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For the purposes of this talk, G is a finite group, K is an algebraically closed field of

characteristic p, where p | |G|, and all modules are finite-dimensional.

1 Basics of Module Theory

A KG-module is simply a finite-dimensional K-vector space, with a G-action on it that

satisfies some obvious conditions:

(i) v1 = v;

(ii) (v + w)g = vg + wg; and

(iii) (λv)g = λ(vg).

If V is given a basis, we can write the action of g as a matrix. For example, if G = 〈x〉,
the cyclic group of order p, and V = K2, then we can turn V into a KG-module by

x 7→

(
1 1

0 1

)
.

This example is illuminating because it demonstrates that Maschke’s Theorem does not hold

for modular representations.

Theorem 1.1 (Brauer) Let l(G) denote the number of conjugacy classes of G consisting

of elements whose order is coprime to p. Then there are exactly l(G) non-isomorphic simple

KG-modules.

Note that K is not necessarily required to be algebraically closed here, but if it is not

algebraically closed, it has to be ‘big enough’.

The direct sum M ⊕N of two modules M and N is simply all pairs (x, y), where x ∈ M

and y ∈ N , with G acting pointwise. A summand of a module M is a submodule N1, such
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that there exists another submodule N2 with N1 ∩ N2 = 0 and N1 + N2 = M , so that

M ∼= N1 ⊕ N2. A module is indecomposable if there are no non-trivial summands. The

Krull–Schmidt Theorem says that every module has an essentially unique decomposition

into indecomposable summands.

If not all indecomposable modules are simple, then how many indecomposable represen-

tations are there? Let P denote a Sylow p-subgroup of G. If P = 1, then all indecomposable

modules are simple. If P is cyclic, then not all indecomposable module are simple, but there

are still only finitely many of them. If P is dihedral, quaternion or quasidihedral, then al-

though there are infinitely many of them, they can still be classified in some meaningful way.

If P is anything else, the indecomposable modules are far too complicated to be classified,

and are called wild.

Let M and N be modules with bases X and Y . The tensor product M ⊗N of M and N

is the module whose basis is all symbols x⊗ y, where x ∈ X and y ∈ Y , with group action

given by

(x⊗ y)g = xg ⊗ yg.

It is itself a module.

2 Algebraic Modules

The Green ring of KG-modules is defined to be the free abelian group on the basis set

of all indecomposable KG-modules, with M + N defined to be equal to M ⊕ N , and the

product of two modules defined as M ⊗ N . Notice that not all elements of the Green ring

can be thought of as modules, since they could have negative multiplicities attached; they

are virtual modules.

The structure of the Green ring, while a commutative ring with a 1, is far from that of

traditional commutative rings. For example, it is not an integral domain: in general, it has

nilpotent elements. It is also in general infinite-dimensional. We can still, however, carry

over some notions from algebraic number theory. One of those is algebraic modules.

A module is said to be algebraic if it satisfies some polynomial equation in the Green

ring, with co-efficients in Z.

Proposition 2.1 Let M be a KG-module. Then the following are equivalent:

(i) M is algebraic;

(ii) M satisfies a monic polynomial equation in the Green ring with co-efficients in Z; and
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(iii) there are only finitely many different indecomposable summands of the (infinite-dimensional)

module

T (M) = M ⊕M⊗2 ⊕M⊗3 ⊕ · · · .

The third equivalent condition is often the easiest to use in actually deciding if modules

are algebraic or not. In particular, it is very easy to use this condition to prove the following.

Lemma 2.2 Let M and N be KG-modules.

(i) M and N are algebraic if and only if M ⊕N is algebraic.

(ii) If M and N are algebraic, then so is M ⊗N .

Hence the algebraic modules form a subring Alg(G) of the Green ring.

On a related note, a module is said to be simply generated if it is a summand of some

tensor product of simple modules.

Lemma 2.3 The sum and tensor product of two simply generated modules are simply

generated. Also, summands of simply generated modules are simply generated.

Again, the simply generated modules form a subring SG(G) of the Green ring. One

natural object to study in the context of these two subrings is their intersection, Alg(G) ∩
SG(G). In the case of p-soluble groups, the answer is easy to state.

Theorem 2.4 (Berger, Feit) Let G be a p-soluble group. Then every simply generated

module is algebraic. In particular, all simple modules are algebraic. Hence SG(G) 6 Alg(G).

