Lie-primitive subgroups of exceptional algebraic groups: Their classification so far

David A. Craven
University of Birmingham

Conference 'Permutation Groups', Banff, 13th-18th November, 2016.

Lie-primitive subgroups

Let G be a simple algebraic group of exceptional type over an algebraically closed field K of characteristic $p \geq 0$. Choose G to be of adjoint type, although it doesn't really matter for this problem.

Lie-primitive subgroups

Let G be a simple algebraic group of exceptional type over an algebraically closed field K of characteristic $p \geq 0$. Choose G to be of adjoint type, although it doesn't really matter for this problem.

A finite subgroup H of G is Lie primitive if the only closed, positive-dimensional subgroup of G containing H is G itself.

Lie-primitive subgroups

Let G be a simple algebraic group of exceptional type over an algebraically closed field K of characteristic $p \geq 0$. Choose G to be of adjoint type, although it doesn't really matter for this problem.

A finite subgroup H of G is Lie primitive if the only closed, positive-dimensional subgroup of G containing H is G itself.

Since all maximal closed, positive-dimensional subgroups of G are known (see Liebeck-Seitz), we can (at least in theory) find all imprimitive subgroups of G.

Lie-primitive subgroups

Let G be a simple algebraic group of exceptional type over an algebraically closed field K of characteristic $p \geq 0$. Choose G to be of adjoint type, although it doesn't really matter for this problem.

A finite subgroup H of G is Lie primitive if the only closed, positive-dimensional subgroup of G containing H is G itself.

Since all maximal closed, positive-dimensional subgroups of G are known (see Liebeck-Seitz), we can (at least in theory) find all imprimitive subgroups of G. Thus Lie-primitive subgroups are the main impediment to understanding all finite subgroups of G, in particular the maximal subgroups of the finite exceptional groups of Lie type.

Characterization of Lie-primitive subgroups

Borovik and Liebeck-Seitz independently produced a characterization of Lie-primitive subgroups, similar to that for classical groups:

Characterization of Lie-primitive subgroups

Borovik and Liebeck-Seitz independently produced a characterization of Lie-primitive subgroups, similar to that for classical groups:

If H is Lie primitive, then H is contained in one of the following:

Characterization of Lie-primitive subgroups

Borovik and Liebeck-Seitz independently produced a characterization of Lie-primitive subgroups, similar to that for classical groups:

If H is Lie primitive, then H is contained in one of the following:
(1) an exotic local subgroup, the normalizer of some r-subgroup for $r \neq p$. These are all known;

Characterization of Lie-primitive subgroups

Borovik and Liebeck-Seitz independently produced a characterization of Lie-primitive subgroups, similar to that for classical groups:

If H is Lie primitive, then H is contained in one of the following:
(1) an exotic local subgroup, the normalizer of some r-subgroup for $r \neq p$. These are all known;
(2) the Borovik subgroup $\left(\mathrm{Alt}_{6} \times \mathrm{Alt}_{5}\right) \cdot 2^{2}$ of E_{8} for $p \geq 7$;

Characterization of Lie-primitive subgroups

Borovik and Liebeck-Seitz independently produced a characterization of Lie-primitive subgroups, similar to that for classical groups:

If H is Lie primitive, then H is contained in one of the following:
(1) an exotic local subgroup, the normalizer of some r-subgroup for $r \neq p$. These are all known;
(2) the Borovik subgroup $\left(\mathrm{Alt}_{6} \times \mathrm{Alt}_{5}\right) \cdot 2^{2}$ of E_{8} for $p \geq 7$;
(3) an almost simple group.

Characterization of Lie-primitive subgroups

Borovik and Liebeck-Seitz independently produced a characterization of Lie-primitive subgroups, similar to that for classical groups:

If H is Lie primitive, then H is contained in one of the following:
(1) an exotic local subgroup, the normalizer of some r-subgroup for $r \neq p$. These are all known;
(2) the Borovik subgroup $\left(\mathrm{Alt}_{6} \times \mathrm{Alt}_{5}\right) \cdot 2^{2}$ of E_{8} for $p \geq 7$;
(3) an almost simple group.

The first two cases are fine, so we need to understand the third. If H is almost simple then H can either be of Lie type in characteristic p, or not.

