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Notation and Conventions

Throughout this talk,

G is a finite group,

p is a prime,

K is a field of characteristic 0 and k of characteristic p (more later),
and

P is a Sylow `-subgroup of G .

I will (try to) use red for definitions and green for technical bits that can
be ignored.

This talk is joint work with Olivier Dudas and Raphaël Rouquier.

David A. Craven (Birmingham) Brauer trees 16th October, 2012 2 / 22



Decomposing the group algebra

If K is a field of characteristic 0, then Maschke’s theorem states that the
group algebra KG is a semisimple ring.

In fact, it is only necessary that
|G | is invertible in K , so we get two cases:

1 char(K ) = p does not divide |G |
2 char(K ) = p divides |G |

The first case behaves as K = C does. The second is much more difficult.
We normally write K for a field of characteristic 0 (say C) and k for a field
of characteristic p > 0 (say F̄p).

The ring is no longer semisimple, but write it as a sum of ideals, as fine a
decomposition as possible.

kG = B1 ⊕ B2 ⊕ · · · ⊕ Br .

The Bi are called blocks of kG . A large part of representation theory
involves studying these blocks.
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Blocks are locally controlled

Since kG is a sum of ideals, 1 can be written as a sum of elements of
these ideals: 1 = e1 + e2 + · · ·+ er .

The ei are central idempotents of kG .

Let H be a subgroup of G . The projection map
BrH(−) : Z (kG )→ Z (kCG (H)) has the following property.

Theorem

If H is a p-subgroup of G and char(k) = p, then BrH is a surjective ring
homomorphism.

The image of any ei under BrP is either a central idempotent or zero. A
defect group for Bi is a maximal p-subgroup D with BrD(ei ) 6= 0.

Theorem (Brauer)

The map BrD induces a bijection between blocks of kG with defect group
D and blocks of kNG (D) with defect group D.
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Partitioning the kG -modules

Let M be a kG -module. On the previous slide we saw that
1 = e1 + · · ·+ er where the ei are primitive central idempotents, so that
eiej = δi ,jei .

Since M · 1 = M, we get

M = M · 1 = M · (e1 + · · ·+ er )

= M · e1 ⊕M · e2 ⊕ · · · ⊕M · er .

If M is indecomposable, then M · ej = 0 for all but one of the ej , and
M · ei = M for some i . We say that M belongs to the block Bi .
Submodules and quotients of modules belonging to B also belong to B,
and B (viewed as a kG -module) belongs to B, so that every block has
some simple modules belonging to it.
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From k to K

Let M be a kG -module: we want to make a character of M. If we do what
we do in the ordinary case, take the trace, then p = 0 becomes a problem.

Let x ∈ G have p′-order. In a matrix representation of the action of x on
M, the eigenvalues are p′-roots of unity, and the trace is the sum of these.
Fix a monomorphism from k∗ to the p′-roots of unity in K (k and K
should be large enough for this to work). Map the eigenvalues over to K
and add them there, giving a Brauer character, defined only on
p′-elements.

The irreducible Brauer characters ψ1, . . . , ψs (i.e., characters of simple
kG -modules) form a basis of the class functions on the p′-elements of G .
Hence every ordinary character can be written as a linear combination of
the ψi

χ =
∑

aiψi .

The ai are actually in Z≥0. If χ is irreducible then all constituents come
from the same block, and χ belongs to the block as well.
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Going by defect group

If the defect group of B is the trivial subgroup, then B is just a matrix
algebra Mn(k), mirroring the situation where the blocks of KG are all
matrix algebras (Artin–Wedderburn theory). Notice that B has a single
simple module, and a single associated ordinary character.

The next easiest p-group is a cyclic group. In this case the block B cannot
be a matrix algebra any more, but its structure can be controlled.

If χ is an irreducible character in B then

χ =
∑
ψ

aψψ

where the sum runs over all irreducible Brauer characters belonging to B.

Theorem

The aψ are all 0 or 1.
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The Brauer tree

The aψ are called the decomposition numbers.

Since the decomposition
numbers are all 0 or 1, we can produce a labelled graph, with vertices all
ordinary characters, and joining two vertices with an edge labelled ψ if ψ
appears in a decomposition of both vertices. Identify two vertices if the
corresponding characters have the same value on all p′-elements.
If there is only one simple module then we take one of the ordinary
characters out of the exceptional so the Brauer tree has two vertices.

Theorem

This graph is a tree with at most one exceptional node. The number of
edges is equal to s = |NG (D)/CG (D)|, and the exceptionality is
(|D| − 1)/s.

