
The Major Problems in Group Representation Theory

David A. Craven

18th November 2009

In group representation theory, there are many unsolved conjectures, most of which try

to understand the involved relationship between a finite group G and the normalizers of

p-subgroups NG(Q), where Q is often the Sylow p-subgroup, but will frequently be smaller

than the Sylow.

Alperin’s fusion theorem proves that the conjugacy of elements in a given Sylow p-

subgroup is governed by the normalizers of non-trivial p-subgroups. In the abelian case,

an old theorem of Burnside proves that NG(P ) controls fusion in P , where P ∈ Sylp(G), so

we should expect the structure there to be fairly transparent compared to other groups.

In this lecture we will see a variety of conjectures linking the representation theories of

finite groups and normalizers of p-subgroups. The first of these were numerical, linking the

(complex) character degrees of G with NG(P ), and then became more structural. The most

structural of them all – Broué’s conjecture – details the precise nature of the control of the

representation theory of G be NG(P ) in the case where P is abelian. A common general-

ization of Alperin’s weight conjecture and Broué’s conjecture would be a very interesting

development.

By K we denote a field, and G is a finite group. All KG-modules are finite-dimensional.

1 Preliminaries on Representation Theory

1.1 Blocks

As is well known, in an algebraically closed field K of characteristic 0, and p where p - |G|,
the representation theory of G over K satisfies the following two facts:

(i) The number of simple KG-modules is equal to the number of conjugacy classes of G;

and

(ii) Every KG-module is the direct sum of simple modules.
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The second one can be thought of as saying that the group algebra KG, thought of as a

free module, can be decomposed into simple modules, or that the group algebra KG, thought

of as an algebra, can be written as the direct sum of (simple) matrix algebras.

Now let p be a prime dividing |G|. Things are different:

(i) The number of simple KG-modules is equal to the number of conjugacy classes of G,

whose elements have order prime to p; and

(ii) Every KG-module is NOT the direct sum of simple modules.

This means that the group algebra is not decomposable as the sum of matrix algebras.

We can write KG as a direct sum of 2-sided ideals, each of which cannot be written as the

sum of two 2-sided ideals. These indecomposable ideals are called blocks. Since we can write

KG = B1 ⊕B2 ⊕ · · · ⊕Br,

we get a decomposition

1 = e1 + e2 + · · ·+ er,

with each ei ∈ Bi, ei a central idempotent that is primitive (i.e., ei = e+ e′ with e, e′ central

idempotents mean e or e′ is 0) and eiej = 0 if i 6= j.

If M is a KG-module, then M = M ·e1⊕M ·e2⊕· · ·⊕M ·er is a direct sum decomposition

of M into summands. Thus if M is any indecomposable module then M can be thought of

as belonging to a block. Notice that if M is an indecomposable module belonging to the

block B (with idempotent e) then Me = M , so that if N is a submodule or quotient of M

then Ne = N as well. Thus if any modules belong to a block then at least one simple module

does. Since B itself, viewed as a module, belongs to B, we see that every block contains

some simple modules, and (usually) some non-simple indecomposable modules.

The principal block is the block containing the trivial module.

1.2 Relating Characteristics 0 and p

Defining the character of an irreducible representation of a finite group in characteristic 0 is

simple as the trace of a matrix. For irreducible representations in characteristic p, however,

this doesn’t work, since then the character of a p-dimensional representation would take 0

on the trivial element of the group, which would be silly.

Let K be a field of characteristic p and fix a primitive root of unity ζ. Identify ζ with

a corresponding root of unity in C, which will be how we make a character in C from a

representation over K. If A is a matrix of order n then its eigenvalues are nth roots of unity,
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and so we can write them as powers of ζ, and then send them to C. Summing them up, we

get the trace of the matrix if K = C, and generally we get a modular character or Brauer

character.