Clearly, all simply generated modules are algebraic if and only if all simple modules

are algebraic. Thus we consider the question of when all simple modules are algebraic. In

general, what is the kind of result that we can get here? The answer is still not known,

and for example it is not even known to what extent the composition factors of a finite G

affect whether the simple KG-modules are algebraic. Say that a group G has the SMA

property (for a particular prime p, although this will often be elided), if all simple modules

are algebraic.

Conjecture 2.5 Let G be a finite group. The G has the SMA property if and only if all

composition factors of G have the SMA property.

Obviously, if a group G has the SMA property then so do all proper quotients, but

this does not deal with composition factors ‘at the bottom’ of G. Similarly, an inductive

hypothesis will deal with all non-faithful modules for a finite group G, but cannot deal with
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the general simple module. Very little can be said about this issue in general, at least as of

yet.

3 Examples of Algebraic Modules

Here we give two classes of examples of algebraic modules.

3.1 Permutation Modules

Let M be a module. Suppose that M has a basis X = {x1, . . . , xn}, such that, for all i and

for all g ∈ G, we have xig = xj for some j. Then M is called a permutation module.

Lemma 3.1 Let M1 and M2 be two permutation modules with permutation bases X and

Y respectively.

(i) The direct sum of M1 and M2 is a permutation module, with permutation basis X∪Y .

(ii) The tensor product of M1 and M2 is a permutation module, with permutation basis

X × Y .

Notice that there are only finitely many indecomposable permutation modules, up to

isomorphism. Hence we get the following.

Theorem 3.2 Any permutation module is algebraic.

3.2 Projective Modules

Recall that a free A-module is a direct sum of copies of A, thought of as a module for

itself. Then a projective module is a summand of a free module. In particular, a projective

indecomposable module is an indecomposable summand of A.

Now specialize to A = KG; the projective indecomposable modules are in 1-1 correspon-

dence with simple modules, with the projective corresponding to M having socle and top

isomorphic to M . They are the summands of KG, viewed as a KG-module.

Lemma 3.3 Let KG be a group algebra.

(i) If P1 and P2 are projective modules, then so is P1 ⊕ P2.

(ii) If P is projective and M is any KG-module, then P ⊗M is projective.

(iii) Summands of projective modules are projective.
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(iv) If P is a submodule of a KG-module M , then P is a summand of M .

Theorem 3.4 Let P be a projective module. Then P is algebraic, and P is simply generated

if and only if Op(G) = 1.

4 Induction and Restriction

Let H be a subgroup of G, and let M be a KG-module. We can simply think of M as a KH-

module, and get the restriction of M to H, denoted by M ↓H . Note tht dim M = dim M ↓H .

Dual to this is induction, which takes a KH-module N , and produces a KG-module, namely

the module

N ⊗KH KG.

This module has dimension |G : H| dim N .

Lemma 4.1 Suppose that M is an algebraic KG-module, and let H be a subgroup of

G. Then M ↓H is an algebraic KH-module. Conversely, suppose that N is an algebraic

KH-module. Then N ↑G is an algebraic KG-module.

Let M denote an indecomposable KG-module. It turns out that there is a certain p-

subgroup P (determined only up to conjugacy) and a certain indecomposable KP -module

S such that M is a summand of S ↑G, and that this property does not hold for any smaller

subgroups Q of P . The subgroup P is called a vertex, and the module S is called a source.

Theorem 4.2 Let M be an indecomposable KG-module, and let P and S be its vertex and

source. Then M is algebraic if and only if S is.

Notice that if P is cyclic, we have mentioned previously that there are only finitely many

indecomposable KP -modules, and so all KP -modules are algebraic.

Example 4.3 Recall that a module is projective if and only if it is a summand of KG. It

turns out that, if T denotes the trivial module for the trivial subgroup of G, then

KG ∼= T ↑G .

Since the trivial subgroup is certainly the smallest p-subgroup you can get, every summand of

KG has vertex 1 and source T . Now, the summands of KG are simply the projective modules,

and so every projective module has source T . Clearly T is algebraic (since T ⊗ T = T ), and

so all projective modules are algebraic, as we asserted earlier.
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It also turns out that a module is a permutation module if and only if its source is trivial

(but not necessarily its vertex). This is another way to see that the permutation modules

are also algebraic.

5 The groups SL2(q)

Now let’s look at the special linear groups of dimension 2. Now unless p is the defining

characteristic (i.e., pa = q for some a) or p = 2, the Sylow p-subgroup is cyclic, and so

the group is uninteresting (and also possesses the SMA property). Let us examine the two

possibilities for p in turn.

