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[Added later: In 2009, A. N. Trahtman published The road coloring problem in Israel J.

Math.] This solved a long-standing conjecture, which we will describe (most of) now.

Let Γ be a digraph, and suppose that all vertices of Γ have the same out-degree. Is there

a colouring {α1, . . . , αn} of the edges, and a word s, such that there is a vertex v0 with

vs = v0 for all v ∈ V ? In other words, is there a colouring and a set of instructions such that

wherever you start you end up at the same vertex? Such a word is called a synchronizing

word. Not all digraphs have a synchronizing word: for example, take the square with an

arrow in each direction. Any word s such that vs = v has even length, and if us = v for

some vertex u adjacent to v then u has odd length. More generally, the following condition

is necessary.

The gcd of the lengths of all cycles in Γ is 1.

We also want that every vertex is reachable from every other vertex. Call such a digraph an

AGW graph, named after Adler, Goodwyn and Weiss.

Theorem 1 (Trahtman, 2007) Every AGW graph has a colouring such that it possesses

a synchronizing word.

We won’t prove this, but we will get quite close.

Definition 2 Let Γ be an AGW graph, with a colouring. We introduce an equivalence

relation on V by saying that u ≡ v if for all words s, there is a word t such that u(st) = v(st).

A pair (u, v) of vertices is called synchronizing if there is a word s such that us = vs,

and if no such word exists the pair is called deadlock. A synchronizing pair (u, v) is called

stable if for any word s, the pair (us, vs) is also synchronizing.
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A theorem of Kari states that Γ is synchronizing (i.e., has a synchonizing word) if there

is a colouring with a stable pair. (Go by induction. Take the quotient digraph by ≡, and

colour the resulting smaller digraph, then lift this to a recolouring of Γ.)

The set of all outgoing edges from a vertex is called a bunch if they all have the same

target.

As a remark, if v ∈ V has two incoming bunches, from u1 and u2, then for any colour

α, u1α = v = u2α, so (u1, u2) is a stable pair (write any word s as s = αs′, so then

uis = uiαs
′ = vs′, and (u1s, u2s) is synchronizing).

Suppose that v1, . . . , vd are vertices and that the out-degree of each vertex is d. Let

A denote the adjacency matrix of Γ. Let u be a left eigenvector with positive integer

components, having no common divisors. The ith component of u is called the weight of vi,

and is denoted w(vi). Define w(D) to be the dum of the weights of the vertices of D ⊆ V .

We claim that w(V ) = n, where n is the out-degree of vi.

Consider all subsets D of V such that |Ds| = 1 for some s, and w(D) is maximal. these

are called F -maximal subsets.

We claim that if U is F -maximal, so if Us−1, where s is a word. It suffices to assume

that s is a single colour αi. Since wA = nw, we have

n∑
i=1

w(Uα−1i ) = nw(U).

Therefore, either one of the Uα−1i has greater weight than U , or all Uα−1i have the same

weight. If U is F -maximal, the former possibility cannot occur, and so Uα−1i is also F -

maximal. This will play a role in the proof to follow.

Theorem 3 (Friedman, 1990) There exists a partition of Γ into F -maximal sets.

Proof: Let T0 be an F -maximal set, and let s be a word such that |T0s| = 1, T1s = v0. if

T0 = V , then we are done (and proved the theorem!).

If T0 6= V , we claim we can extend s backwards to s′, so that s′ sends T0 to one vertex

and some other F -maximal set to another vertex. Consider s−1, which maps V to subsets

of V , which form a partition of V . Let v /∈ T0, and let r map v0 to v. Let s′ = srs.

Since T0 is F -maximal, so is T1 = T0r
−1s−1. Notice that T1s

′ = v0 and T0s
′ = v0rs 6= v0.

Hence s′ sends T0 to v0rs and T1 to v0. Repeating this procedure completes the theorem.
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1 Cliques

An F -clique is a subset V s ⊆ V (for some word s) such that all pairs in V s are in deadlock.

Lemma 4 Let w be the weight of an F -maximal set. The size of an F -clique A is w(Γ)/w,

i.e., the size of a partition given in Theorem 3 above.

Proof: If u, v lie in some F -maximal set, then they cannot belong to some F -clique, so

|A| 6 W (Γ)/w.

Now let V s be an F -clique. If v ∈ V s, the sum of all weights vs−1 is w(Γ). Therefore

w(Γ) =
∑
v∈V s

w(vs−1).

The weight of each w(vs−1) is at most w, as this is the maximum weight of a set D such

that |Ds| = 1. Hence

w(Γ) =
w(Γ)

w
· w 6 |A| · w.

Hence w(Γ)/w 6 |A|, as claimed.

Lemma 5 Let A be an F -clique. For any s, As is also an F -clique, and any vertex belongs

to some F -clique.

Proof: Obvious.

Lemma 6 Let A and B (|A| > 1) be distinct F -clique. Suppose that Γ has no stable pairs.,

Then |A| = |B|, and |A \B| > 1.

Proof: By Lemma 4 |A| = |B|. Let A\B = {v}, and B \A = {u}. As Γ has no stable pairs,

for some word s, (vs, us) is a deadlock. Also, any pair from A, As, B, Bs is a deadlock.

Hence (A ∪ B)s is a set, any pair of vertices from which is a deadlock. But |(A ∪ B)s| is

greater than |A|, so must have two elements from the same F -maximal set, a contradiction.

Thus |A \B| > 1.

2 Spanning Subgraphs

Definition 7 A subgraph S of Γ is a spanning subgraph if it contains all vertices and exactly

one out-edge for each vertex. A maximal sub-rooted tree with root on a cycle from S and

having no common edges with cycles from S is called a tree of S. The distance of a vertex

from the root is called the level of the vertex.
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The idea of this definition is that a spanning subgraph might consist of all edges of a

particular colour. By studying these, we will be able to prove the theorem.

Lemma 8 Suppose that any vertex on Γ has no two incoming bunches. Then Γ has a

spanning subgraph such that all vertices of maximal positive level belong to one non-trivial

tree.

Let’s see how to prove the main theorem from this lemma. If we have a vertex with two

incoming bunches, we are done by the remarks earlier. If not, by Lemma 8, Γ has a spanning

subgraph R such that vertices of maximal positive level L belong to one tree of R.

Give the edges of R the colour α, and C be all vertices from cycles of R. Colour all other

edges arbitrarily.

Some F -clique F has non-empty intersection with set N of maximal level L. N belongs

to one tree. |N ∩F | = 1, because the word αL maps all elements of N to the root. The word

αL−1 maps F to another F -clique F ′, of size |F |. Certainly |F ′ \ C| = 1 because if v is on a

tree, then vαL−1 is on a cycle (as the root is on a cycle) unless v has level L, in which case

|F ′ \ C| = |NαL−1 ∩ F ′| = 1

(as no two vαL−1 in NαL−1 are in deadlock. Therefore |C ∩ F1| = |F1| − 1.

Now, let m be a multiple of all lengths of all cycles in C. For any v ∈ C, vαm = v.

Therefore if F ′′ = F ′αm, we have that F ′′ ⊆ C and C ∩ F ′ = F ′ ∩ F ′′. Thus F ′ and F ′′ of

size |F ′| > 1, |F ′′| > 1, have |F ′| − 1 common vertices, contradicting Lemma 6. Thus there

exists a stable couple by Lemma 6, and we are done.
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