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Although the block structure of finite groups – particularly those of the groups of Lie type

– has received considerable attention in recent years, the tensor structure of the category of

finite-dimensional KG-modules (where G is a finite group and K is a field of characteristic

p) has experienced much less growth.

The results that I will talk about today are the beginnings of a theory that has not yet

been written. At this point in time, it is hard to see the outline of this edifice, never mind

the details: even the conjectures are conjectural. Yet enough can be seen to indicate that

there is something going on in the tensor structure of the module category of a finite group.

1 Algebraic Modules

Alperin defined the concept of an algebraic module. It is defined to be a module M that

satisfies a polynomial with integer coefficients in the Green ring. This is equivalent to there

being a finite list of indecomposable modules M1, . . . ,Mn, such that any indecomposable

summand of M⊗i is one of the Mj for some j. Algebraic modules are nice, in the sense that

most of the things that you are likely to want to do to modules behave well with respect to

algebraicity. For example, sums, tensor products, and summands, of algebraic modules are

algebraic. Algebraicity is preserved under inflation, restriction, and induction, and sources

and Green correspondents of algebraic modules are algebraic.

The only thing you are likely to want to do that hasn’t been mentioned is extend modules

to overgroups.

Example 1.1 Let G be the group SL2(8) o C3 = 2G2(3), and let H = G′. Then H has

cyclic Sylow 3-subgroups, and so all modules are algebraic. (There are only finitely many

inddecomposable modules.) However, as we shall see later, the 7-dimensional natural (sim-
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ple) KG-module M is non-algebraic. Clearly the restriction of M to H remains simple, and

so M is a non-algebraic extension of an algebraic module.

No examples are known in characteristic 2, although this is unlikely to mean that there

aren’t any.

There are some interesting theorems known about algebraic modules. Berger in 1976

proved that simple modules for soluble groups are algebraic, and this was extended in 1979

by Feit to p-soluble groups. More recently, I have examined the interplay between algebraicity

and the concepts in Auslander–Reiten theory. We will very briefly cover two of them, because

it turns out that they are useful later on.

Theorem 1.2 Let G be a finite group and let K be a field of characteristic p. Let M be

an indecomposable, non-periodic KG-module. Then at most one of the modules Ωi(M) is

algebraic.

This can be extended to Auslander–Reiten quiver. We need a very special case of this

collection of results.

Theorem 1.3 Let G be a finite group, and let B be a block of KG with defect groups

Cp × Cp for p odd. (Then the components of the Auslander–Reiten quiver are of type A∞.)

Let M be a non-periodic, algebraic, indecomposable module. Then M cannot lie on the

second row of the Auslander–Reiten quiver.

2 Defining-Characteristic Theory

In 1979, Alperin proved the following result.

Theorem 2.1 (Alperin) Let G = SL2(2
n), and let K be a field of characteristic 2. Then

all simple KG-modules are algebraic.

Not long after this, Kovacs extended this result to odd primes.

Theorem 2.2 (Kovacs) Let G = SL2(p
n), and let K be a field of characteristic p. Then

all simple KG-modules are algebraic.

For SL3(p), it was remarked as ‘well-known’ by Berger that the natural module is non-

algebraic. Using this, it is not difficult to prove the following result.

Theorem 2.3 Let G be one of the groups
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(i) SLd(pn) (d > 3),

(ii) Ω±2d(pn) (d > 4),

(iii) Sp2d(pn) (d > 3),

(iv) Ω2d+1(p
n) (d > 3),

(v) SUd(pn) (d > 6), and

(vi) 3D4(p
n).

Then the natural module for G is non-algebraic.

Of course, there are a few groups missing here, but before we talk about them, let’s

consider the exceptional groups of Lie type.

Theorem 2.4 Let (G, M) be one of the pairs

(i) G = G2(p
n), and M is the 7-dimensional natural KG-module (p odd) or the 6-

dimensional natural KG-module (p = 2),

(ii) G = 2G2(3
n), and M is the 7-dimensional natural KG-module,

(iii) G = F4(p
n), and M is the 26-dimensional natural KG-module (p 6= 3) or the 25-

dimensional natural KG-module (p = 3),

(iv) G = 2F4(2
n), and M is the 26-dimensional natural KG-module,

(v) G = E6(p
n), and M is the 27-dimensional natural KG-module,

(vi) G = 2E6(p
n), and M is the 27-dimensional natural KG-module,

(vii) G = E7(p
n), and M is the 56-dimensional natural KG-module, and

(viii) G = E8(p
n), and M is the 248-dimensional natural KG-module.

Then M is non-algebraic.

The remaining groups are SUd(pn) for d = 3, 4, 5, Sp4(p
d), and Sz(2n). In these cases

nothing is known in general, although for a few of small examples things are known; for

example, Sp4(2) = S6 has all simple modules characteristic 2 (and 3). The same is true for

SU3(3). For SU5(2), the 10-dimensional simple module is non-algebraic, for example.

One should note that the cases where we definitely know that the simple modules are

algebraic tend to be those with abelian Sylow p-subgroups. We will see something similar

in the next section.
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3 Non-Defining-Characteristic Theory

Here is an interesting proposition.

Proposition 3.1 Let G be one of the groups 2G2(3
n), and let K be a field of characteristic

2. Then all simple KG-modules are algebraic.

The groups SL2(2
n), 2G2(3

n), PSL2(q) (for q ≡ 3, 5 mod 8), and J1 are the simple groups

with abelian Sylow 2-subgroups. We have dealt with the first two collections, and know that

all simple modules for these groups are algebraic. We can do one better.

Theorem 3.2 Let G be a group with an abelian Sylow 2-subgroup, and let K be a field of

characteristic 2. Then all simple KG-modules are algebraic.

