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Coxeter Groups

As most of you will know, Coxeter groups are incredibly important in finite
(and infinite!) group theory. They are groups generated by involutions,
with presentation

〈s1, . . . , sr | (si sj)
mij = 1〉,

where the mij are non-negative integers with mii = 1 (so that si has order
2). A long time ago, H.S.M. Coxeter classified the finite such groups in
1935, and found they fell into several families (in all cases mij = 2 unless
otherwise stated):

An: mi ,i+1 = 3, n ≥ 1 (symmetric groups)

BCn: m1,2 = 4 n ≥ 2

Dn: m1,3 = mi ,i+1 = 3 (i > 1) n ≥ 4

En: mn,3 = mi ,i+1 = 3 (i < n − 1), n = 6, 7, 8

F4: m1,2 = m3,4 = 3, m2,3 = 4

Hn: m1,2 = 5, mi ,i+1 = 3, 1 < i < n, n = 3, 4

I2(n): m1,2 = n
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Groups of Lie Type

Before Coxeter’s classification, Weyl groups were classified as the reflection
groups of root systems. They are those Coxeter groups for which the mij

are in the set {2, 3, 4, 6}, so not H3, H4, or I2(n) unless n = 6, in which
case we have I2(6) = G2.

The precise definition of a group of Lie type is difficult; they are finite
analogues of algebraic groups, and the most popular of them, used in
every example, is GLn(q), although other common ones are SUn(q),
Sp2n(q), SO±2n(q), and SO2n+1(q). We also have the exceptional groups of
Lie type, suggestively called E6(q), E7(q), E8(q), F4(q) and G2(q). But
there are some more of them, corresponding to automorphisms of the
Dynkin diagram.

These are 2E6(q), 2B2(22n+1), 2F4(22n+1) and 2G2(32n+1). Altogether there
are sixteen families of groups of Lie type, and they form (along with the
alternating groups) all but 26 of the finite simple groups.
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Representations of Groups of Lie type

Let G = G (q) be a group of Lie type. The representation theory of
GLn(q) is almost as old as representation theory itself. Modern day
representation theory of groups of Lie type is dominated by
Harish-Chandra and Deligne–Lusztig theories.

In 1955 Sandy Green gave all irreducible characters of GLn(q), but for all
simple groups of Lie type, the construction of all irreducible characters
needed Deligne–Lusztig theory, and was completed by Lusztig in 1986.

It hinges on a Jordan decomposition for characters, which in some sense
reduces the study of irreducible characters to unipotent and semisimple
characters. The unipotent characters are our focus today.

The unipotent characters of G (q) are in bijection with the Weyl group of
q, which for GLn(q) and GUn(q) is the symmetric group Sn, for
SO2n+1(q) and Sp2n(q) is BCn, and for the other orthogonal groups is Dn.
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What is a Unipotent Character?

Formally, a unipotent character of G = GF is a constituent of a
Deligne–Lusztig character RG

Tw
(1) for w ∈W .

This is the `-adic cohomology of a Deligne–Lusztig variety. For w = 1,
this is simply the permutation module G/B. In general, there are as many
of these characters as there are conjugacy classes of w ∈W .
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Unipotent Character Degrees

The degrees of unipotent characters are polynomials in q, a product of q,
cyclotomic polynomials in q, and possibly a fraction 1/d . The polynomials
do not depend on q. For the exceptional groups, there is simply a list of
them in the back of Roger Carter’s book. For the classical groups, since
there are infinitely many different GLns, we need a combinatorial
procedure.

For GLn, the character degrees are given by a combinatorial formula
dependent on the associated partition, resembling that of the symmetric
group. You get the unitary groups by replacing q by −q (and negating the
degree if necessary), and for types BC and D you have to use symbols
(essentially pairs of partitions).

Lusztig computed them for the exceptional groups, and there is simply a
list of them, with no obvious combinatorial description in most cases.
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But Unipotent Degrees Are Just Polynomials, So...

We (well, Lusztig) can give a list of properties that the unipotent degrees
satisfy (e.g., the number of them is that of the Coxeter group), and search
for a collection of them for the non-crystallographic groups, i.e., I2(n), H3

and H4. These were constructed in the 1980s, although only published in
1993.

For I2(n), they are as follows (η = e2πi/n, Xi = (q − ηi )(q − η−i )):

Character Degree

φ1,0 1
φ1,n qn

φ2,i , i < n/2
(1− ηi )(1− η−i )

n

qΦ2(qn − 1)

Φ1Xi

I2(n)[i , j ], i < j < n − i
ηi + η−i − ηj − η−j

n

q(q2 − 1)(qn − 1)

XiXj

φ′1,n/2, φ′′1,n/2
2

n

q(qn − 1)

Φ1Φ2
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From Complexes to Prime Fields

Let’s move away from ordinary representation theory, and consider
representation theory over a finite field. The first problem here is to know
what we mean by a character: if the representation ρ has degree a
multiple of p then the trace of the matrix is 0, whereas we should have
that φ(1) is the degree of the representation.