However, since ζ has order prime to p (in fact, of order pn − 1 for some n if K is finite)

then this can only work if the matrix A has order prime to p. Thus modular characters are

only defined on p′-elements, which are called p-regular. As we remarked before, there are the

same number of simple KG-modules as there are conjugacy classes of p-regular elements,

and in fact the modular characters form a basis for all such class functions.

If χ is a complex character, write χ =
∑

φ aφφ, where the sum is over all modular

characters. It can be shown that the subset of the modular characters such that aφ 6= 0

comes from exactly one block, and so we say that that complex character also belongs to

the block.

What we have done therefore is partitioned all indecomposable KG-modules, all irre-

ducible modular characters and all irreducible complex characters into blocks.

We give an example: let G be the group A5, and let p = 5. Over F4 there are four

simple modules, of dimensions 1, 2, 2, and 4. (Over F2, we cannot get the 2-dimensionals,

and instead get another 4-dimensional.) If x denotes an element of order 5 in G, then the

characteristic polynomial of the 4-dim representation is Φ5(x) = x4 + x3 + x2 + x + 1, and

the sum of the roots of this is −1. Going to the ATLAS of Brauer Characters, we indeed

see that the value of this 4-dimensional representation on a 5-element is −1. (Note that

to find all roots to this polynomial, we needed to expand the field to F16, even though the

representation itself is definable over F2.

1.3 Defect Groups

The defect group of a block B is a p-subgroup that controls the structure of B in a very strict

sense. If M is a module for G, then we can always see M inside M ↓H↑G for any subgroup

H. What is more is that we might want to find M as a summand of M ↓H↑G. This cannot

be true for any H, since for example if this is true for H = 1 then M is a summand of a

free module. (Such modules are called projective, and there is one of these for each simple

module.)

Lemma 1.1 If M in an indecomposable module and P is a Sylow p-subgroup of G, then

M |M ↓P↑G.

Define a module to be relatively H-projective if M is a summand of M ↓H↑G. The lemma

above says that every module is relatively P -projective. A vertex of an indecomposable
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module M is a p-subgroup D such that M is relatively D-projective but not relatively Q-

projective for any Q < D. These exist by the previous lemma; what is not obvious – it is a

theorem of Green – is that vertices are unique up to G-conjugacy.

Now consider all of the indecomposable modules lying in the block B; each of these has

a vertex, and this collection of p-subgroups has a unique largest member under inclusion,

which we call a defect group of B (defined up to conjugacy in G). Since the trivial module has

vertex a Sylow p-subgroup of G, the principal block has defect groups the Sylow p-subgroups

of G.

Finally, the Brauer correspondent of a block B is a unique specified block b of NG(D),

where D is a defect group of B (and b). It can be determined by choosing an indecomposable

module of B with vertex D, and restricting it to NG(D): this restriction will decompose into

a collection of summands, and exactly one of those will have vertex D, the rest having

vertex of strictly smaller order. The block to which this module belongs is the Brauer

correspondent. (This correspondence is well defined, by the Burry–Carlson–Puig theorem.)

If B is the principal block of KG then its Brauer correspondent is the principal block of

K NG(P ), where P is a Sylow p-subgroup of G (Brauer’s third main theorem).

2 The Conjectures

There are many conjectures in representation theory, but we will focus on three. The first,

the McKay conjecture (and its variants) relate the degrees of irreducible complex characters

of a block with the irreducible characters of its Brauer correspondent.

Having considered the complex characters, we now want to shift to the modular characters

in the block. Alperin’s weight conjecture related the number of simple B-modules with the

structure of the Brauer correspondent again.

The third conjecture attempts to offer a structural understanding of Alperin’s weight

conjecture, at least in the case where the defect group is abelian. Broué’s conjecture is the

claim that the derived categories of a block and its Brauer correspondent are equivalence, if

the defect group is abelian.

3 The McKay Conjecture

In 1971, McKay observed the following fact about several simple groups.

