) at the primes p and p′ respectively are ‘the
same’. The unipotent characters are parameterized independently of q,
and whose distribution into the unipotent blocks is dependent only on d .

The Brauer tree of a unipotent block should be only dependent on d , and
not on p and q, when p | Φd(q).

The principal block, containing the trivial module, is a unipotent block, so
you may just think about the principal block if you want.

The representation theory of all blocks is in some sense related to
unipotent blocks, although the precise mechanisms for this, and even what
is precisely meant by this, remain obscure. Recently there has been much
work in this direction, and we should soon understand this mechanism in
much more detail.
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The small exceptional groups

If G is one of G2(q), 2G2(q), 2F4(q), 3D4(q), or 2B2(q), then all Brauer
trees are known, by various papers which appeared mostly during the
1990s. Some other cases were explored in other papers:

if G = E6(q), then as long as the d such that p | Φd(q) is at least 4,
all blocks are known. For all primes at least 5, the Brauer trees of
unipotent blocks are known. (Hiss–Lübeck–Malle)

If G = F4(q) or G = 2E6(q) then the Brauer trees of unipotent blocks
are known. (Hiss–Lübeck)

This leaves the unipotent blocks of the groups E7(q) and E8(q), along
with the non-unipotent blocks of several types of groups.
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An example

G = 2F4(q2), p | Φ′24(q). (By Φ′24 we mean the polynomial factor of Φ24

with ζ24 as a root.)

2B2[ψ5]; ε

2B2[ψ3]; ε

φ1,8 φ2,1 φ1,02F II
4 [−1]

2B2[ψ3]; 12F II
4 [∓i]

2F4[−θ2]

2B2[ψ5]; 12F II
4 [±i]

2F4[−θ]
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Deligne–Lusztig varieties enter

Recently, Deligne–Lusztig varieties have been found to actually be of
practical, rather than just theoretical, help with solving problems like
finding Brauer trees. The Deligne–Lusztig variety associated to the
Coxeter torus (i.e., the largest d such that Φd(q) divides |G (q)|) has a
particularly nice structure, and this is closely related to the relatively
simple structure of the Brauer tree for these d .

Hiss, Lübeck and Malle gave a conjecture on the shape of the Brauer tree,
based on the cohomology of this variety: the tree consists of lines
emanating from the exceptional node, and each ray consists of characters
with the same eigenvalue of Frobenius with the planar embedding in terms
of increasing argument as a complex number. This is the HLM conjecture.

The HLM conjecture follows from the known cohomology of the
Deligne–Lusztig variety, if it could be proved that, over a p-adic ring Zp,
the cohomology is torsion-free. This is definitely not true for other d , but
seemed to be true for d the Coxeter number.

David A. Craven (Birmingham) Module categories 19th November, 2012 17 / 1



The HLM conjecture

The previously unknown Brauer trees of unipotent blocks were for
2G2, d = 12′′

F4, d = 12
2F4,d = 24′′

2E6, d = 12, q 6≡ 1 mod 3

E7, all d including d = 18

E8, all d including d = 30

(Here, red denotes a Coxeter case.)

Theorem (Dudas (2011))

The HLM conjecture is true for 2G2, d = 12′′ and F4, d = 12.

Theorem (Dudas–Rouquier (2012))

The HLM conjecture is true.
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Removing the lines

The previously unknown Brauer trees were for
2E6, d = 12, q 6≡ 1 mod 12

E7, all d 6= 18

E8, all d 6= 30

Proposition (C. (2012))

Many of the trees for E7 and E8 are lines, or Morita equivalent to cases
solved by Dudas and Dudas–Rouquier.

This leaves
2E6, d = 12, q 6≡ 1 mod 12

E7, d = 9, 10, 14

E8, d = 9, 12, 14, 15, 18, 20, 24
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The Coxeter variety for non-Coxeter primes

We can take the Deligne–Lusztig variety associated to the Coxeter torus
T , and study it even when the prime p does not divide |T |. This gives us
enough information that, with a few extra arguments, we get the following
theorem.

Theorem (C.–Dudas–Rouquier (2012))

The Brauer trees of all unipotent blocks with cyclic defect group, for any
group of Lie type, are known.

In three cases, 2F4(q), d = 12′, E8(q) d = 15 and d = 18, we do not have
the complete labelling of the vertices in the planar-embedded Brauer tree.
In each case, there is a pair of cuspidal characters that cannot (yet) be
distinguished. In the case of 2F4(q), the character labelling isn’t actually
well defined.
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Another example

G = E8(q), p | Φ15(q).

φ1,0φ8,1

E6[θ], φ1,6

E6[θ], φ2,2

E6[θ], φ1,0

E6[θ2], φ1,6

E6[θ2], φ2,2

E6[θ2], φ1,0

E8[ζ4]

E8[ζ] E8[θi ]

E8[θ3−i ]

E8[ζ3]

E8[ζ2]
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