5.1 q = pa

This case is often called the defining characteristic case, since this is the characteristic

of the field over which the group is defined. A recurrent theme of defining-characteristic

representations of groups of Lie type is the Steinberg Tensor Product Theorem. Let F be a

field of order pn. Then there is an automorphism σ (the Frobenius twist) of F , sending x to

xp. The automorphism σ obviously has order n.

Now think of, for example, G = SL2(9), where p = 3. There is an obvious 2-dimensional

‘natural’ module over GF(9), namely to think of each element g of G as being represented

by the matrix g itself. We can get another module by taking the matrix g and applying the

Frobenius twist σ to each of its entries. This again forms a GF(9)G-module.

Theorem 5.1 (Steinberg) Let G = G(pa) be a group of Lie type (for example, G =

SLn(pa)). Then there is a set {M1, . . . ,Mr} of fundamental modules such that every simple

module M can be written as

M = N1 ⊗Nσ
2 ⊗Nσ2

3 ⊗ · · · ⊗Nσa−1

a ,

where the Ni are fundamental modules.

In the case where G = SL2(p
a), there are p − 1 different fundamental modules 1G =

M0, M1, M2, . . . ,Mp−1, of dimensions 1, 2, 3, . . . , p. [The module M2 is the natural module,

and the module Mi is given by Si(M1), the ith symmetric power.]

The point is, since the tensor product of two algebraic modules is algebraic, and clearly

M is algebraic if and only if Mσ is, then to prove that SL2(p
a) has the SMA property (for

the prime p), it suffices to show that the fundamental modules are algebraic. In fact, we

need to understand the general tensor products of fundamental modules, since other simple
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modules appear in the tensor powers of the fundamental modules. We begin by analyzing

the tensor product of two arbitrarily-chosen Mi.

Proposition 5.2 Suppose that 0 6 j 6 i are integers with i + j < p. Then

Mi ⊗Mj = Mi−j ⊕Mi−j+2 ⊕ · · · ⊕Mi+j.

Proposition 5.3 Suppose that 0 6 i 6 j < p − 1 with i + j > p. Write a = p − (i + j).

Then there exists indecomposable modules Wα with 0 6 α 6 p− 2, such that

Vi ⊗ Vj = Vj−i ⊕ Vj−i+2 ⊕ · · · ⊕ V2p−(j+i+4) ⊕

Vp−1 ⊕W1 ⊕W3 ⊕ · · · ⊕Wa a is odd

W0 ⊕W2 ⊕ · · · ⊕Wa a is even
.

Furthermore, each Wα is self-dual, uniserial of length 3, and has socle (and head) isomorphic

with Vp−α−2 and heart (radical modulo socle) isomorphic with Vα ⊗ V σ
1 .

Proposition 5.4 Suppose that 0 6 i 6 p− 1. Write a = i− 1. Then we have

Vi ⊗ Vp−1 =

Vp−1 ⊕W1 ⊕W3 ⊕ · · · ⊕Wa a is odd

W0 ⊕W2 ⊕ · · · ⊕Wa a is even
.

This means that if we can understand the decompositions of the modules Wi ⊗ Vj, and

that these tensor products lead to no more indecomposable modules, then we have shown

that all modules are algebraic. However, it is slightly more complicated than that.

Theorem 5.5 Suppose that 0 6 i 6 p− 2. Then

Wi⊗Vp−1 =

(Vp−1 ⊕W1 ⊕W3 ⊕ · · · ⊕Wi−1)⊗ V σ
1 ⊕ A0 ⊕ A2 ⊕ · · · ⊕ Ap−i−3 i is even

(W0 ⊕W2 ⊕ · · · ⊕Wi−1)⊗ V σ
1 ⊕ 2Vp−1 ⊕ A1 ⊕ A3 ⊕ · · · ⊕ Ap−i−3) i is odd

,

where Ai is a module with the same Brauer character as 2 · Wi. Furthermore, Ai is self-

dual, has socle length 3, has socle and top both isomorphic with 2 · Vp−i−2, and has heart

isomorphic with 2 · Vi ⊗ V σ
1 .

Unfortunately, the last part of this result remains conjectural.

Conjecture 5.6 Ai = 2 ·Wi.

Putting all of this together, we get the following theorem.