Conjecture 3.1 (McKay, 1971) Let G be a finite simple group, and let P be a Sylow

2-subgroup of G. The number of characters of odd degree for G is equal to that for NG(P ).
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In 1973, a very similar-looking result was proved by Isaacs.

Theorem 3.2 (Isaacs, 1973) Let G be a group of odd order, and let P be a Sylow p-

subgroup of G. The number of characters of G of order not divisible by p is equal to that of

NG(P ).

The McKay conjecture doesn’t have a reduction to simple groups, at least for now.

However, there is a more complicated statement which, if it is true for simple groups, would

imply the McKay conjecture for all finite groups. We approximately say that a group G,

that is maximal quasisimple with p - |Z (G) |, is good for the prime p if we have the following

situation:

(i) If P ∈ Sylp(G), then there is a subgroup NG(P ) 6 N < G such that Aut(G) =

〈NAut(G)(N), Inn(G)〉;

(ii) There is an NAut(G)(P )-equivariant bijection f between the p′-characters of N and those

of G; and

(iii) Let χ be a p′-character of G. Then there is a group H between G and Aut(G) stabilizing

χ and with CH(G) is abelian. If characters χ and f(χ) have extensions χ̄ and f(χ)

to include CH(G), which cover the same characters of CH(G). Both χ̄ and f(χ) are

invariant in H and NH(N) respectively, and the associated elements in the Schur

multipliers of H/〈CH(G), G〉 and NH(N)/〈CH(G), N〉 are ‘equal’.

This final criterion is really technical and quite difficult to prove, and this is why the

following theorem is not as exhaustive as it could be.

Theorem 3.3 The following groups are good:

(i) all alternating groups and all sporadic groups for all primes (Malle);

(ii) 2B2(q) and 2G2(q) for all primes and all q (Isaacs–Malle–Navarro);

(iii) PSL2(q) for all primes;

(iv) the Tits group for all primes;

(v) (almost) the exceptional groups for all non-defining primes (Malle–Späth). (First two

conditions done.)

Years to Solution? Less than ten.
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4 Alperin’s Weight Conjecture

The McKay conjecture, and its refinements, talk about the number of p′-characters in a block

of a finite group as being related to the number of characters of p′-degree in the normalizer

of the defect group.

Having described the number of ordinary (i.e., complex) characters in a p-block, we move

to the characters over K = F̄p. Write k(G) (or k(B)) for the number of complex characters

for G (or for the block B), and `(G) (or `(B)) for the number of simple modules over a field of

prime characteristic (or the number of simple B-modules). Finally, denote (non-standardly)

the number of projective simple modules by `P (G); remember that this is the number of

blocks of defect 0.

Conjecture 4.1 (Alperin) Let G be a finite group and let K be a field of characteristic

p. We have

`(G) =
∑
Q

`P (NG(Q)/Q),

where the sum is taken over representatives of all conjugacy classes of p-subgroups Q (in-

cluding 1).

This conjecture has been checked for numerous simple and close-to-simple groups, but

this isn’t very helpful in this case, as there is no reduction of this conjecture to groups

associated with simple groups.

Well, this might not be true. In the 1990s, Dade announced a series of ever-increasingly

complicated conjectures, refinements of both the McKay conjecture and Alperin’s weight

conjecture, called things like Dade’s Projective Conjecture, and Dade’s Invariant Conjecture.

The last of these, the Inductive Conjecture, is supposed to be inductive, in the sense that

it reduces the problem to simple groups (with stuff top and bottom). However, no proof of

this has ever been circulated, and it is at least believed not to be the case.

Another approach, using the Grothendieck groups of fusion systems, is being pioneered

by Puig, but unfortunately nobody can understand his stuff yet. If the community at large

can get to grips with this, maybe this will lead to a solution, but I wouldn’t hold my breath.

Years to Solution? At least twenty, unless the Puig approach succeeds.

