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Primitive permutation groups containing a p-cycle

Let G be a transitive subgroup of the symmetric group Sn, and suppose
that G contains a p-cycle (1, 2, . . . , p) for some prime p. There are many
such subgroups of Sn if p | n, for example the wreath product Sp o Sn/p.

Suppose in addition that G acts primitively on {1, . . . , n}. In this case the
list is very short:

1 G = An,Sn, p ≤ n;

2 n = p = (qd − 1)/(q − 1), and PSLd(q) ≤ G ≤ Sp;

3 n = p, G ≤ AGL1(p) ≤ Sp;

4 n = p + 1 = 2m, G ≤ ASLm(2);

5 n = p + 1, PSL2(p) ≤ G ≤ Sp+1;

6 n = p + 2 = 2m + 1 and PSL2(2m) ≤ G ≤ Sp+2;

7 n = p, p + 1 and G is PSL2(11), M11 M12, M23, M24.
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More primitive permutation groups

This is consistent with an old theorem of Jordan.

Theorem

Let G be a primitive permutation group of degree n containing a p-cycle.
If n ≥ p + 3 then G = An or G = Sn.

Any permutation group gives rise to a matrix group over any ring.

If the ring is a field of characteristic p, then a p-cycle u becomes a matrix
that is conjugate to a triangular matrix with Jordan normal form
consisting of a block of size p and n − p blocks of size 1.

If V is a subquotient of this permutation module then u again acts on V
as a triangular matrix (up to conjugacy), again with exactly one non-trivial
Jordan block (if u acts non-trivially on V ) but this block need not have
size p in this case.
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Groups generated by transvections

A transvection u is a matrix conjugate to the matrix 1 + ε1,2, where εi ,j is
the matrix with a single 1 in the (i , j)-position and 0s everywhere else.

If k is a field of characteristic p then u is triangular, with Jordan normal
form consisting of a block of size 2 and all other blocks of size 1.

If G ≤ GL(V ) is an irreducible matrix group generated by a class of
transvections then G is one of the following (Kantor, 1979):

1 SL(W ), Sp(W ), SU(W ), or SO±(W ) if p = 2, where W ⊗ k = V ;

2 Sn+1 ≤ SLn(2) or Sn+2 ≤ SLn(2) for n even;

3 F4 ≤ k, 3 · A6 ≤ SL3(k) or 3 · PΩ−6 (3) ≤ SL6(k);

4 p = 2, T is a toral subgroup and G = T o Sn;

5 F9 ≤ k and G = SL2(5) ≤ SL2(k).

Therefore if p is odd and dim(V ) > 2 then G is a classical group in its
natural representation, with something similar if p = 2 and dim(V ) > 6.
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Fusion systems

In recent work with Bob Oliver and Jason Semeraro, we considered
irreducible matrix groups G over the field Fp with the following properties:

1 G has a Sylow p-subgroup of order p, generated by u;

2 u is conjugate to all of its powers, or equivalently NG (〈u〉)/CG (〈u〉)
has order p − 1;

3 u has Jordan normal form with exactly one non-trivial Jordan block.

We determined all such matrix groups and proved the following:

Theorem

If G ≤ GL(V ) has the properties above, and dim(V ) ≥ p + 3, then G is
An or Sn acting on the deleted permutation module, or a subgroup of the
normalizer of a torus T o Sn.

Both of these cases appeared in the previous theorem on transvections.
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Monodromy of Kloosterman sheaves

This is a Kloosterman sum:

Kl2,p(a) =
−1
√
p

∑
x∈F×

p

exp

(
ax + x−1

p

)
where a ∈ F×p .
This is a hyper-Kloosterman sum:

Kln,q(a) =
−1√

q(n−1)/2

∑
x1,...,xn∈F×

q ,
∏

xi=a

exp

(
tr(x1 + · · ·+ xn)

p

)
where a ∈ F×q .

This helps study the number of representations of an integer by an integral,
positive-definite quadratic form in four variables, and more generally the
spectral theory of automorphic forms. A Kloosterman sheaf over Q̄` is an
`-adic sheaf which has a (hyper-)Kloosterman sum as its trace function.

