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Maximal subgroups of finite groups

Let G be a finite group. Suppose that we want to classify maximal
subgroups of G : Aschbacher and Scott, in 1985, proved that we can
understand the maximal subgroups of every finite group if we can
understand the maximal subgroups of V o G , where G is an almost simple
group and V is an irreducible FpG -module. The maximal subgroups of
this are either VM for M maximal in G , or a complement to V in G . We
thus need to understand the following two situations:

1 maximal subgroups of almost simple groups;

2 H1(G ,V ) for G almost simple and V irreducible.

It turns out that (2) is much harder than we first thought. (Thanks,
Frank.) Maybe (1) is something we can make progress on.
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Maximal subgroups of finite simple groups

Let’s go through the classification of the finite simple groups:

1 Sporadic groups: all known except the Monster, where there is a
candidate list.

2 Alternating groups: here O’Nan–Scott deals with almost everything,
modulo all maximal subgroups of all almost simple groups, but at
least they have smaller order.

3 Classical groups: thanks Gerhard, Colva, Kay.

4 Exceptional groups: known except for almost simple subgroups, not
necessarily acting irreducibly or even indecomposably.
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PSL2(q0) < G (q)

If M is an almost simple subgroup of an exceptional algebraic group G ,
and M is not a Lie type group in the same characteristic as M, then the
fact that M has a 248-dimensional non-trivial representation means that
there are decent bounds on |M|.

But if char(M) = char(G ) then this doesn’t work. In particular, if
M = SL2(q0) then q0 can be arbitrarily large.
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Liebeck–Seitz, t(G ), and a solution

In 1998, Liebeck and Seitz defined a quantity t(G ) and proved a theorem
about it. The exact definition of t(G ) is not important. Here is the
important bit:

G G2 F4 E6 E7 E8

t(G ) 12 68 124 388 1312

Theorem

Let x be a semisimple element in G of order greater than t(G ). There
exists an infinite subgroup X such that x and X stabilize the same
subspaces of the adjoint module L(G ).

Consequently, any maximal subgroup M = PSL2(q0) of G = G (q) is either
known or q0 ≤ gcd(2, p − 1) · t(G ).
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Stabilizing subspaces

Let G be an algebraic group and let V be a module for G .

Let H be a subgroup of an algebraic group G . We define H to be fabulous
for V if there exists an infinite subgroup X containing H such that X and
H stabilize the same subspaces of V . (Notice that if H 6≤ X , replace X by
〈X ,H〉.)

Say that x is fabulous if 〈x〉 is.

Thus Liebeck–Seitz says that any element of order greater than t(G ) is
fabulous for L(G ).

Their proof actually shows that there are elements of order t(G ) that are
not fabulous, so this bound is tight.
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A fabulous foundation

We still let G be an algebraic group and V be a module for G . Let T be a
maximal torus of G , and arrange things so that T acts diagonally on
V = span{e1, . . . , en}. Let x be an element of T .

The eigenspaces Ej of x are spanned by subsets of the ei . There are only
finitely many possibilities for the Ej , and so finitely many subgroups
U1, . . . ,Um that stabilize exactly the same subspaces as the various
elements x of T . In particular, there are only finitely many Uj that are
finite. Let XV denote the set of element orders from these Uj .

If y stabilizes the same subspaces as x , then y acts diagonally so lies in T .

Proposition

Every element of order not in XV is fabulous. If n ∈ XV then there is an
element of T of order n that is not fabulous.

Liebeck–Seitz proved that XL(G) ⊆ {1, . . . , t(G )} and maxXL(G) = t(G ).
(In fact, they determine XL(G) exactly in terms of the root lattice of G .)
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G2

Suppose that we want to compute XVmin
for G = G2. The first thing we

need is a representation of the torus. Easiest: take A2 ≤ G2 and think of
its maximal torus. If x ∈ A2 has order n, and ζn = 1, then x has
eigenvalues

ζa, ζb, ζ−a−b, ζ−a, ζ−b, ζa+b, 1,

on Vmin, since A2 acts as L(01)⊕ L(10)⊕ L(00). We want to set various
of these eigenvalues to be equal (i.e., the eigenspaces of x to not be
1-dimensional) and see what effect that has on ζ. For example, if
ζa = ζ−a then ζa = ±1. If the same is true for ζb then o(x) = 1, 2.