Characterization of Lie-primitive subgroups

Borovik and Liebeck-Seitz independently produced a characterization of Lie-primitive subgroups, similar to that for classical groups:

If H is Lie primitive, then H is contained in one of the following:
(1) an exotic local subgroup, the normalizer of some r-subgroup for $r \neq p$. These are all known;
(2) the Borovik subgroup $\left(\mathrm{Alt}_{6} \times \mathrm{Alt}_{5}\right) \cdot 2^{2}$ of E_{8} for $p \geq 7$;
(3) an almost simple group.

The first two cases are fine, so we need to understand the third. If H is almost simple then H can either be of Lie type in characteristic p, or not.

Given G of exceptional type, there is a complete list \mathcal{S}_{G} such that a finite simple group H embeds into G if and only if $H \in \mathcal{S}_{G}$.

Characterization of Lie-primitive subgroups

Borovik and Liebeck-Seitz independently produced a characterization of Lie-primitive subgroups, similar to that for classical groups:

If H is Lie primitive, then H is contained in one of the following:
(1) an exotic local subgroup, the normalizer of some r-subgroup for $r \neq p$. These are all known;
(2) the Borovik subgroup $\left(\mathrm{Alt}_{6} \times \mathrm{Alt}_{5}\right) \cdot 2^{2}$ of E_{8} for $p \geq 7$;
(3) an almost simple group.

The first two cases are fine, so we need to understand the third. If H is almost simple then H can either be of Lie type in characteristic p, or not.

Given G of exceptional type, there is a complete list \mathcal{S}_{G} such that a finite simple group H embeds into G if and only if $H \in \mathcal{S}_{G}$. This list is infinite if $p>0\left(\mathrm{PSL}_{2}\left(p^{a}\right) \in \mathcal{S}_{G}\right.$ for all $a \geq 1$, for example), but all but finitely many of them are Lie type in defining characteristic.

Characterization of Lie-primitive subgroups

Borovik and Liebeck-Seitz independently produced a characterization of Lie-primitive subgroups, similar to that for classical groups:

If H is Lie primitive, then H is contained in one of the following:
(1) an exotic local subgroup, the normalizer of some r-subgroup for $r \neq p$. These are all known;
(2) the Borovik subgroup $\left(\mathrm{Alt}_{6} \times \mathrm{Alt}_{5}\right) \cdot 2^{2}$ of E_{8} for $p \geq 7$;
(3) an almost simple group.

The first two cases are fine, so we need to understand the third. If H is almost simple then H can either be of Lie type in characteristic p, or not.

Given G of exceptional type, there is a complete list \mathcal{S}_{G} such that a finite simple group H embeds into G if and only if $H \in \mathcal{S}_{G}$. This list is infinite if $p>0\left(\mathrm{PSL}_{2}\left(p^{a}\right) \in \mathcal{S}_{G}\right.$ for all $a \geq 1$, for example), but all but finitely many of them are Lie type in defining characteristic. If $\overline{\mathcal{S}}_{G}$ denotes the isomorphism types of Lie-primitive simple subgroups of G, then $\overline{\mathcal{S}}_{G} \subseteq \mathcal{S}_{G}$.

Equicharacteristic case

We want to show finiteness of $\overline{\mathcal{S}}_{G}$.

Equicharacteristic case

We want to show finiteness of $\overline{\mathcal{S}}_{G}$. Results of Liebeck, Saxl, Seitz and Testerman, collected together, give the following theorem:

Equicharacteristic case

We want to show finiteness of $\overline{\mathcal{S}}_{G}$. Results of Liebeck, Saxl, Seitz and Testerman, collected together, give the following theorem:

Theorem
Suppose that $H=H(q)$ is a Lie-primitive simple subgroup of the exceptional algebraic group G, where q is a power of $p=\operatorname{char}(G)$.