For a given p, there are only finitely many Brauer trees since s | (p − 1) (if
we ignore the exceptionality). This raises the possibility of classifying them
all, if this is even possible.
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An example: D10

Let G be the group D10 and p = 5. There is a single block. The character
table is as follows:

Only look at the p′-elements.

χ1 and χ2 must become Brauer characters since there are 1-dimensional.
χ3 and χ4 are exceptional, and are the sum of χ1 and χ2.

Thus the Brauer tree is a line, with the exceptional in the middle. In fact,
if G is p-soluble then the Brauer tree of any block of G is a star with
exceptional in the middle. Thus our goal is achieved for p-soluble groups.
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Reducing to the finite simple groups

In 1984, Walter Feit produced a reduction to the finite quasisimple groups.
If T is a Brauer tree of a block then there exists a quasisimple group G
and a block b of G , such that T is an unfolding of the Brauer tree of b.
An unfolding of a tree is several copies of the same tree, with all
exceptional vertices identified.

Thus if we work up to unfolding then it suffices to classify the Brauer trees
of the quasisimple groups.

Helpfully, there is a classification of the finite simple groups, so we can
‘simply’ work through all the groups on the list, classifying them as we go.
In the next few slides we will summarize the work that has been done
towards this.
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The alternating groups

It is easy to see, since all characters of Sn are real, that the Brauer trees of
Sn are lines. It is also easy to show that, if χ lies in a p-block of cyclic
defect, then χ restricts to an irreducible ordinary character of An, so the
Brauer trees of An are also lines.

Much more recently, Jürgen Müller about 10 years ago computed the
Brauer trees of the double cover of the alternating groups, and found that
they were unfoldings of lines. Apart from the double covers of the
alternating groups, there are exceptional triple covers for A6 and A7, and
these can easily be determined.

So alternating groups are done!
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The sporadic groups

For sporadic groups, the only real way to deal with them is direct
computation, and so far this has been done for all but the Baby Monster
and Monster.

One way to remove this obstacle is to assume that p > 71, in which case
there is no sporadic group with a non-trivial Sylow p-subgroup. Eventually,
we aim to get all of the Brauer trees for these groups.
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Groups of Lie type

If G is a group of Lie type, say G = G (q), then we could have that p | q,
or that p - q. If p | q and G has a block with cyclic defect group, then
G = PSL2(q) and the Brauer tree is a line.

If G is classical (i.e., PSLn(q), PSpn(q), PΩ2n+1(q), PΩ±2n(q), PSUn(q)),
then the Brauer trees are lines.

So we are left with the case where G is an exceptional group of Lie type.

The order of G is
|G | = qN

∏
d∈I

Φd(q)ad .

If p | |G | then p | Φd(q) for some d . In light of the previous slide, let us
simplify matters and assume that p > 71. This means that p divides
exactly one Φd(q).
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The Φd -cyclotomic theory

Broadly speaking, if p | Φd(q) and p′ | Φd(q′) then the representation
theory of G (q) and G (q′) at the primes p and p′ respectively are ‘the
same’. The unipotent characters, that are parameterized independently of
q, and whose distribution into the unipotent blocks is dependent only on d .

The decomposition numbers for unipotent characters should also be
independent of q, although this is only known in certain cases. For
unipotent blocks with cyclic defect group, the implication of this is that,
while the exceptionality might change, the Brauer tree does not.

The principal block, containing the trivial character, is a unipotent block,
so you may just think about the principal block if you want.

The representation theory of all blocks is in some sense related to
unipotent blocks, although the precise mechanisms for this, and even what
is precisely meant by this, remain obscure. Recently there has been much
work in this direction, and we should soon understand this mechanism in
much more detail.
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The small exceptional groups

If G is one of G2(q), 2G2(q), 2F4(q), 3D4(q), or 2B2(q), then all Brauer
trees, not just unipotent blocks, are known, by various papers which
appeared mostly during the 1990s.

Some other cases were explored in
other papers:

if G = E6(q), then as long as the d such that p | Φd(q) is at least 4,
all blocks are known. For all primes at least 5, the Brauer trees of
unipotent blocks are known. (Hiss–Lübeck–Malle)

If G = F4(q) or G = 2E6(q) then the Brauer trees of unipotent blocks
are known. (Hiss–Lübeck)

This leaves the unipotent blocks of the groups E7(q) and E8(q), along
with the non-unipotent blocks of several types of groups.
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An example

G = 2F4(q2), p | Φ′24(q). (By Φ′24 we mean the polynomial factor of Φ24

with ζ24 as a root.)

