All Roads Lead to Rome: the proof of the road colouring conjecture

David A. Craven, University of Oxford

12th November, 2008
[Added later: In 2009, A. N. Trahtman published The road coloring problem in Israel J. Math.] This solved a long-standing conjecture, which we will describe (most of) now.

Let Γ be a digraph, and suppose that all vertices of Γ have the same out-degree. Is there a colouring $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ of the edges, and a word s, such that there is a vertex v_{0} with $v s=v_{0}$ for all $v \in V$? In other words, is there a colouring and a set of instructions such that wherever you start you end up at the same vertex? Such a word is called a synchronizing word. Not all digraphs have a synchronizing word: for example, take the square with an arrow in each direction. Any word s such that $v s=v$ has even length, and if $u s=v$ for some vertex u adjacent to v then u has odd length. More generally, the following condition is necessary.

The gcd of the lengths of all cycles in Γ is 1 .
We also want that every vertex is reachable from every other vertex. Call such a digraph an AGW graph, named after Adler, Goodwyn and Weiss.

Theorem 1 (Trahtman, 2007) Every AGW graph has a colouring such that it possesses a synchronizing word.

We won't prove this, but we will get quite close.
Definition 2 Let Γ be an AGW graph, with a colouring. We introduce an equivalence relation on V by saying that $u \equiv v$ if for all words s, there is a word t such that $u(s t)=v(s t)$.

A pair (u, v) of vertices is called synchronizing if there is a word s such that $u s=v s$, and if no such word exists the pair is called deadlock. A synchronizing pair (u, v) is called stable if for any word s, the pair $(u s, v s)$ is also synchronizing.

A theorem of Kari states that Γ is synchronizing (i.e., has a synchonizing word) if there is a colouring with a stable pair. (Go by induction. Take the quotient digraph by \equiv, and colour the resulting smaller digraph, then lift this to a recolouring of Γ.)

The set of all outgoing edges from a vertex is called a bunch if they all have the same target.

As a remark, if $v \in V$ has two incoming bunches, from u_{1} and u_{2}, then for any colour $\alpha, u_{1} \alpha=v=u_{2} \alpha$, so $\left(u_{1}, u_{2}\right)$ is a stable pair (write any word s as $s=\alpha s^{\prime}$, so then $u_{i} s=u_{i} \alpha s^{\prime}=v s^{\prime}$, and ($\left.u_{1} s, u_{2} s\right)$ is synchronizing $)$.

Suppose that v_{1}, \ldots, v_{d} are vertices and that the out-degree of each vertex is d. Let A denote the adjacency matrix of Γ. Let u be a left eigenvector with positive integer components, having no common divisors. The i th component of u is called the weight of v_{i}, and is denoted $w\left(v_{i}\right)$. Define $w(D)$ to be the dum of the weights of the vertices of $D \subseteq V$. We claim that $w(V)=n$, where n is the out-degree of v_{i}.

Consider all subsets D of V such that $|D s|=1$ for some s, and $w(D)$ is maximal. these are called F-maximal subsets.

We claim that if U is F-maximal, so if $U s^{-1}$, where s is a word. It suffices to assume that s is a single colour α_{i}. Since $w A=n w$, we have

$$
\sum_{i=1}^{n} w\left(U \alpha_{i}^{-1}\right)=n w(U)
$$

Therefore, either one of the $U \alpha_{i}^{-1}$ has greater weight than U, or all $U \alpha_{i}^{-1}$ have the same weight. If U is F-maximal, the former possibility cannot occur, and so $U \alpha_{i}^{-1}$ is also F maximal. This will play a role in the proof to follow.

Theorem 3 (Friedman, 1990) There exists a partition of Γ into F-maximal sets.
Proof: Let T_{0} be an F-maximal set, and let s be a word such that $\left|T_{0} s\right|=1, T_{1} s=v_{0}$. if $T_{0}=V$, then we are done (and proved the theorem!).

If $T_{0} \neq V$, we claim we can extend s backwards to s^{\prime}, so that s^{\prime} sends T_{0} to one vertex and some other F-maximal set to another vertex. Consider s^{-1}, which maps V to subsets of V, which form a partition of V. Let $v \notin T_{0}$, and let r map v_{0} to v. Let $s^{\prime}=s r s$.

Since T_{0} is F-maximal, so is $T_{1}=T_{0} r^{-1} s^{-1}$. Notice that $T_{1} s^{\prime}=v_{0}$ and $T_{0} s^{\prime}=v_{0} r s \neq v_{0}$. Hence s^{\prime} sends T_{0} to $v_{0} r s$ and T_{1} to v_{0}. Repeating this procedure completes the theorem.