In other words, we need to take the abelian group

〈a, b | r1, r2, . . . 〉

where the ri are of the form a = −a, a = −a− b, a = 0, and so on. If this
abelian group is infinite then any element x that stabilizes exactly those
eigenspaces is fabulous. If this is finite we compute its exponent.
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Proof for G2

By using the S3 acting on the eigenvalues, we can cut down the
possibilities. Suppose that 1 is equal to another eigenvalue, say ζa. The
eigenvalue exponents are 0, b,−b, 0,−b, b, 0, and we have an infinite
abelian group still, so we need to set two more eigenvalues to be equal.
Thus b = 0 (o(x) = 1) or b = −b (o(x) = 2).

Thus we may assume that the 1-eigenspace is 1-dimensional, and ignore it
from now on. Suppose that ζa = ζb, so that the eigenvalue exponents are
a, a,−2a,−a,−a, 2a. Setting these equal to one another yields αa = 0 for
α = 1, 2, 3, 4, so o(x) = 1, 2, 3, 4.

Hence we may assume that no two of a, b,−a− b are equal. We still have
to make (up to automorphism) a equal to something, so a = −a or
a = −b. The second cannot happen as then a + b = 0. In the first case
we have −1, ζb,−ζ−b,−1, ζb,−ζb, and so ζb is equal to one of these
things. This gives o(x) = 2, 4, and so we get

XVmin
= {1, 2, 3, 4}, XL(G) = {1, . . . , 9, 10, 12}.
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F4

If we want to move past G2, this hand calculation becomes far too tedious,
and for F4 there are thousands of possible outcomes, so we need to use a
computer. However, the principles are identical.

Here there are two obvious options, using the type A theme above. (Of
course, understanding the torus for type A is very easy.) We can choose
the A4

1 or the A2Ã2 subgroups.

Theorem

For G = F4 and V = Vmin, we have

XV = {1, . . . , 18}.
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E6

If G = E6 and x is real, then x lies inside F4, and x is fabulous for the
minimal module of E6 if and only if it is for the minimal module of F4, so
whenever o(x) ≥ 19.

If x is non-real then we have to worry about the centre, and our result is
not as nice as for F4.

Theorem

Let G = E6, and let x be a semisimple element of order n ≥ 28 such that
6 - n and 〈x〉 ∩ Z (G ) = 1. Then x is fabulous.

Why 6 - n? This is a combination of using the A5A1 and A2A2A2

maximal-rank subgroups. The former group is really (SL6 ◦ SL2).2, and so
we cannot easily see the top 2 from the torus. The same happens with the
second group and a top 3, so together they deal with elements not
divisible by 6.
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Stupid corollary

There exists a maximal subgroup J3 ≤ E6(4), and this is unique up to
conjugacy in Aut(E6(4)).
(In fact,

Lemma

Inside E6(k) there are six conjugacy classes of maximal subgroup J3,
permuted transitively by the diagonal and graph automorphisms.

which is a strengthening of Kleidman–Wilson’s original result, which is
only over F4. In particular, J3 is only maximal in E6(4).)

Corollary

The elements of order 19 in J3 are non-real. Moreover, J3 : 2 does not
embed in E6(k).
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E7

This is actually quite hard. It took about a year of CPU time to get this
result, but since it’s parallelizable it was fine.

Take the A7 maximal-rank subgroup of E7, which looks like 4.PSL.2, so we
can really only get information about odd-order elements.

Theorem

Let G = E7, and let x be a semisimple element of odd order. If x has
order greater than 75, then x is fabulous.

This is sharp, in the sense that there are non-fabulous elements of orders
1, . . . , 75.

Compare this bound with 388 obtained from t(G ).
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Decent corollaries

These new bounds have reduced significantly the possibilities for a
previously unknown PSL2(q0) maximal subgroup. Indeed, the previous
bounds are that q0 ≤ gcd(2, q0 − 1) · t(G ), and we now replace t(G ) by
the bounds above.
Also,

Corollary

Suppose that G = G (q) is an exceptional group F4, E6, 2E6 or E7, and has
a Ree or Suzuki group H(q0) as a maximal subgroup. Then

1 q0 = 8, or possibly q0 = 32 for G = E7, or

2 q0 = 3, or possibly q0 = 27 for G = E7.

With more work, in fact one can eliminate these entirely from being
maximal subgroups.

David A. Craven (Birmingham) Subspace stabilizers and infinite subgroups 19th May, 2016 14 / 14


