Algebraic Modules for Finite

Groups

David A. Craven

University of Oxford

August, 2007

Algebraic Modules

Algebraic module: One that satisfies a polynomial in \oplus and \otimes . (Alperin, 1976)

Examples: Projective modules, permutation modules, simple modules for *p*-soluble groups (Feit, 1979).

Behaves well under sums, summands, tensor products, induction, restriction, source-taking, Green correspondence.

Conjecture: If \hat{M} is an extension of M from a normal subgroup, then \hat{M} is algebraic if M is.

Periodicity and Algebraicity

Theorem: Suppose that M is periodic and algebraic. Then $\Omega^i(M)$ is algebraic for all i.

Theorem: Suppose that M is non-periodic and algebraic. Then for all $i \neq 0$, $\Omega^{i}(M)$ is non-algebraic.

In some sense, 'most' non-periodic modules are non-algebraic. Can we prove more?

Auslander–Reiten Quiver

M an indecomposable module, complexity 3.

 $M \in \Gamma \subseteq \Gamma_s(KG)$, a component of the ARquiver.

 Γ is a wild component, so of type A_{∞} .

Theorem: There is at most one algebraic module on Γ , and it lies at the end.

This can be extended to a wider class of module; e.g., Sylow *p*-subgroups not C_p or $C_p \times C_p$, and $p \nmid \dim M$. What can be said for $C_p \times C_p$?

$C_3 \times C_3$ -modules

 ${\cal M}$ an absolutely indecomposable module.

 $3
mid \dim M$: no nice description, even conjecturally.

 $3 \mid \dim M$: conjecturally a nice description.

Conjecture: M algebraic iff M periodic.

Evidence: true for GF(3) and dim M = 3, 6. There are 239 such modules.

This should extend to $C_p \times C_p$.