Nervous Categories

David A. Craven

17th October 2007

The Martino–Priddy conjecture was recently solved by Bob Oliver (about 2002/03). It says the following.

Theorem A Let G and H be a finite groups, with Sylow p-subgroups P and Q respectively. Then

$$BG_p^{\wedge} \simeq BH_p^{\wedge} \iff \mathcal{F}_P(G) = \mathcal{F}_Q(H).$$

The aim of this talk is to explain what this line of symbols means. This talk consists of three parts.

- (i) A description of BG, the classifying space of G.
- (ii) A description of $\mathcal{F}_S(G)$, the fusion system of a finite group.
- (iii) Some discussion of Bousfield–Kan *p*-completions.

$1 \quad BG$

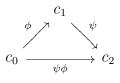
BG is the nerve of a one-point category. So what is the nerve of a category? let \mathscr{C} be a small category. Define $|\mathscr{C}|$, the (geometric realization of the) nerve of \mathscr{C} , to the constructed as follows.

$$|\mathscr{C}| = \left(\prod_{n \ge 0} \prod_{c_0 \to c_1 \to \cdots} \Delta^n \right) / \sim .$$

Start with $Ob(\mathscr{C})$ as the vertices.

For all non-identity morphisms $c_0 \rightarrow c_1$, add an edge between the corresponding vertices. (These are the 1-simplices.)

For all commutative triangles $c_0 \rightarrow c_1 \rightarrow c_2$, add the 2-simplex



Continue for all commutative tetrahedra, and so on. Then $|\mathscr{C}|$ is the complex corresponding to these.

Example 1.1 Let $\Delta(n)$ be the category with objects the integers $\{0, \ldots, n\}$ and $\operatorname{Hom}(i, j)$ empty if i > j, and consisting of a single element if $i \leq j$. Then $|\Delta(n)|$ is the *n*-simplex.

Let F be a functor from \mathscr{C} to \mathscr{D} . Then F induces a continuous map $|F| : |\mathscr{C}| \to |\mathscr{D}|$. If F and F' are functors with a natural transformation $F \to F'$, this induces a homotopy $|F| \simeq |F'|$.

If \mathscr{C} has an initial or terminal object then $|\mathscr{C}|$ is contractible. The way to see this geometrically is that if * is a terminal object, then all simplices with * as a vertex can be collapsed, and similarly for initial objects.

Let G be a discrete group (e.g., G finite). Let $\mathscr{E}(G)$ be the category whose objects are G and a unique morphism $g \to h$ for $g, h \in G$ (labelled by hg^{-1}). Since every object is initial (and terminal), $|\mathscr{E}(G)|$ is contractible. Let $\mathscr{B}(G)$ be the category with one object o_G , and $\operatorname{Hom}_{\mathscr{B}(G)}(o_G, o_G) = G$, with composition given by multiplication in G. Notice that G acts on $\mathscr{E}(G)$, and we may form the quotient

$$\mathscr{E}(G)/G \cong \mathscr{B}(G).$$

Thus $|\mathscr{E}(G)|/G \cong |\mathscr{B}(G)|$. (Note also that $\pi_1(|\mathscr{B}(G)|) = G$.)

Let G be a discrete group. A classifying space for G is a path-connected space BG such that $\pi_1(BG) = G$ and $\widetilde{BG} = EG$ is contractible. Any two classifying spaces are homotopy equivalent.

Notice that $|\mathscr{B}(G)|$ is a classifying space for G!

2 $\mathcal{F}_S(G)$

Definition 2.1 Suppose that $P \leq H \leq G$. We say that *H* controls fusion in *P* with respect to *G* if whenever $A, B \subseteq P$ are conjugate in *G* via *g*, they are conjugate in *H* via *h* with $c_g = c_h$ on *A* (where c_g denotes conjugation by *g*).

Lemma 2.2 (Burnside) If $S \in Syl_p(G)$ and S is abelian, then $N_G(S)$ controls fusion in S with respect to G.

Lemma 2.3 Suppose that $S \in \text{Syl}_p(G)$ is a TI subgroup (i.e., if $g \in G \setminus N_G(S)$ then $S^g \cap S = 1$). Then $N_G(S)$ controls fusion in S with respect to G.