2B2[ψ5]; ε

2B2[ψ3]; ε

φ1,8 φ2,1 φ1,02F II
4 [−1]

2B2[ψ3]; 12F II
4 [∓i]

2F4[−θ2]

2B2[ψ5]; 12F II
4 [±i]

2F4[−θ]
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Deligne–Lusztig varieties enter

Recently, Deligne–Lusztig varieties have been found to actually be of
practical, rather than just theoretical, help with solving problems like
finding decomposition numbers.

The Deligne–Lusztig variety associated to
the Coxeter torus (i.e., the largest d such that Φd(q) divides |G (q)|) has a
particularly nice structure, and this is closely related to the relatively
simple structure of the Brauer tree for these d .

Hiss, Lübeck and Malle gave a conjecture on the shape of the Brauer tree,
based on the cohomology of this variety: the tree consists of lines
emanating from the exceptional node, and each ray consists of characters
with the same eigenvalue of Frobenius with the planar embedding in terms
of increasing argument as a complex number. This is the HLM conjecture

The HLM conjecture follows from the known cohomology of the
Deligne–Lusztig variety, if it could be proved that, over a p-adic ring Zp,
the cohomology is torsion-free. This is definitely not true for other d , but
seemed to be true for d the Coxeter number.
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The HLM conjecture

The previously unknown Brauer trees of unipotent blocks were for
2G2, d = 12′′

F4, d = 12
2F4,d = 24′′

2E6, d = 12, q 6≡ 1 mod 3

E7, all d including d = 18

E8, all d including d = 30

(Here, red denotes a Coxeter case.)

Theorem (Dudas (2011))

The HLM conjecture is true for 2G2, d = 12′′ and F4, d = 12.

Theorem (Dudas–Rouquier (2012))

The HLM conjecture is true.
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Removing the lines

The previously unknown Brauer trees were for
2E6, d = 12, q 6≡ 1 mod 12

E7, all d 6= 18

E8, all d 6= 30

Proposition (C. (2012))

Many of the trees for E7 and E8 are lines, or Morita equivalent to cases
solved by Dudas and Dudas–Rouquier.

This leaves
2E6, d = 12, q 6≡ 1 mod 12

E7, d = 9, 10, 14

E8, d = 9, 12, 14, 15, 18, 20, 24
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The Coxeter variety for non-Coxeter primes

We can take the Deligne–Lusztig variety associated to the Coxeter torus
T , and study it even when the prime p does not divide |T |. This gives us
enough information that, with a few extra arguments, we get the following
theorem.

Theorem (C.–Dudas–Rouquier (2012))

The Brauer trees of all unipotent blocks with cyclic defect group, for any
group of Lie type, are known.

In three cases, 2F4(q), d = 12′, E8(q) d = 15 and d = 18, we do not have
the complete labelling of the vertices in the planar-embedded Brauer tree.
In each case, there is a pair of cuspidal characters that cannot (yet) be
distinguished. In the case of 2F4(q), the character labelling isn’t actually
well defined.
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group of Lie type, are known.

In three cases, 2F4(q), d = 12′, E8(q) d = 15 and d = 18, we do not have
the complete labelling of the vertices in the planar-embedded Brauer tree.
In each case, there is a pair of cuspidal characters that cannot (yet) be
distinguished. In the case of 2F4(q), the character labelling isn’t actually
well defined.
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Another example

G = E8(q), p | Φ15(q).

φ1,0φ8,1

E6[θ], φ1,6

E6[θ], φ2,2

E6[θ], φ1,0

E6[θ2], φ1,6

E6[θ2], φ2,2

E6[θ2], φ1,0

E8[ζ4]

E8[ζ] E8[θi ]

E8[θ3−i ]

E8[ζ3]

E8[ζ2]
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Moving to all blocks

Suppose that a principal block of a finite group G has cyclic defect group.
Then G itself has cyclic Sylow p-subgroups, and the restricted structure of
such groups allows us to prove the following corollary.

Corollary

Let G be a finite group with cyclic Sylow p-subgroups, and suppose that
p > 71. The possible Brauer trees of the principal p-block of G are known.

What about the non-unipotent blocks for groups of Lie type? A theorem
of Bonnafé and Rouquier reduces the problem to the quasi-isolated blocks,
but even for F4(q) and p | Φ3(q) this is difficult. At the moment this is
too far, but it should eventually be soluble in the future.
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