In 1988, Katz determined the monodromy of Kloosterman sheaves, the
proof of which depended on a classification of which Lie algberas over C
contain nilpotent elements with one Jordan block.
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Unifying these examples

Let G be a finite group and let V be a kG -module for k a field of
characteristic p | |G |. A p-element u of G acts minimally actively on V if,
in its Jordan normal form, u acts with at most one non-trivial block.
Equivalently, u is minimally active if CV (u) ∩ [V , u] has dimension at most
1. (It has dimension 0 if u acts trivially on V .)

All of the examples above have u acting minimally actively. Thus we can
ask the following question:

Question

If u acts minimally actively (and non-trivially) on a simple module V , and
dim(V ) ≥ o(u) + 3, is (G ,V ) one of a small list of examples? If G is
generated by conjugates of u is this list globally bounded?

Maybe ‘o(u) + 3’ needs to be replaced by some larger bound. The list
should include alternating groups, classical groups, and normalizers of split
tori, and maybe others?
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A basic restriction

Let G be a finite group, V be a simple kG -module and u be a p-element
acting minimally actively on V . Let H denote the normal closure of u in G .

We can only really say anything about H, since if H ≤ G ≤ GL(V ) then of
course G contains a minimally active element. Let α(u) denote the
minimal number of conjugates of u needed to generate H.

Lemma

If the action of H on V fixes no 1-spaces and u acts minimally actively on
V , then dim(V ) ≤ α(u) · (o(u)− 1).

Note that CV (u) has codimension at most o(u)− 1. Therefore, the
centralizer CV (〈u1, . . . , ui 〉) has codimension at most i · (o(u)− 1), where
the uj are conjugates of u. Finally, CV (H) = 0 and u1, . . . , uα(u) generate
H.

For all finite simple groups G , if u ∈ G then almost certainly α(u) = 2. (If
u2 = 1 then α(u) = 3 normally works.)
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What do irreducible matrix groups look like?

In order to answer a question like this, one needs to understand the
structure of an irreducible subgroup of GL(V ).

This is given by Aschbacher’s theorem. Broadly speaking, G ≤ GL(V )
stabilizes one of a few obvious geometric structures, or the image of G
under the map GL(V )→ PGL(V ) is almost simple.

Thus we have two sub-questions to solve to answer our question:

The first is ‘which of these geometric subgroups of GL(V ) contain
minimally active elements, and what sort of groups do they generate’?

The second is ‘can one classify all pairs (G ,V ) such that G/Z (G ) is
almost simple, V is a kG -module, and G contains an element u acting
minimally actively on V ’?
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Answering the second question

The second question requires the classification of finite simple groups,
which exists. Recall that if G is a (non-abelian) finite simple group then G
is one of

1 an alternating group An;

2 a group of Lie type G (q);

3 one of twenty-six sporadic groups.

Since groups of Lie type depend on a field, we have the cases where p | q
and where p - q, which have very different theories.

Until further notice, let G be a group such that G/Z (G ) is almost simple
(and with Z (G ) cyclic and G ′ = G ) and V be a simple kG -module with
u ∈ G acting minimally actively on V .
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Sporadic groups

Here, if u ∈ G has prime-power order then α(u) is known explicitly, as
there are only 26 groups to check.

In fact, this has already been done if G is simple, by Di Martino, Pellegrini
and Zalesski in 2014. They did not check almost simple groups, but there
are no examples there.

Theorem

Suppose that G is sporadic. There are seventeen possibilities for (G ,V ),
and in these G is either a Mathieu group, a Conway group, J1, J2, J3, Suz
or Ru. In all cases, p is one of 2, 7, 11, 13, 17, 19, 23, 29.

In all cases, dim(V ) ≤ o(u) + 1, and in all but three cases (all for p = 2)
the Sylow p-subgroup of G is of order p.
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An example: SL2(q) for p - q

Let’s consider an example: let G be the group SL2(q) for q even, and
suppose that p is odd. Let u be a p-element of G .