Equicharacteristic case

We want to show finiteness of $\overline{\mathcal{S}}_{G}$. Results of Liebeck, Saxl, Seitz and Testerman, collected together, give the following theorem:

Theorem

Suppose that $H=H(q)$ is a Lie-primitive simple subgroup of the exceptional algebraic group G, where q is a power of $p=\operatorname{char}(G)$. Then the untwisted rank of H (so 4 for ${ }^{3} D_{4}$, for example) is at most half of that of G, and one of the following holds:

- $q \leq 9$,
- $H=\mathrm{PSL}_{3}(16), \mathrm{PSU}_{3}(16)$,
- $H=\mathrm{PSL}_{2}(q),{ }^{2} B_{2}(q)$ or ${ }^{2} G_{2}(q)$, and $q<\operatorname{gcd}(2, p) \cdot t(G)$, where $t(G)$ is as follows:

G	G_{2}	F_{4}	E_{6}	E_{7}	E_{8}
$t(G)$	12	68	124	388	1312

Determining $\overline{\mathcal{S}}_{G}$ for G one of F_{4}, E_{6}, E_{7}

We know that $\overline{\mathcal{S}}_{G}$ is finite, but we want to know exactly what $\overline{\mathcal{S}}_{G}$ is.

Determining $\overline{\mathcal{S}}_{G}$ for G one of F_{4}, E_{6}, E_{7}

We know that $\overline{\mathcal{S}}_{G}$ is finite, but we want to know exactly what $\overline{\mathcal{S}}_{G}$ is.
Almost all of the possible members of $\overline{\mathcal{S}}_{G}$ in fact are not, as the previous theorem shows, but it should be true that in fact $\overline{\mathcal{S}}_{G} \cap \operatorname{Lie}(p)$ is empty. We cannot yet prove this, but get fairly close, as we shall see later.

Determining $\overline{\mathcal{S}}_{G}$ for G one of F_{4}, E_{6}, E_{7}

We know that $\overline{\mathcal{S}}_{G}$ is finite, but we want to know exactly what $\overline{\mathcal{S}}_{G}$ is.
Almost all of the possible members of $\overline{\mathcal{S}}_{G}$ in fact are not, as the previous theorem shows, but it should be true that in fact $\overline{\mathcal{S}}_{G} \cap \operatorname{Lie}(p)$ is empty. We cannot yet prove this, but get fairly close, as we shall see later.

Furthermore, we can remove many elements of \mathcal{S}_{G} not in $\operatorname{Lie}(p)$ from $\overline{\mathcal{S}}_{G}$.

Determining $\overline{\mathcal{S}}_{G}$ for G one of F_{4}, E_{6}, E_{7}

We know that $\overline{\mathcal{S}}_{G}$ is finite, but we want to know exactly what $\overline{\mathcal{S}}_{G}$ is.
Almost all of the possible members of $\overline{\mathcal{S}}_{G}$ in fact are not, as the previous theorem shows, but it should be true that in fact $\overline{\mathcal{S}}_{G} \cap \operatorname{Lie}(p)$ is empty. We cannot yet prove this, but get fairly close, as we shall see later.

Furthermore, we can remove many elements of \mathcal{S}_{G} not in $\operatorname{Lie}(p)$ from $\overline{\mathcal{S}}_{G}$.
We will now present in tables the work that has been done so far, starting with \mathcal{S}_{G}, then removing those subgroups previously proved not to be in $\overline{\mathcal{S}}_{G}$, and finally the current state of knowledge.

Determining $\overline{\mathcal{S}}_{G}$ for G one of F_{4}, E_{6}, E_{7}

We know that $\overline{\mathcal{S}}_{G}$ is finite, but we want to know exactly what $\overline{\mathcal{S}}_{G}$ is.
Almost all of the possible members of $\overline{\mathcal{S}}_{G}$ in fact are not, as the previous theorem shows, but it should be true that in fact $\overline{\mathcal{S}}_{G} \cap \operatorname{Lie}(p)$ is empty. We cannot yet prove this, but get fairly close, as we shall see later.

Furthermore, we can remove many elements of \mathcal{S}_{G} not in $\operatorname{Lie}(p)$ from $\overline{\mathcal{S}}_{G}$.
We will now present in tables the work that has been done so far, starting with \mathcal{S}_{G}, then removing those subgroups previously proved not to be in $\overline{\mathcal{S}}_{G}$, and finally the current state of knowledge.

Disclaimer: Many papers have been written on this problem, and I think I am correct on the current state of knowledge. I would be very happy to be corrected.