Theorem 5.7 Assume Conjecture 5.6. Then every tensor product Vi ⊗ Vj ⊗ Vk of three

fundamental modules can be written in the form

A⊕B ⊗ V σ
1 ,

where A and B are direct sums of tensor products of two fundamental modules.
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This theorem can be easily used to establish the general SMA property for SL2(q) in

defining characteristic. However, Conjecture 5.6 has so far resisted all attempts at resolution.

5.2 p = 2

Here the situation becomes more complicated. Firstly, it depends on the congruence class

of q modulo 8. Roughly speaking, for q ≡ 1, 3, 5 mod 8, the group does have the SMA

property, but for q ≡ 7 mod 8, it does not. The results are more complicated here, so we

restrict ourselves to the case where q ≡ 7 mod 8, where things are more interesting. To

examine this case, we need so-called endo-trivial modules, which we will deal with in the

next section.

Broadly speaking, there are three types of non-trivial simple module for PSL2(q) (which

has roughly the same representation theory as SL2(q)) in characteristic 2: the two simple

modules of dimension (q − 1)/2; the modules of dimension q ± 1 whose projective cover is

uniserial; and the modules of dimension q ∓ 1, which are projective. The last two types

are certainly algebraic, and so the question of algebraicity rests on the two simple modules

of dimension (q − 1)/2. If q ≡ 3 mod 8 then these modules are certainly algebraic; if

q ≡ 5 mod 8, then various arguments (should) easily prove that the two simple modules are

algebraic; if q ≡ 1 mod 8, then nothing much is really known, although for q = 9, 17, 25, 41

they are algebraic; and if q ≡ 7 mod 8, then they certainly are not.

6 Endo-trivial Modules

A module M is said to be endo-trivial if EndK(M) is of the form K ⊕ P , where P is a

projective module. The concept came from p-groups: in this setting, if G is a p-group, and

M a KG-module, then M is endo-trivial if EndK(M) is the sum of K and various copies of

KG. Now, we use the adjointness of Hom and ⊗ to get a nicer description of endo-trivial

modules. Recall that

Hom(A⊗B, C) = Hom(A, C ⊗B∗).

Then

EndK(M) = Hom(M, M) = Hom(K,M ⊗M∗) = M ⊗M∗.

Lemma 6.1 (Benson, Carlson) Suppose that M and N are KG-modules. Then K is a

summand of M ⊗N if and only if p does not divide dim M and N ∼= M∗.

Thus if dim M is coprime to p, then End(M) always contains a summand isomorphic

with K.
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Lemma 6.2 Suppose that M is an endo-trivial module. Then M can be written as M =

N ⊕ P , where N is an indecomposable module and P is projective.

This indecomposable component of an endo-trivial module is often called the cap of the

module. Write M̂ for this cap.

Proposition 6.3 The tensor product of two endo-trivial modules is endo-trivial.

To see this, remember that if M and N are endo-trivial, then M ⊗M∗ and N ⊗ N∗ are of

the form K plus projective, and we can see that

(M ⊗N)⊗ (M ⊗N)∗ = K ⊕ P,

for some projective module P .

Notice also that if M is endo-trivial, then so is M∗, and that M ⊗ K = M . Now, to

get a group out of this,we need to remove all reference to projectives, and define, for two

self-capped endo-trivial modules,

M ·N = M̂ ⊗N.

Now we get a group T (G). This group is certainly abelian, and clearly countable. In fact,

it is finitely generated as well. We can ask questions about its torsion subgroup and its

torsion-free rank (or Betti number).

Theorem 6.4 (Alperin, 2001) Let G be a finite p-group. Write mp(G) for the p-rank of

G (rank of largest elementary abelian subgroup of G). Write b(G) for the Betti number of

T (G). Then

(i) If mp(G) = 1 then b(G) = 0;

(ii) if mp(G) = 2 then b(G) is the number of conjugacy classes of maximal elementary

abelian subgroups; and

(iii) if mp(G) > 3 then b(G) is 1 plus the number of conjugacy classes of maximal elementary

abelian subgroups of order p2.

In particular, suppose that G is a non-cyclic abelian p-group. Then T (G) is isomorphic

with Z.

Determining the torsion subgroup is more difficult.

Theorem 6.5 (Carlson, Thévenaz, 2005) Suppose that G is a finite p-group that is not

cyclic, quaternion or quasidihedral. Then the torsion subgroup Tt(G) of T (G) is trivial.
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If G is cyclic of order 2, then Tt(G) is also trivial, whereas if G is cyclic of order 3 or

more, then Tt(G) has order 2. Finally, Tt(SD2n) = C2 and Tt(Q2n) = C2 × C4.

