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The following is joint work with Charles Eaton, Radha Kessar and Marcus Linkelmann.

In this talk I will outline the progress made on a conjecture of Karin Erdmann over 25

years ago. This conjecture has essentially been proved by the team described above, in work

stretching back over eighteen months. However, the past month or so at MSRI has seen

the culmination of this work into an almost complete proof, with most portions of the proof

available in manuscript form.

For the purposes of this talk, G is a finite group, K is an algebraically closed field of

characteristic p, where p | |G|, and all modules are finite-dimensional.

1 Facts from Block Theory

We need a few preliminaries before we can talk about blocks at all; then we will define a

defect group of a block.

Recall from the previous talk that a vertex of an indecomposable module M is a minimal

subgroup Q such that M is a summand of M ↓Q↑G. For example, a module has vertex the

trivial subgroup if and only if M is a summand of KG, the group algebra; i.e., M has trivial

vertex if and only if it is projective (a summand of a free module).

Theorem 1.1 (Green) All vertices of an indecomposable module are p-subgroups of G and

a G-conjugate.

A source of an indecomposable module M is an indecomposable module S for the vertex

Q such that M is a summand of S ↑G. Since M is a summand of M ↓Q↑G, such a module

exists.

Theorem 1.2 (Green) All sources of an indecomposable module M are conjugate by an

element of NG(Q), where Q = vx M .
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Now let X denote the set of all simple KG-modules. We may turn X into a graph, by

connecting M and N if and only if Ext1
KG(M, N) is non-zero. The connected components of

X are called blocks. A defect group of a block is the maximum of the vertices of the simple

modules in it. (Such a subgroup exists.)

If P is a projective simple module, and M is any other module, then

Ext1
KG(P, M) = Ext1

KG(M, P ) = 1,

and so {P} is a connected component of the graph. This is a block whose defect group is the

trivial subgroup. If the defect group is cyclic, then there is a nice theory about the block.

The next ‘easiest’ p-group is C2×C2. Already(until recently) quite a lot about the structure

of these blocks was not known.

We are now in a position to state the conjecture of Erdmann’s.

Conjecture 1.3 (Erdmann, 1982) Let M be a simple module of a block with defect group

V4, and let S denote a source of M . Then dim S 6 2.

2 The Proof of Erdmann’s Conjecture

Recently, Lluis Puig has produced a manuscript in which he produces a proof of a major

conjecture of his, on endopermutation modules in nilpotent blocks. While this is too difficult

to explain here, this resolves one particular case of Ermann’s conjecture. This is enough for

us.

Theorem 2.1 (CEKL, 2008) Suppose that Puig’s conjecture on nilpotent blocks is true.

Then Erdmann’s conjecture is true.

The problem with Puig’s proof is that people are still as yet unconvinced about its

veracity. Our current strategy aims to remove the dependence on Puig’s proof by ealing

with the cases that are contained within the remit of Puig’s conjecture.

Theorem 2.2 (CEKL, 2008) Suppose that G is a finite group such that neither E6(q) o
P nor E7(q) o P are involevd in G, where q ≡ 1 mod 4 and P is a V4 group of outer

automorphisms of E6(q) or E7(q). Then G satisfies Erdmann’s conjecture.

These remaining configurations of groups are hoped to be tackled using Deligne–Lusztig

theory.

Erdmann’s conjecture has a variety of other consequences which, taken together with

known results, give a reasonably complete description of the structure of blocks whose defect

group is V4.
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3 Reductions

We would like to reduce the conjecture to finite simple groups, or perhaps to groups closely

associated with them.

Theorem 3.1 (EKL, 2006) Erdmann’s conjecture is true for all groups if and only if it is

true for all groups H o P , where H is an odd central extension of a simple group, and P is

either trivial, of order 2, or a V4 group.

It is the addition of this 2-group of automorphisms above the quasisimple group that

gives us the most headaches. Puig’s conjecture implies that the case where P is non-trivial

is always true, but as we are trying to make this proof independent of Puig’s proof, we need

that 2-group to remain.

Applying the classification of the finite simple groups, we reduce to a list of possibilities

for H. The following is easy.

Proposition 3.2 Let H be a sporadic or alternating group. Then Erdmann’s conjecture is

true.

The next result uses theorems on the reality of elements, as described in Tara Bonda’s

talk.

Proposition 3.3 (C, 2008) Let H be a symplectic or orthogonal group, or the Steinberg

group 3D4(q). Then Erdmann’s conjecture is true.

Radha Kessar used some of the theory of special linear groups to deal with the linear

and unitary cases.

Theorem 3.4 (K, 2008) Let H be a linear or unitary group. Then Erdmann’s conjecture

is true.

Work of Charles Eaton and I sorted most of the exceptional groups.

Theorem 3.5 (CE, 2008) Let H be an exceptional group, except for E6(q) or E7(q) when

P is a V4-group. Then Erdmann’s conjecture is true.

The remaining two cases are being dealt with now.
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