The order of u divides either q − 1 or q + 1. Since α(u) = 2 this means
that if u acts minimally actively on V then dim(V ) ≤ 2o(u).

On the other hand, the dimensions of simple kG -modules are (a subset of)
1, q − 1, q, q + 1. Thus dim(V ) ≥ q − 1 if V is non-trivial.

Suppose that o(u) 6= q ± 1. As q ± 1 is odd, this means that
o(u) ≤ (q + 1)/3. We therefore have (by α(u) · o(u) > dim(V ))

2(q + 1)/3 ≥ α(u) · o(u) > dim(V ) ≥ q − 1,

which means q ≤ 4. This means that G = SL2(4) and we can just work
with this group. Otherwise q ± 1 is a prime power, so is either 9 or a
Fermat or Mersenne prime.
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Groups of Lie type in general

This is indicative of the general approach. For most groups of Lie type we
do not know the complete collection of character degrees, but we do know
the small ones. Also, if u is a p-element then o(u) does divide a
cyclotomic polynomial in q (more or less).

The result is also the same: we get some families (e.g., SL2(q) for q − 1 a
Mersenne prime), together with a few small groups (e.g., SL2(4)).

The conclusion is that if u acts minimally actively on a (non-trivial) simple
module V then V is either a Weil module or one of a small list of other
cases (e.g., Sp4(4) for p = 17, dim(V ) = 18).

The only violations of dim(V ) ≤ o(u) + 2 for V minimally active are for
31 · PSU3(4).2 = G34, with o(u) = 2 and dim(V ) = 6, and
2 · Ω+

8 (2) = W (E8), o(u) = 3, 5 with dim(V ) = 8. These are both
complex reflection groups.
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A possible classification

There are dozens of examples, but this seems to be true.

Conjecture

Suppose that u acts minimally actively on the simple module V , and that
V is primitive and tensor indecomposable. One of the following holds:

1 G is a classical group (including B2 and D3) or G2 acting on the
natural module, (or its symmetric powers), or L(11) for A2 and p = 2;

2 G is of type B3 acting on the spin representation;

3 G is a subgroup of a complex reflection group acting on the reflection
representation (or a composition factor of it if it is not simple);

4 G has a self-centralizing cyclic Sylow p-subgroup and
dim(V ) ≤ o(u) + 1 (important subcase: V is a Weil module for a
classical group in cross characteristic);

5 G is one of six examples, in dimensions 4, 6 and 9, and p = 2 or
p = 3.
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Permutation modules again

If M is a permutation module for a primitive permutation group G ≤ Sn
with a p-cycle then by the old theorem of Jordan mentioned at the start
n ≤ p + 2. Thus the simple part of the permutation module has dimension
at most o(u) + 1, and of course, since n ≤ p + 2 and G is generated by
conjugates of u (so that G ≤ An) we have that the Sylow p-subgroup is
cyclic and self-centralizing.

Thus those examples fit into the previous theorem/conjecture, as we would
expect.

Out of the other maximal subgroups of classical groups, which stabilize
geometric structures in some way, there is only the extraspecial type
subgroups that I need to check, to see that they fit into this framework. If
this holds, then the previous theorem/conjecture should hold for all finite
groups G , not just the simple ones.
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An application to monodromy of Kloosterman sheaves

Last year, Corentin Perret-Gentil studied Kloosterman sheaves over
O = Z[ζ4p] rather than Q̄`, meaning he looked at arithmetic and
geometric monodromy over finite fields.

Given n, for sufficiently large primes he showed that the integral
monodromy groups coincided with those produced by Katz, but because of
a lack of knowledge of simple groups containing minimally active elements
couldn’t get explicit bounds.

Using these results, I speculate that one can easily prove the following:

Conjecture

Let Kln be a Kloosterman sheaf over O, and suppose that ` > n + 1. Then

Ggeom(Kln) = Garith(Kln) =

{
SLn(O) if n is odd,

Spn(O) if n is even.
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