The groups of Lie type in the theorem above are not the hardest part of this theorem:

J1 is, and needs a computer to produce.

There are two directions one can go if one wants to expand Theorem 3.2: either to 2-

blocks, and not finite groups, and to groups with abelian Sylow p-subgroups. Both directions

appear fruitful; one more fruitful than the other.

Consider extending it to 2-blocks of finite groups with abelian defect groups. While it is

clear that blocks with cyclic defect groups have only finitely many indecomposable modules

in them, and so all (not necessarily simple) modules with cyclic vertex are algebraic. The

next defect group is C2 × C2.

Theorem 3.3 (C, Eaton, Kessar, Linckelmann) Let B be a 2-block of a finite group,

and suppose that B has Klein four defect groups. Then all simple B-modules are algebraic.

Proof: (Sketch) Firstly, reduce to quasisimple groups, extended by (possibly) some auto-

morphisms. Then sporadic and alternating groups die easily, so one reduces to trying to

prove this result for the groups of Lie type in odd characteristic. For symplectic and orthog-

onal groups the result follows from reality of conjugacy classes, as it does for 2G2(q), G2(q),

and 3D4(q). The groups 2F4(q) and 2B2(q) are obvious, so we reduce to linear and unitary

groups on the one hand, and the higher-rank exceptional groups in the other.

For the groups F4(q), the blocks of interest are real. For the groups εE6(q), E7(q), and

E8(q), they do not have blocks of defect 1, and using centralizers of involutions we can pin

down the structure of the blocks of defect 2. This leaves the 2-blocks of defect 0 that extend

to Klein four defect blocks under automorphisms. Here we note that 4 - |Out(E8(q))|, so we

look at E7(q) and εE6(q). For E7(q), we have that the automorphisms are diagonal and field

automorphisms, and the presence of a field automorphism can be exploited. For E6(q), it is

much more complicated, and the graph automorphism can be used to great effect.
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• There is a unique V4 subgroup of Out(H/ Z (H)) up to conjugation, and so we may

assume that P consists of the graph automorphism, field automorphism, and their

product.

• Since the graph automorphism inverts the centre of 3.E6(q), and P is meant to cen-

tralize Z (H), we see that we may assume that Z (H) = 1.

• The adjoint group is actually E6(q).3, and we can take this group instead. (This

makes the Deligne–Lusztig theory easier.) The dual group is the simply connected

group L = 3.E6(q).

• By a theorem of Feit and Zuckerman, all semisimple elements of L are real. (Remember

that the semisimple elements of L label the Lusztig series.)

• Let B be a block of defect zero in KH, and let M denote the unique simple module.

Then M comes from a Lusztig series with (real) semisimple label s.

• Since M has trivial vertex, the centralizer of s is a torus. Hence the Lusztig series

contains a single element, namely the module M .

• Finally, as s is real, the dual of M also lies in the series defined on s, and so M is

self-dual, as required.

For the linear and unitary groups one has to be even more sneaky, and we cannot go into

serious details here.

A common generalization of Theorems 3.2 and 3.3 is conjectural.

Conjecture 3.4 Let B be a 2-block of a finite group, and suppose that B has abelian defect

groups. Then all simple B-modules are algebraic.

Moving in the other direction, let’s consider other primes, and the most natural case is

p = 3. Here, we have the following theorem.

Theorem 3.5 Let G be a simple group of Lie type such that 27 - |G|. Let B be the

principal 3-block of KG, where K is a field of characteristic 3. Then all simple B-modules

are algebraic.

One would like the following theorem: let G be a finite group, and suppose that 9 | |G|.
Then all B0(G)-modules are algebraic. However, this is not true.
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Example 3.6 Let G be one of the groups M11 and M23, and let K be a field of characteristic

3. Then there are non-algebraic simple KG-modules in the principal block.

We can recover the theorem above if one excludes M11 and M23 from being composition

factors. So the groups of Lie type behave much better than the sporadic groups. However,

while the sporadic group problems seem to be located here, in the sense that other sporadic

groups (so far) are holding up much better for other primes, when p = 5 there is a problem.

Example 3.7 (Kawata, Michler, Uno) Let G = F4(2) and K be a field of characteristic

5. Then there is a simple module of dimension 875823 on the second row of its Auslander–

Reiten quiver. Hence it cannot be algebraic.

It’s not clear whether this is a p = 5 thing, a p > 5 thing, or whether it’s a pn 6= 9 thing.

At the moment there is not enough theory for any reasonable conjectures to be formulated.

What if the defect groups are not abelian? In this case, very little is known, and only

then for p = 2.

Theorem 3.8 Let G be the group PSL2(q), and let K be a field of characteristic 2. Then

all simple KG-modules are algebraic if and only if q 6≡ 7 mod 8, and in the case where

q ≡ 7 mod 8 the two (q − 1)/2-dimensional simple modules in the principal block are non-

algebraic.

We can move up to slightly higher ranks, or rather to semidihedral Sylow 2-subgroups.

Theorem 3.9 Let K be a field of characteristic 2.

(i) Let G be the group PSL3(q) for q ≡ 3 mod 4. Then all simple KG-modules are

algebraic if and only if q ≡ 3 mod 8.

(ii) Let G be the group PSU3(q) for q ≡ 1 mod 4. Then all simple KG-modules are

algebraic.

[The only other simple group with semidihedral Sylow 2-subgroups – the group M11 –

has algebraic simple modules in characteristic 2.] The simple groups PSL3(q) and PSU3(q)

with wreathed Sylow 2-subgroups would be the next logical step to go to, if one were simply

nibbling at the edges. That’s all that’s going to happen right now though, until something

important and radical happens.

6