5 Broué’s Abelian Defect Group Conjecture

If the normalizer of the Sylow p-subgroup controls fusion then Alperin’s weight conjecture

for the principal block states that the number of simple B0-modules is equal to that of the
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normalizer of the Sylow. More generally, if D is an abelian p-subgroup, and B is a block

with defect group D, then the number of simple B-modules is equal to that of its Brauer

correspondent.

Broué’s conjecture attempts to give a structural explanation for this fact. We will not

define exactly what a derived category is here, but it is roughly like taking all complexes of

modules in B and formally inverting morphisms that induce isomorphisms in (co)homology.

(It needs to be checked that this process makes sense, the same as the process of taking a

field of quotients for an integral domain.)

Broué’s conjecture asserts the following.

Conjecture 5.1 Let G be a finite group, and let B be a p-block with defect group D. If

b denotes the Brauer correspondent of B in NG(D), then the derived categories of B and b

are equivalent.

Some motivation for this conjecture comes from an alternative definition of a defect

group, which is sometimes used in this approach to representation theory.

Much more than this is suspected, however. There are many different ideas about how to

build up the complexes, and with what extra structure these derived equivalences should be

endowed. In the case of principal blocks, we again have a reduction to finite simple groups,

and here a surprising amount is known.

Theorem 5.2 Let G be a finite simple group with an abelian Sylow p-subgroup.

(i) If p = 2 then Broué’s conjecture is true for B0.

(ii) If p = 3 and G is not the O’Nan group, then Broué’s conjecture is true for B0.

(iii) If p = 5 and G is an alternating group, PSLn(q) for some n and q, G2(q), and a few

other groups, then Broué’s conjecture is true for B0.

(iv) If G is an alternating group or PSLn(q) for some n and q, the Broué’s conjecture is

true for all blocks of G.

We will now focus on the case where the block is the principal block.

One of the aspects of Broué’s conjecture that is not done so well in the literature is

that each of the derived equivalences here should be the composition of several perverse

equivalences. We will define a perverse equivalence now: recall that if C is a category,

then a full subcategory is is subcategory D such that if A and B are objects in D then

HomD(A,B) = HomC(A,B). A Serre subcategory is a full subcategory that is closed under

extensions, subobjects and quotients; i.e., if 0→ A→ B → C → 0 is a short exact sequence,

then B belongs to the category if and only if both A and C do.
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Definition 5.3 Let A and A′ be K-algebras, with simple modules S and S ′. Let F :

Db(A) → Db(A′) be an equivalence of categories. We say that F is perverse if there exist

labellings S → {1, . . . , n} and S ′ → {1, . . . , n}, and a function p : {1, . . . , n} → Z, such that

(i) F induces an equivalence of categories Db
i (A) → Db

i (A
′), where Db

i (A) is the subcat-

egory of Db(A) of complexes of modules whose support is in the Serre subcategory of

A generated by S1, . . . , Si; and

(ii) F [p(i)] induces an equivalence Ai/Ai−1 → A′i/A
′
i−1.

The idea here is that we assign each simple module in mod A to a simple module in

mod A′, and p(i) tells you the number of terms in the complex in Db(A′) associated with Si.

In practice, there is an algorithm that can be guaranteed to construct a perverse equiv-

alence between Db(b0) – b0 is the principal block of NG(P ) – and some algebra, and by

choosing the function p carefully (or just by trying lots) we hope that we can get the Green

correspondents of the Si at the end of the complex.

We give an example with G = M11. This has seven simple modules in B0, of dimensions

1, 5, 5, 10, 10, 10, and 24. The function p takes values 0, 2, 3, 4, 5, 6, 7 on the seven modules,

and the complexes can be explicitly described. However, in order to describe the perverse

equivalence it suffices to tell you the function p and the algorithm that we use to calculate

the complexes, which is so explicit that I have implemented it on a computer.

Years to Solution? Between ten and twenty, for principal blocks.
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