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The Martino–Priddy conjecture was recently solved by Bob Oliver (about 2002/03). It

says the following.

Theorem A Let G and H be a finite groups, with Sylow p-subgroups P and Q respectively.

Then

BG∧p ' BH∧p ⇐⇒ FP (G) = FQ(H).

The aim of this talk is to explain what this line of symbols means. This talk consists of

three parts.

(i) A description of BG, the classifying space of G.

(ii) A description of FS(G), the fusion system of a finite group.

(iii) Some discussion of Bousfield–Kan p-completions.

1 BG

BG is the nerve of a one-point category. So what is the nerve of a category? let C be a

small category. Define |C |, the (geometric realization of the) nerve of C , to the constructed

as follows.

|C | =

(∐
n>0

∐
c0→c1→···

∆n

)
/ ∼ .

Start with Ob(C ) as the vertices.

For all non-identity morphisms c0 → c1, add an edge between the corresponding vertices.

(These are the 1-simplices.)

For all commutative triangles c0 → c1 → c2, add the 2-simplex

c1

c0 c2
��

??
??

?? ψ
??������

φ

//

ψφ
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Continue for all commutative tetrahedra, and so on. Then |C | is the complex corresponding

to these.

Example 1.1 Let ∆(n) be the category with objects the integers {0, . . . , n} and Hom(i, j)

empty if i > j, and consisting of a single element if i 6 j. Then |∆(n)| is the n-simplex.

Let F be a functor from C to D . Then F induces a continuous map |F | : |C | → |D |.
If F and F ′ are functors with a natural transformation F → F ′, this induces a homotopy

|F | ' |F ′|.
If C has an initial or terminal object then |C | is contractible. The way to see this

geometrically is that if ∗ is a terminal object, then all simplices with ∗ as a vertex can be

collapsed, and similarly for initial objects.

Let G be a discrete group (e.g., G finite). Let E (G) be the category whose objects are G

and a unique morphism g → h for g, h ∈ G (labelled by hg−1). Since every object is initial

(and terminal), |E (G)| is contractible. Let B(G) be the category with one object oG, and

HomB(G)(oG, oG) = G, with composition given by multiplication in G. Notice that G acts

on E (G), and we may form the quotient

E (G)/G ∼= B(G).

Thus |E (G)|/G ∼= |B(G)|. (Note also that π1(|B(G)|) = G.)

Let G be a discrete group. A classifying space for G is a path-connected space BG such

that π1(BG) = G and B̃G = EG is contractible. Any two classifying spaces are homotopy

equivalent.

Notice that |B(G)| is a classifying space for G!

2 FS(G)

Definition 2.1 Suppose that P 6 H 6 G. We say that H controls fusion in P with respect

to G if whenever A,B ⊆ P are conjugate in G via g, they are conjugate in H via h with

cg = ch on A (where cg denotes conjugation by g).

Lemma 2.2 (Burnside) If S ∈ Sylp(G) and S is abelian, then NG(S) controls fusion in S

with respect to G.

Lemma 2.3 Suppose that S ∈ Sylp(G) is a TI subgroup (i.e., if g ∈ G \ NG(S) then

Sg ∩ S = 1). Then NG(S) controls fusion in S with respect to G.
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Theorem 2.4 (Frobenius’s normal p-complement theorem) Suppose that S ∈ Sylp(G).

The following are equivalent:

(i) G is p-nilpotent (i.e., there exists K P G such that G = K o S.

(ii) S controls fusion on S with respect to G.

Fusion is important in many situations in group theory.

Theorem 2.5 (Solomon) There is no finite group G with Sylow 2-subgroup S that of

Spin7(3), such that all involutions are conjugate in G and all fusion in S induced by Spin7(3)

is induced by G.

The interesting thing about this theorem is its proof. It relies on extracting 3-local

information, not proving the the fusion of elements in a Sylow 2-subgroup is impossible.

Definition 2.6 Let G be a finite group and S ∈ Sylp(G). The fusion system of G on S is

the category FS(G), with objects all subgroups of S, and as morphisms the set

HomFS(G)(P,Q) = {cg : P → Q | g ∈ G and P g 6 Q}.

Fusion systems can, however, be defined more axiomatically and abstractly.

Definition 2.7 Let P be a finite p-group. A fusion system on P is a category F , with

objects all subgroups of P , and morphism set HomF(Q,R) consisting of injective group

homomorphism satisfying three conditions:

(i) FP (P ) ⊆ F .

(ii) If φ ∈ HomF(Q,R), then the induced isomorphism φ : Q→ φ(Q) lies in HomF(Q, φ(Q)).

(iii) If φ ∈ HomF(Q,R) is an isomorphism, then φ−1 ∈ HomF(R,Q).

Fusion systems themselves are loose objects, and look far from coming from finite groups.

One point is that in groups all p-automorphisms of subgroups come from a Sylow p-subgroup

of G. A saturated fusion system satisfies two more axioms, one concerning p-automorphisms

in AutF(Q), and the other allowing us to use induction by ensuring that certain isomorphisms

between subgroups extend to overgroups.

Proposition 2.8 if G is a finite group, then FS(G) is a fusion system on S.

We may now restate Solomon’s theorem.
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Theorem 2.9 (Solomon, Levi, Oliver) There exists a saturated fusion system F on S ∈
Syl2(Spin7(3)) such that FS(Spin7(3)) ⊆ F and all involutions are F -conjugate. Further-

more, F is not the fusion system of any finite group.

We may also restate Frobenius’s theorem.

Theorem 2.10 (Frobenius) If G is a finite group and S ∈ Sylp(G), then G = K o S for

some p′-group K if and only if FS(G) = FS(S).

The control of fusion statements of Burnside and about TI Sylow p-subgroups can be

restated as FS(G) = FS(NG(S)).

Why study fusion systems? They also exist for blocks of finite groups, have connections to

topology via considering |FS(G)|, and allow one to discuss fusion in finite groups in abstract

terms.

3 Bousfield–Kan Completions

The idea is to understand ordinary homotopy theory by studying the mod-p components.

Thus we use the p-completion to get information on mod-p components, together with a

completion over the rationals, then piece the components back together to get back some

information about the original space.

What is a p-completion? It is a functor on topological space λ : X → X∧p that maps

mod-p-cohomology equivalences to homotopy equivalences. A space X is p-complete if λ :

X → X∧p is a homotopy equivalence, and p-good if X∧p is p-complete. If π1(X) is finite then

X is p-good, so BG is p-good for G a finite group.
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