Representation Growth and

Symmetric Groups

David A. Craven

University of Oxford

4th December, 2008

Partition of *n*: sequence of positive integers $(\lambda_1, \ldots, \lambda_r)$ such that

$$\sum_{i=1}^r \lambda_i = n.$$

The λ_i are the parts.

Partitions can be represented as tableaux, with number of boxes in each row equal to size of each part; e.g.,

$$(4,4,1)\leftrightarrow$$

Number of partitions of n is same as number of conjugacy classes of S_n .

There is a bijection between partitions of n and irreducible ordinary characters of S_n . Write χ^{λ} for character corresponding to λ . The degree is given by the **Hook Order Formula**.

Let x be a box in λ . Then h(x) equals the number of boxes below x, plus those to the right of x, plus 1. We have

$$\chi^{\lambda}(1) = \frac{n!}{\prod_{x \in \lambda} h(x)}$$

Conjugate partition λ^c of λ : partition whose tableau is reflection of λ .

For every λ , both λ and λ^c have the same hook numbers. Are there any others?

Cluster: set of partitions with same hook numbers.

 λ is a partition, with r rows, c columns.

Write $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$.

Let p be an integer with $1 \leq p \leq r - 1$.

Remainder of λ : bottom r - p rows.

Rump of λ : top p rows.

Front section of λ : front piece of the rump.

Extension of λ : the number $\lambda_p - \lambda_{p+1}$.

Periodic cluster: can add boxes to first p rows of all partitions and still get a cluster.