F_{4} : non-equicharacteristic case

All simple subgroups of F_{4} :

p	H
All primes	$\mathrm{Alt}_{5-6}, \mathrm{PSL}_{2}(q), q=7,8,13,17,25,27$,
$p=2$	$\mathrm{PSL}_{3}(3), \mathrm{PSU}_{3}(3),{ }^{3} D_{4}(2)$
$p=3$	$\mathrm{Alt}_{7,9,10}, J_{2}, \mathrm{PSL}_{4}(3)$
$p=5$	$\mathrm{PSL}_{3}(4)$
$p=11$	Alt_{7}

F_{4} : non-equicharacteristic case

After Cohen-Wales, Litterick and Magaard:

p	H
$p \nmid\|H\|$	$\operatorname{PSL}_{2}(q), q=9,25,27$
$p=2$	$\mathrm{Alt}_{7}, \mathrm{PSL}_{2}(q), q=13,25,27, \mathrm{PSL}_{3}(3), \mathrm{PSL}_{4}(3)$
$p=3$	$\mathrm{PSL}_{2}(q), q=7,8,13,17,25,{ }^{3} D_{4}(2), \mathrm{PSL}_{3}(4)$
$p=5$	Alt_{6}
$p=7$	$\mathrm{PSL}_{2}(q), q=8,25,27, \mathrm{PSU}_{3}(3),{ }^{3} D_{4}(2)$
$p=13$	$\mathrm{PSL}_{2}(q), q=25,27$

F_{4} : all cases

Current state:

p	H
$p \nmid H \mid$	$\operatorname{PSL}_{2}(q), q=9,25,27$
$p=2$	$\operatorname{PSL}_{2}(q), q=13,25, \mathrm{PSL}_{3}(3)$
$p=3$	$\operatorname{PSL}_{2}(q), q=9,13,25$
$p=7$	$\operatorname{PSL}_{2}(q), q=8,13,27$
$p=13$	$\operatorname{PSL}_{2}(q), q=25,27$

(The case PSL_{2} (27) for characteristic 2 was proved by Magaard and Parker, and the case $\mathrm{PSL}_{2}(13)$ for characteristic 13 was proved by Burness and Testerman.)

E_{6} : non-equicharacteristic case

All simple subgroups of E_{6} :

p	H
All primes	$\mathrm{Alt}_{5-7}, M_{11}, \mathrm{PSL}_{2}(q), q=7,8,11,13,17,19,25,27$,
	$\mathrm{PSL}_{3}(3), \mathrm{PSU}_{3}(3), \mathrm{PSU}_{4}(2),{ }^{3} D_{4}(2),{ }^{2} F_{4}(2)^{\prime}$
$p=2$	$\mathrm{Alt}_{9-12}, M_{12}, M_{22}, J_{2}, J_{3}, \mathrm{Fi}_{22}$,
	$\mathrm{PSL}_{4}(3), \mathrm{PSU}_{4}(3), \Omega_{7}(3), G_{2}(3)$
$p=5$	M_{12}
$p=11$	J_{1}

E_{6} : all cases

After Cohen-Wales, Litterick and particularly Aschbacher:

p	H
$p \nmid\|H\|$	$\mathrm{PSL}_{2}(q), q=7,9,19, \mathrm{PSL}_{3}(3), \mathrm{PSU}_{3}(3)$,
$p=2$	$J_{2}, \mathrm{Alt}_{8}, \mathrm{PSL}_{2}(q), q=9,13,19$,
$p=3$	$\mathrm{PSL}_{2}(q), q=13,19$
$p=5$	$\mathrm{Alt}_{6,7}, \mathrm{PSL}_{2}(19), M_{11}, M_{12}$
$p=11$	J_{1}
$p=13$	$\mathrm{PSL}_{3}(3)$

E_{6} : all cases

Current state:

p	H
$p \nmid H \mid$	$\mathrm{PSL}_{2}(q), q=7,9,19, \mathrm{PSL}_{3}(3)$
$p=2$	$\mathrm{PSL}_{2}(q), q=13,19$
$p=3$	$\mathrm{PSL}_{2}(q), q=13,19$
$p=5$	$\mathrm{PSL}_{2}(19)$
$p=13$	$\mathrm{PSL}_{3}(3)$

