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The subgroup growth of finitely generated groups was seen last term, in a lecture of Dan

Segal. This time, we see representation growth, and how it is similar to, and different from,

subgroup growth.

1 Introduction

Let G be a group. If H is a subgroup of G, then let HG denote the core of H in G; this

is the largest normal subgroup of G contained in H, and can be seen to be
⋂

g∈GH
g. If H

has index n in G, then HG has index at most n!, and in particular, every subgroup of finite

index contains a normal subgroup of finite index.

We say that G is residually finite if the intersection of all of the (normal) subgroups of

finite index is trivial. This is equivalent to saying that for every element x 6= 1, there is

some normal subgroup N of finite index such that x /∈ N , so that the image of x in G/N is

non-trivial. If one wants to study a group via its finite images, then G has to be residually

finite, since nothing can be said about the finite residual – the intersection of the subgroups

of finite index.

Therefore one should study residually finite groups. The example of the Cartesian prod-

uct (C2)
∞ – a residually finite group with infinitely many subgroups of index 2 – suggests

that non-finitely generated groups could be bad. Since the free group on n generators has

only finitely many subgroups of index m – a result of Marshall Hall Jr – we see that any

finitely generated group has only finitely many subgroups of index n.

This restricts our attention to finitely generated, residually finite groups. This is good

for subgroup growth (counting the subgroups of index n), but things are going to be bad

for studying representation growth (counting the number of representations of degree n with

kernel of finite index). For example, if G = Z, then there are infinitely many representations

of degree 1, and none of degree 2 or above; this is going to be true for any infinite abelian

group. What we see here is that representation growth has difficulty dealing with abelian
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groups, and by extension so-called virtually abelian groups; that is, groups with an abelian

subgroup of finite index. Indeed, if G has any virtually abelian, infinite quotient, then you

are going to get an infinity in the number of representations of G for some degree.

In fact, this is a sufficient condition as well. Write rn(G) for the number of (inequivalent)

complex representations of degree n, whose kernel has finite index.

Theorem 1.1 Let G be a finitely generated, residually finite group. Then rn(G) is finite

for all n, if and only if for every subgroup H of finite index, |H/H ′| is finite.

I have proved this in a previous Kinderseminar, and so will not do so here. Broadly

speaking, it is an application of Jordan’s Theorem, which states that there is a function

f : N → N such that a finite group G with an irreducible complex representation of degree

n has an abelian normal subgroup of index at most f(n). (A theorem of Michael Collins

states that this function may be taken to be (n+ 1)! for large n.)

Groups with the property that all finite-index subgroups have finite abelianizations are

called FAb.

2 Representation Growth Grows

If G = Z, then the number of subgroups of index n is 1, and so subgroup growth is really

the wrong word here; such groups are said to have constant (normal) subgroup growth. The

question is, does this happen for the numbers rn(G); that is, is there an infinite, residually

finite group G such that rn(G) < N for all n?

Theorem 2.1 Let G be a finitely generated, residually finite group G. The numbers rn(G)

are universally bounded by a number N if and only if G is finite.

I will not prove this theorem here, because its proof is far too complicated. Like many

statements about residually finite groups, this translates to a theorem about finite groups.

Let G be a finite group, and write

m(G) = max
n∈N

rn(G).

(Thus m(G) is the maximal multiplicity of the irreducible character degrees of G.)

Theorem 2.2 There is a function f : N→ N such that, if G is a finite group, then m(G) 6

f(|G|).

Andrei Jaikin proved this theorem for p-groups, and then for soluble groups (using the

Fitting subgroup). Moretó reduced the question for general groups to proving it for finite
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simple groups. For groups of Lie type, this is not particularly difficult (although more will

be said about this later), and I proved it for alternating groups via combinatorics.

The other point is, since there are only finitely many groups of a given order, the function

f may simply be taken to be f(n) = min|G|=nm(G). Moving to the infinite case, let G =

G0 > G1 > · · · be a descending sequence of subgroups of finite index, whose intersection

is trivial. Writing m(Gi) = ni, we have that rij (Gi) > ni for some 1 6 ij 6
√
Gi, and

hence rij (G) > ni for each i, a divergent subsequence. In particular, it grows faster than the

function f(n) in the theorem above. We see therefore the following theorem.

Theorem 2.3 There is a function f : N→ N such that if G is a FAb group, then rn(G) >

f(n) for infinitely many n. In particular, the growth in the partial sums of the ri(G) is

bounded below by a the function f .

This is the disproof of the opposite of the theorem of Kassabov and Nikolov, which proves

that the partial sums can grow arbitrarily fast, in some sense.

3 Growth of Finite Simple Groups

The representation growth of finite simple groups, along with the representation growth of

p-groups, are the two areas that are of interest in understanding the results of the previous

section. Unfortunately Jaikin’s proof for p-groups, while amenable to deriving an explicit

function, goes via a collection of different results. Because the proof is very indirect, there

seems relatively little reason to calculate a lower bound for the representation growth from

this proof.

Of more interest are the finite simple groups. The sporadic groups are of no interest for

asymptotics, although the number m(G) has been found for all twenty-six of them, using

the Atlas.