We can obviously also see the following.

Proposition 6.6 Let M be an endo-trivial module. Then M is algebraic if and only if M̂

lies in Tt(G).

Now let G be an arbitrary finite group, and suppose that M is endo-trivial. Then

M ↓H is endo-trivial for any subgroup H, and in particular, when H is a Sylow p-subgroup.

Thus information about endo-trivial modules for p-groups can be used to piece together

information for M .

Proposition 6.7 Suppose that q ≡ 3 mod 4, and let M denote one of the two simple

modules for G = PSL2(q) of dimension (q − 1)/2. Then M is endo-trivial.

This is easy to see from the composition factors of M⊗M∗. In particular, suppose firstly

that q ≡ 3 mod 8. Then (q − 1)/2 ≡ 1 mod 4. Now if q has this form, then G contains

Sylow 2-subgroups isomorphic with V4, and so of order 4. In particular,

dim M = 1 + 4n

for some n. Since we said earlier that V4 has no torsion endo-trivial modules, for M to be

endo-trivial, the cap of its restriction must be K, which the dimensions allow it to be.

Now suppose that q ≡ 7 mod 8. This time, (q − 1)/2 ≡ 3 mod 4, and so there is

no possiblity for the restriction of M to a Sylow to be of the form K ⊕ P , where P is

projective. Now the Sylow 2-subgroup of PSL2(q) is dihedral, and so again there are no

torsion endo-trivial modules, so M is in this case torsion-free endo-trivial, and so in particular

not algebraic.

7 Larger Matrix Groups

Since PSL2(7) ∼= GL3(2), and we said before that the 3-dimensional module for PSL2(7) in

characteristic 2 is not algebraic, we find that the natural module for GL3(2) is not algebraic.

Theorem 7.1 Let M denote the natural module of GL3(p
n) over a field of characteristic p.

Then M is not algebraic.

This well-known result can be modified so that we can get a similar result for SL3(p
n).
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Theorem 7.2 Write M for the 3-dimensional natural module for SL3(p). Suppose that G

is a finite group, and that N is a simple KG-module. Finally, suppose that H is a subgroup

of G isomorphic with SL3(2), and that N ↓H contains M as a summand. Then N is not

algebraic.

With this tool, we can assault the various other groups of Lie type.

7.1 Special Linear Groups

Firstly, let G = PSLn(q), and write q = pa, where p is a prime. In this case, things are

reasonably well-understood. Since we have described the situation for n = 2, we will assume

in what follows that n > 3. Firstly, we easily see the following.

Proposition 7.3 Let n > 3, and let M denote the natural module for G over GF(q). Then

M is not algebraic.

This shows that no groups containing PSLn(q), for any n, and any power q of p, have the

SMA property over a splitting field of characteristic p.

In non-defining characteristic, things get more unclear, since there is no natural module

to consider. Indeed, we can even have a group G that contains a subgroup H, where G has

the SMA property yet H does not, as the example

PSL2(7) 6 PSL2(49)

in characteristic 2 shows.

7.2 Symplectic Groups

Write Qm for the m×m matrix 

0 0 · · · 0 1

0 . . . 1 0
... . . . . . . . . .

...

0 1 . . . 0

1 0 · · · 0 0


,

and Rm for the matrix (
0 Qm

−Qm 0

)
.

then the symplectic group Sp2n(q) is the group of all 2n-dimensional matrices A that satisfy

AT RmA = Rm. We will find a nicely-embedded subgroup of Sp2n(q), for n > 3, that is

isomorphic with SL3(q), hence showing that the natural module for Sp2n(q) is not algebraic.
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Proposition 7.4 Suppose that G = Sp2n(q), where n > 3, and write q = pa, where p is a

prime. Write M for the natural module for G over GF(q). Then M is not algebraic.

This does leave the case of Sp4(q), where we have no subgroup isomorphic with SL3(p),

even badly-embedded ones. Since Sp4(2)
′ is isomorphic with PSL2(9), we see that this group

has the SMA property, but this offers little in the way of help to the other symplectic

groups of even characteristic type, and certainly not to the case where p is odd. Even the

isomorphism between PSp4(3) and SU4(2) does not help, since our understanding in the

low-rank unitary groups is also inadequate.

The Sylow 2-subgroup of Sp4(2
n) has an elementary abelian subgroup of order 22n, if

that helps, and the natural module, restricted to this centre, is faithful and (I think) has

whole vertex, and so is not Ω-periodic.
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