The solution is the following: let n be the p′th part of |G |, where G is
some finite group, and choose ζ a primitive nth root of unity in k = F̄p.
We only define a Brauer character on elements g whose order is prime to
p; ρ(g) is a matrix of order divisible by n, so its eigenvalues are all nth
roots of unity, hence powers of ζ. Instead of summing these powers, we
choose a primitive nth root ζ ′ in C, and sum the corresponding powers of
ζ ′ in C.
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Decomposition

Here is why we know we have the right definition.

Theorem

The restriction of an ordinary character to the p′-elements is a
non-negative integral linear combination of irreducible Brauer characters.

This allows us to produce the decomposition matrix, a matrix whose rows
are labelled by the ordinary irreducibles, columns by the Brauer
irreducibles, and populated by these non-negative integers. One may also
construct a graph, with vertices the irreducible complex characters, and
connecting two of them if an irreducible Brauer character appears in the
decomposition of both of them. The connected components of this graph
are called blocks.

Notice that this also distributes the Brauer characters into blocks as well.
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Modular representation theory of groups of Lie type

What can we say about the modular representation theory? To give this
question some substance we first need to introduce blocks. Let k be a
‘large’ field of characteristic p, and consider the group algebra kG . Write

1 = e1 + e2 + · · ·+ er ,

where the ei are central elements such that eiej = δijei . Any two such
decompositions have a common refinement, and the ei in the finest such
decomposition are called blocks. If M is a module, then since eiej = δijei ,
we see that

M = 1 ·M = e1 ·M ⊕ · · · ⊕ er ·M.

Thus if M is indecomposable, e.g., simple, ei ·M = δijM for some j . We
say that M belongs to ej . Extend this to sums of modules belonging to
the same block. Then submodules and quotients of modules belonging to
ej belong to ej . Since ej · kG belongs to ej obviously, every block has at
least one simple module belonging to it.
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Unipotent blocks

A unipotent block is a block of kG that has unipotent characters
belonging to it. If p is large enough (for example, not dividing the order of
the Weyl group and not dividing q) then the number of irreducible Brauer
characters belonging to the block is the same as the number of unipotent
characters in the block.

Since the unipotent characters are independent of q, it seems reasonable
to ask that the unipotent blocks are independent of q. For this to make
sense, we have to choose which q and p we want to ask this question for.
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Choosing our p and q

Let G = G (q) be a group of Lie type: the order of G is

|G | = qN
∏
d∈I

Φd(q)ad .

If p | |G | then either p | q, which leads to one theory (here there are
usually only two blocks), or p - q, in which case p | Φd(q) for some d . We
are mostly interested in the case where there is no other d ′ such that
p | Φd ′(q); in this case, the Sylow p-subgroup P is abelian, homocyclic, of
rank ad . In particular, if ad = 1 then P is cyclic.

We will always assume that p divides exactly one Φd(q) from now on. The
unipotent blocks of kG do not depend on q or p, as long as the d involved
is the same.
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The Cyclic Case: Brauer Trees

Recall the graph constructed before: the vertices are the irreducible
complex characters, and connecting two of them if an irreducible Brauer
character appears in the decomposition of both of them. Identify two
irreducible ordinary characters if their restriction to the p-regular elements
is the same, and attach an exceptionality to that vertex of the multiplicity.

Theorem

If the Sylow p-subgroup P of any finite group is cyclic, then the graph
above is a forest, all decomposition numbers are 0 or 1, and there is at
most one exceptional node.

In this case, the graph of a block is called the Brauer tree. The question of
whether every tree is a Brauer tree of some block of a finite group was
answered negatively by Feit in 1984, where he reduced the problem to the
finite simple groups. The Brauer trees of alternating and classical groups
are lines. Those of sporadic groups are ‘irrelevant’ only exist for p < 72.
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Exceptional Groups

This leaves the exceptional groups of Lie type, for which all but E7 and E8

were done in the early 1990s. Apart from two unipotent blocks for now
(for G = E8, one for d = 15 and one for d = 18) these have been finished
off by Dudas, Rouquier and me.

So we are close to classifying all decomposition matrices for all finite
groups (apart from small primes) whenever the Sylow p-subgroup is cyclic.

Can we do the same thing for I2(n), H3 and H4?
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Combinatorics of Brauer Trees

There are several pieces of information you can use to assemble the Brauer
tree of a block.

Parity: the sum of degrees of adjacent vertices is divisible by p, hence
each vertex is either +-type or −-type, depending on the congruence
of χ(1) modulo p.

Degree: the degree of an irreducible character (vertex) is the sum of
the irreducible Brauer characters contained in it (edges incident to it).
Degrees of characters are positive, so this places constraints.

The sum of two adjacent characters is a projective character.
Inducing a projective character yields a projective character. This can
be used when Lie type groups are nested (e.g., I2(5) ≤ H3).

These still work for the non-crystallographic groups, and so we can
construct the Brauer trees of their blocks.
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Brauer Trees for Pretend Lie Type Groups

I have done this for I2(n), H3 and H4, and the Brauer trees constructed are
consistent both with the methods outlined above, and also the statement
of the combinatorial version of Broué’s conjecture, which uses
geometric/combinatorial methods to construct the Brauer tree (but not
prove that it is correct).

The combinatorial Broué conjecture makes sense for these ‘groups’, even
though they don’t exist, and you arrive at the same answer. Hence the
Brauer trees constructed are correct, even if they are meaningless.

Injecting meaning into them is one of the new challenges in Lie theory.
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