For the alternating groups (or rather the symmetric groups) the representation growth

has not been calculated. However, a lower bound is known, and must at least have been

proved non-constructively for the proof of the main theorem.

Theorem 3.1 For all sufficiently large n, m(Sn) > n0.15.

Thus m(Sn) is at least a rational function in the degree of the symmetric group.

Conjecture 3.2 There are constants a and b such that, for all sufficiently large n,

na 6 m(Sn) 6 nb.
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The only way that this cannot be true is if there are super-polynomially (in n) many

characters of the same degree for Sn. There are only ea
√

n/bn characters of Sn to begin

with, so this seems somehow unlikely. If this conjecture is true, when one moves from

the degree of the symmetric groups to the order of the symmetric groups, the different

constants in the power of n collapse to the same order. Hence this would say that m(Sn) =

O(log(n!)/ log log(n!)), giving the exact order of the growth of Sn.

Now let us move on to the finite groups of Lie type. If we fix the Lie rank L, then we

can show that m(L(q)) = O(|L(q)|ε) for some ε depending on L. However, as the Lie rank

r increases, this constant ε decreases so that, for example,

lim
n→∞

logm(SLn(q))

log | SLn(q)|
= 0.

Of course, this is not important for the exceptional groups of Lie type, so one may explicitly

calculate the constants ε in this case. I have done this, and they are in the following table.

Group O(m(G)) O(|G|) log(m(G))/ log(|G|)
2B2 q q5 1/5

G2 q2 q14 1/7
2G2 q q7 1/7

F4 q4 q52 1/13
2F4 q2 q26 1/13
εE6 q6 q78 1/13

E7 q7 q133 1/19

E8 q8 q248 1/31

The numbers in the second column should be familiar, since they are the Lie ranks of the

groups! In fact, this is true for all of the groups, by a theorem of Liebeck and Shalev.

The problem with the classical groups is that, if you fix the prime and let the Lie rank

vary, what happens to the orders, since the values in the table above are really only valid

for large q. For the classical groups, in the table below we see lower bounds for m(G).

4



Group O(|G|) Multiplicity

PSLn(q) qn2−1

gcd(q−1,n)

φ(qn − 1)

n2(q − 1)

PSU2n(q) q4n2−1

gcd(q+1,2n)

φ(qn − 1)

4n2

PSU2n+1(q)
q4n(n+1)

gcd(q+1,2n+1)

φ(qn − 1)

(2n+ 1)2

PSp2n(q) q2n2+n

gcd(2,q−1)

φ(qn − 1)

4n

PΩ2n+1(q)
q2n2+n

gcd(2,q−1)

φ(qn − 1)

4n+ 2

PΩ+
2n(q) q2n2−n

gcd(4,qn−1)

φ(qn − 1)

4n

PΩ−2n+2(q)
q2n2+n+1

gcd(4,qn+1+1)

φ(qn − 1)

4n+ 4

Each of these tends to infinity as |G| tends to infinity. The question is, how quickly? It

should be just slower than a rational function, but at the moment, I’m being stupid and

cannot prove this. In particular, it should be relatively easy to prove that the alternating

groups are definitely the slowest-growing simple groups.

4 From Representation Growth to Zeta Functions

One technique of authors (although not me) is to encode the numbers rn(G) into a zeta

function:

ζG(s) =
∞∑

n=1

rn(G)n−s.

Some important results in this branch of the subject have been made by a number of authors,

particularly in the case where G is a pro-p group. In this case, G has FAb if and only if

all terms of the derived series are of finite index. In particular, if G is non-soluble but just

infinite, then G has FAb. Thus examples of groups that have finite abelianizations are the

Nottingham groups, the Grigorchuk group, the various index-subgroups of the Nottingham

group, and so on.

Andrei Jaikin proved the following theorem about pro-p groups with FAb, in 2005.

Theorem 4.1 (Jaikin) Let G be a compact p-adic analytic group with FAb, and suppose

that p is odd. There are natural numbers n1, . . . , nk and rational functions f1(p
−s), . . . , fk(p−s)

such that

ζG(s) =
n∑

i=1

n−s
i fi(p

−s);

in particular, ζG(s) is a rational function of p−s.
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Actually computing this zeta function is not easy, however, and very few calculations

have been done. Jaikin has done the case where G = SL2(Zp), and Klopsch and Voll have

attacked the case where G = SL1
3(Zp), the first congruence subgroup of SL3(Zp).

Let Rn(G) be the partial sum
∑n

i=1 ri(G). Then the abscissa of convergence is

ρ(G) = lim sup
n→∞

logRn(G)

log n
.

If G has the congruence subgroup property, then ρ(G) is finite. The number ρ(G) may be

finite, zero, or infinity.

Theorem 4.2 (Larsen, Lubotzky) Let G be a complex, semisimple algebraic group. Let

r denote its Lie rank, and κ denote the number of positive roots, which is (dimG − r)/2.

Then

ρ(G) =
r

κ
=

2

h
,

where h is the Coxeter number of G.

However, if K is non-Archimedean and local, G is a simple algebraic group over K, and

U is a compact open subgroup (think SLn(Z)), then ρ(U) > 1/15. This seems to contradict

the facts for C, and suggests that something weird is going on for non-Archimedean fields.

6


