Representation Growth and

Symmetric Groups

David A. Craven
University of Oxford

4th December, 2008

Partition of n : sequence of positive integers
$\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ such that

$$
\sum_{i=1}^{r} \lambda_{i}=n .
$$

The λ_{i} are the parts.

Partitions can be represented as tableaux, with number of boxes in each row equal to size of each part; e.g.,

$$
(4,4,1) \leftrightarrow \square \square
$$

Number of partitions of n is same as number of conjugacy classes of S_{n}.

There is a bijection between partitions of n and irreducible ordinary characters of S_{n}.

Write χ^{λ} for character corresponding to λ. The degree is given by the Hook Order Formula.

Let x be a box in λ. Then $h(x)$ equals the number of boxes below x, plus those to the right of x, plus 1 . We have

$$
\chi^{\lambda}(1)=\frac{n!}{\Pi_{x \in \lambda} h(x)}
$$

Conjugate partition λ^{c} of λ : partition whose tableau is reflection of λ.

For every λ, both λ and λ^{c} have the same hook numbers. Are there any others?

Cluster: set of partitions with same hook numbers.
λ is a partition, with r rows, c columns.

Write $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$.

Let p be an integer with $1 \leqslant p \leqslant r-1$.

Remainder of λ : bottom $r-p$ rows.

Rump of λ : top p rows.

Front section of λ : front piece of the rump.

Extension of λ : the number $\lambda_{p}-\lambda_{p+1}$.

Periodic cluster: can add boxes to first p rows of all partitions and still get a cluster.

$(5+n, 5+n, 2+n, 2)$
 $(4+n, 4+n, 1+n, 1,1)$

$$
E((5,3,3,2))
$$

