Algebraic Modules for Finite

Groups

David A. Craven
University of Oxford

August, 2007

Algebraic Modules

Algebraic module: One that satisfies a polynomial in \oplus and \otimes. (Alperin, 1976)

Examples: Projective modules, permutation modules, simple modules for p-soluble groups (Feit, 1979).

Behaves well under sums, summands, tensor products, induction, restriction, source-taking, Green correspondence.

Conjecture: If \hat{M} is an extension of M from a normal subgroup, then \hat{M} is algebraic if M is.

Periodicity and Algebraicity

Theorem: Suppose that M is periodic and algebraic. Then $\Omega^{i}(M)$ is algebraic for all i.

Theorem: Suppose that M is non-periodic and algebraic. Then for all $i \neq 0, \Omega^{i}(M)$ is non-algebraic.

In some sense, 'most' non-periodic modules are non-algebraic. Can we prove more?

Auslander-Reiten Quiver

M an indecomposable module, complexity 3.
$M \in \Gamma \subseteq \Gamma_{s}(K G)$, a component of the ARquiver.
Γ is a wild component, so of type A_{∞}.

Theorem: There is at most one algebraic module on Γ, and it lies at the end.

This can be extended to a wider class of module; e.g., Sylow p-subgroups not C_{p} or $C_{p} \times C_{p}$, and $p \nmid \operatorname{dim} M$. What can be said for $C_{p} \times C_{p}$?

$C_{3} \times C_{3}$-modules

M an absolutely indecomposable module.
$3 \nmid \operatorname{dim} M$: no nice description, even conjecturally.
$3 \mid \operatorname{dim} M$: conjecturally a nice description.

Conjecture: M algebraic iff M periodic.

Evidence: true for $G F(3)$ and $\operatorname{dim} M=3,6$.
There are 239 such modules.

This should extend to $C_{p} \times C_{p}$.