1 Cliques

An F-clique is a subset $V s \subseteq V$ (for some word s) such that all pairs in $V s$ are in deadlock.

Lemma 4 Let w be the weight of an F-maximal set. The size of an F-clique A is $w(\Gamma) / w$, i.e., the size of a partition given in Theorem 3 above.

Proof: If u, v lie in some F-maximal set, then they cannot belong to some F-clique, so $|A| \leqslant W(\Gamma) / w$.

Now let $V s$ be an F-clique. If $v \in V s$, the sum of all weights $v s^{-1}$ is $w(\Gamma)$. Therefore

$$
w(\Gamma)=\sum_{v \in V s} w\left(v s^{-1}\right) .
$$

The weight of each $w\left(v s^{-1}\right)$ is at most w, as this is the maximum weight of a set D such that $|D s|=1$. Hence

$$
w(\Gamma)=\frac{w(\Gamma)}{w} \cdot w \leqslant|A| \cdot w .
$$

Hence $w(\Gamma) / w \leqslant|A|$, as claimed.
Lemma 5 Let A be an F-clique. For any $s, A s$ is also an F-clique, and any vertex belongs to some F-clique.

Proof: Obvious.
Lemma 6 Let A and $B(|A|>1)$ be distinct F-clique. Suppose that Γ has no stable pairs., Then $|A|=|B|$, and $|A \backslash B|>1$.

Proof: By Lemma $4|A|=|B|$. Let $A \backslash B=\{v\}$, and $B \backslash A=\{u\}$. As Γ has no stable pairs, for some word $s,(v s, u s)$ is a deadlock. Also, any pair from $A, A s, B, B s$ is a deadlock. Hence $(A \cup B) s$ is a set, any pair of vertices from which is a deadlock. But $|(A \cup B) s|$ is greater than $|A|$, so must have two elements from the same F-maximal set, a contradiction. Thus $|A \backslash B|>1$.

2 Spanning Subgraphs

Definition 7 A subgraph S of Γ is a spanning subgraph if it contains all vertices and exactly one out-edge for each vertex. A maximal sub-rooted tree with root on a cycle from S and having no common edges with cycles from S is called a tree of S. The distance of a vertex from the root is called the level of the vertex.

The idea of this definition is that a spanning subgraph might consist of all edges of a particular colour. By studying these, we will be able to prove the theorem.

Lemma 8 Suppose that any vertex on Γ has no two incoming bunches. Then Γ has a spanning subgraph such that all vertices of maximal positive level belong to one non-trivial tree.

Let's see how to prove the main theorem from this lemma. If we have a vertex with two incoming bunches, we are done by the remarks earlier. If not, by Lemma $8, \Gamma$ has a spanning subgraph R such that vertices of maximal positive level L belong to one tree of R.

Give the edges of R the colour α, and C be all vertices from cycles of R. Colour all other edges arbitrarily.

Some F-clique F has non-empty intersection with set N of maximal level $L . N$ belongs to one tree. $|N \cap F|=1$, because the word α^{L} maps all elements of N to the root. The word α^{L-1} maps F to another F-clique F^{\prime}, of size $|F|$. Certainly $\left|F^{\prime} \backslash C\right|=1$ because if v is on a tree, then $v \alpha^{L-1}$ is on a cycle (as the root is on a cycle) unless v has level L, in which case

$$
\left|F^{\prime} \backslash C\right|=\left|N \alpha^{L-1} \cap F^{\prime}\right|=1
$$

(as no two $v \alpha^{L-1}$ in $N \alpha^{L-1}$ are in deadlock. Therefore $\left|C \cap F_{1}\right|=\left|F_{1}\right|-1$.
Now, let m be a multiple of all lengths of all cycles in C. For any $v \in C, v \alpha^{m}=v$. Therefore if $F^{\prime \prime}=F^{\prime} \alpha^{m}$, we have that $F^{\prime \prime} \subseteq C$ and $C \cap F^{\prime}=F^{\prime} \cap F^{\prime \prime}$. Thus F^{\prime} and $F^{\prime \prime}$ of size $\left|F^{\prime}\right|>1,\left|F^{\prime \prime}\right|>1$, have $\left|F^{\prime}\right|-1$ common vertices, contradicting Lemma 6. Thus there exists a stable couple by Lemma 6, and we are done.

