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The Local-to-Global Principle

Idea

How do you measure the circumference of the Earth?
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How local is local?

(This will make more sense later.)

The Monster is a simple group of order

808017424794512875886459904961710757005754368000000000

The 11-local subgroup has order 72600. That’s a ratio of 11 trillion trillion
trillion trillion to one.

Knowing information about this group of order 72600 gives us some
information about the Monster.

The exact relationship between these two groups is the subject of much
research over the last few decades.
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Group Theory Briefly

In very broad terms, group theory is the study of symmetries of objects,
either physical or mathematical.

The salient properties of symmetries are:

symmetries are invertible;

symmetries are composable;

symmetries compose associatively, i.e., (a · b) · c = a · (b · c).

Any set with a way of multiplying elements of that set together, that
satisfies these three properties, is called a group.

Groups come in various guises: they can be defined abstractly, as
permutations of some set, like {1, . . . , 15}, or as matrices, over the
complex numbers say. Writing a group as matrices is a representation of
the group.
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An Example: The Dihedral Group D5

Consider a regular pentagon:

We can rotate the pentagon by multiples of 2π/5, or we can reflect the
pentagon in one of five lines. There are five rotations and five reflections,
yielding a group of order 10. We can represent this group as rotations and
reflections of the plane, so that the reflection through the vertical becomes(

−1 0
0 1

)
.
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Subgroups

A subgroup of a group G is a subset H of it that is also a group: i.e., such
that whenever we take two elements of the subset and compose them, we
stay in the subset, and the same for inverting elements.

As an example of a subgroup, the set of rotations of the pentagon is a
subgroup of the dihedral group. The set of reflections is not, because the
product of two different reflections is a rotation.
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Local subgroups

If we take a linear transformation A, and want to view it with respect to a
different basis, we take the change-of-basis matrix X , and compute
X−1AX .

A normal subgroup is a subgroup such that, when we change
basis according to any element of the group, the subgroup stays the same:
i.e., whenever x lies in the group and a lies in the subgroup, x−1ax lies in
the subgroup. In other words, a normal subgroup is basis-invariant.

In our example, the rotation subgroup is normal, since changing basis by a
reflection preserves the concept of being a rotation. On the other hand, a
subgroup consisting of a single reflection and the identity is not normal,
since rotating the basis changes which reflection is which.

A group is called a p-local group if it has a normal subgroup whose size is
a power of a prime p. A p-local subgroup of a group is a subgroup that is
a p-local group. We see that D5 is a 5-local group.

Now we need to find a group with D5 as a 5-local subgroup.
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Character Tables

D5 1 ref rot rot2

χ1 1 1 1 1
χ2 1 −1 1 1
χ3 2 0 2 cos(2π/5) 2 cos(4π/5)
χ4 2 0 2 cos(4π/5) 2 cos(2π/5)

A5 = I 1 (1, 2)(3, 4) (1, 2, 3) (1, 2, 3, 4, 5) (5, 4, 3, 2, 1)

χ1 1 1 1 1 1
χ2 3 −1 0 −2 cos(2π/5) −2 cos(4π/5)
χ3 3 −1 0 −2 cos(4π/5) −2 cos(2π/5)
χ4 4 0 1 −1 −1
χ5 5 1 −1 0 0
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Back to the Monster

Recall that the Monster is a group of order

808017424794512875886459904961710757005754368000000000.

We said that it had an 11-local subgroup of size 72600. The local-global
principle in group representation theory is the nebulous idea that we can
extract information about the Monster from information about this group
of order 72600, particularly about the representations of the Monster. The
character table of the Monster has 194 rows and columns, so is too big to
reproduce here, but a similar game can be played to extract some
information about the Monster from its 11-local subgroup.

Almost Theorem

For any finite group, and any prime p, the number of characters of degree
not divisible by p is the same as that of its p-local subgroup. Furthermore,
the number of characters whose degree has remainder ±i on division by p
also is the same between the two groups.
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Broué’s Conjecture

Some of the most exciting research in this area is to provide a structural
explanation for the numerical coincidences that come from the local-global
connection.

Broué’s conjecture is the main direction of research in this area. Recently
a lot of progress has been made in this area, and we are hopeful that we
can prove this, and extend it to get a complete structural understanding of
the local-global principle for the representation theory of finite groups.
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So What Use Is All This Stuff?

As usual, we ask the following question:

Question

Well, that’s all very great I’m sure. Can it be used to build bridges?

Answer

Yes. See tensegrities.
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Anything else?

Radar systems, GPS, and mobile phone signalling.

Randomization of samples, experiment design.

Electron distribution into shells.

Error-correcting codes.

Telephone network design.

Knot theory.

Crystallography.

Signal processing.

Non-abelian harmonic analysis.
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