Theorem 2.4 (Frobenius's normal *p*-complement theorem) Suppose that $S \in Syl_p(G)$. The following are equivalent:

- (i) G is p-nilpotent (i.e., there exists $K \leq G$ such that $G = K \rtimes S$.
- (ii) S controls fusion on S with respect to G.

Fusion is important in many situations in group theory.

Theorem 2.5 (Solomon) There is no finite group G with Sylow 2-subgroup S that of $\text{Spin}_7(3)$, such that all involutions are conjugate in G and all fusion in S induced by $\text{Spin}_7(3)$ is induced by G.

The interesting thing about this theorem is its proof. It relies on extracting 3-local information, not proving the fusion of elements in a Sylow 2-subgroup is impossible.

Definition 2.6 Let G be a finite group and $S \in \text{Syl}_p(G)$. The *fusion system* of G on S is the category $\mathcal{F}_S(G)$, with objects all subgroups of S, and as morphisms the set

$$\operatorname{Hom}_{\mathcal{F}_S(G)}(P,Q) = \{c_q : P \to Q \mid g \in G \text{ and } P^g \leqslant Q\}.$$

Fusion systems can, however, be defined more axiomatically and abstractly.

Definition 2.7 Let P be a finite p-group. A fusion system on P is a category \mathcal{F} , with objects all subgroups of P, and morphism set $\operatorname{Hom}_{\mathcal{F}}(Q, R)$ consisting of injective group homomorphism satisfying three conditions:

(i)
$$\mathcal{F}_P(P) \subseteq \mathcal{F}$$
.

- (ii) If $\phi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$, then the induced isomorphism $\phi : Q \to \phi(Q)$ lies in $\operatorname{Hom}_{\mathcal{F}}(Q, \phi(Q))$.
- (iii) If $\phi \in \operatorname{Hom}_{\mathcal{F}}(Q, R)$ is an isomorphism, then $\phi^{-1} \in \operatorname{Hom}_{\mathcal{F}}(R, Q)$.

Fusion systems themselves are loose objects, and look far from coming from finite groups. One point is that in groups all *p*-automorphisms of subgroups come from a Sylow *p*-subgroup of *G*. A saturated fusion system satisfies two more axioms, one concerning *p*-automorphisms in $\operatorname{Aut}_{\mathcal{F}}(Q)$, and the other allowing us to use induction by ensuring that certain isomorphisms between subgroups extend to overgroups.

Proposition 2.8 if G is a finite group, then $\mathcal{F}_S(G)$ is a fusion system on S.

We may now restate Solomon's theorem.

Theorem 2.9 (Solomon, Levi, Oliver) There exists a saturated fusion system \mathcal{F} on $S \in$ Syl₂(Spin₇(3)) such that $\mathcal{F}_S(\text{Spin}_7(3)) \subseteq \mathcal{F}$ and all involutions are \mathcal{F} -conjugate. Furthermore, \mathcal{F} is not the fusion system of any finite group.

We may also restate Frobenius's theorem.

Theorem 2.10 (Frobenius) If G is a finite group and $S \in \text{Syl}_p(G)$, then $G = K \rtimes S$ for some p'-group K if and only if $\mathcal{F}_S(G) = \mathcal{F}_S(S)$.

The control of fusion statements of Burnside and about TI Sylow *p*-subgroups can be restated as $\mathcal{F}_S(G) = \mathcal{F}_S(N_G(S))$.

Why study fusion systems? They also exist for blocks of finite groups, have connections to topology via considering $|\mathcal{F}_S(G)|$, and allow one to discuss fusion in finite groups in abstract terms.

3 Bousfield–Kan Completions

The idea is to understand ordinary homotopy theory by studying the mod-p components. Thus we use the p-completion to get information on mod-p components, together with a completion over the rationals, then piece the components back together to get back some information about the original space.

What is a *p*-completion? It is a functor on topological space $\lambda : X \to X_p^{\wedge}$ that maps mod-*p*-cohomology equivalences to homotopy equivalences. A space X is *p*-complete if $\lambda : X \to X_p^{\wedge}$ is a homotopy equivalence, and *p*-good if X_p^{\wedge} is *p*-complete. If $\pi_1(X)$ is finite then X is *p*-good, so *BG* is *p*-good for *G* a finite group.