E_{7} : non-equicharacteristic case

All simple subgroups of E_{7} :

p	H
All primes	$\mathrm{Alt}_{5-9}, \mathrm{PSL}_{2}(q), q=7,8,11,13,17,19,25,27,29,37$,
	$\mathrm{PSL}_{3}(3), \mathrm{PSL}_{3}(4), \mathrm{PSU}_{3}(3), \mathrm{PSU}_{3}(8), \mathrm{PSU}_{4}(2)$,
	$\mathrm{Sp}_{6}(2), \Omega_{8}^{+}(2),{ }^{3} D_{4}(2),{ }^{2} F_{4}(2)^{\prime}, M_{11}, M_{12}, J_{2}$
$p=2$	$\operatorname{Alt}_{10-13}, \mathrm{PSL}_{4}(3)$
$p=5$	$\mathrm{Alt}_{10}, M_{22}, R u, H S$
$p=11$	J_{1}

E_{7} : non-equicharacteristic case

After Litterick:

p	H
$p \nmid H \mid$	$\mathrm{PSL}_{2}(q), q=5,7,9,11,13,19,27,29,37$,
$p=2$	$\mathrm{PSL}_{3}(4), \mathrm{PSU}_{3}(3), \mathrm{PSU}_{3}(8), \Omega_{8}^{+}(2)$,
$p=3$	$\mathrm{~L}_{2}, \mathrm{PSL}_{2}(q), q=11,13,19,27,29,37$
$p=5$	$\mathrm{PSL}_{2}(q), q=7,8,11,13,19,27,29,37$,
	$\mathrm{PSL}_{12}, M_{22}, \mathrm{Ru}, \mathrm{HS}, \mathrm{PSU}_{3}(8), \mathrm{Alt}_{7,8}^{+}(2), \mathrm{PSL}_{2}(q), q=5,9,11,19,29$,
$p=7$	$\mathrm{PSL}_{3}(4), \Omega_{8}^{+}(2),{ }^{2} B_{2}(8)$
$p=13$	$\mathrm{PSL}_{2}(q), q=8,13,27,29, \mathrm{PSL}_{3}(4), \mathrm{PSU}_{3}(8), \Omega_{8}^{+}(2)$
$p=19$	$\mathrm{PSL}_{2}(27)$

E_{7} : all cases

Current state:

p	H
$p \nmid H \mid$	$\mathrm{PSL}_{2}(q), q=7,9,11,13,19,27,29,37, \mathrm{PSL}_{3}(4), \mathrm{PSU}_{3}(3)$
$p=2$	$\mathrm{PSL}_{2}(q), q=8,19,27,29,37, \mathrm{PSL}_{3}(4), \mathrm{PSU}_{3}(3)$
$p=3$	$\mathrm{PSL}_{2}(q), q=11,13,19,29,37, \mathrm{PSL}_{3}(4), \mathrm{PSU}_{3}(3)$
$p=5$	$M_{22}, \operatorname{Alt}_{7}, \mathrm{PSL}_{2}(q), q=9,19,25,29, \mathrm{PSL}_{3}(4),{ }^{2} B_{2}(8)$
$p=7$	$\operatorname{PSL}_{2}(q), q=7,13,27,29, \mathrm{PSL}_{3}(4), \mathrm{PSU}_{3}(3)$
$p=13$	$\mathrm{PSL}_{2}(27)$
$p=19$	$\mathrm{PSL}_{2}(37)$

(The case $\mathrm{PSL}_{2}(19)$ for characteristic 19 was proved by Burness and Testerman. Several that act irreducibly on $L(G)$ can be deduced from $\operatorname{Hom}\left(\Lambda^{2}(L(G)), L(G)\right)$ being 1-dimensional on restriction to H.)

So what Lie-primitive subgroups are known to exist?

We just give one example here: $G=F_{4}$.

$$
\begin{array}{cc}
\hline p & H \\
\hline p \nmid H \mid & \mathrm{PSL}_{2}(q), q=8,13,17,25,27, \mathrm{PSL}_{3}(3),{ }^{3} D_{4}(2) \\
p=2 & \mathrm{PSL}_{2}(q), q=25,27, \mathrm{PSL}_{3}(3), \mathrm{PSL}_{4}(3) \\
p=3 & \mathrm{PSL}_{2}(q), q=13,25,{ }^{3} D_{4}(2) \\
p=7 & \mathrm{PSL}_{2}(q), q=13,25,27, \mathrm{PSU}_{3}(3),{ }^{3} D_{4}(2) \\
p=13 & \mathrm{PSL}_{2}(q), q=25,27,{ }^{3} D_{4}(2) \\
\hline
\end{array}
$$

