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The following is joint work with Charles Eaton, Radha Kessar and Marcus Linkelmann.

For the purposes of this talk, G is a finite group, K is an algebraically closed field of

characteristic p, where p | |G|, and all modules are finite-dimensional.

1 Facts from Block Theory

Given a field K and a finite group G, we may of course form the group algebra, KG. Since

this is some ring, we can write

KG = B1 ⊕ B2 ⊕ · · · ⊕ Br,

where the Bi are two-sided ideals that cannot be written as the sum of two smaller two-sided

ideals. These are called blocks.

We also have a 1 in KG. Write

1 = e1 + e2 + · · · + er,

where the ei are central idempotents such that if ei = e + e′, where e and e′ are also central

idempotents, then e = 0 or e′ = 0. If we label things correctly, then ei ∈ Bi, and in fact

Bi = KGei. The ei are also called blocks. Some people call the Bi the block ideals and

the ei the blocks, and some people call the Bi the blocks and the ei the block idempotents.

Confusion reigns.

Let M be an indecomposable module. Then M · 1 = M , and so

M = Me1 ⊕ Me2 ⊕ · · · ⊕ Mer.

Since M is meant to be indecomposable, there exists a unique i such that Mei = M , and

for all other j the module Mej is the zero module. We say that M belongs to the block ei

(or Bi).
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Let M be an indecomposable module. It turns out that if P denotes a Sylow p-subgroup

of G, then M is a summand of (M ↓P ) ↑G. (The proof of this is the same as Maschke’s

Theorem.) Therefore there are minimal p-subgroups Q such that M is a summand of (M ↓Q

) ↑G. These are called vertices of M .

For example, a module has vertex the trivial subgroup if and only if M is a summand of

KG, the group algebra; i.e., M has trivial vertex if and only if it is projective (a summand

of a free module).

Theorem 1.1 (Green) All vertices of an indecomposable module are p-subgroups of G and

a G-conjugate.

A source of an indecomposable module M is an indecomposable module S for the vertex

Q such that M is a summand of S ↑G. Since M is a summand of M ↓Q↑G, such a module

exists.

Theorem 1.2 (Green) All sources of an indecomposable module M are conjugate by an

element of NG(Q), where Q = vx M .

There is an invariant of a block, called a defect group, that controls the complexity of the

modules that belong to it. We will define a defect group now, using vertices. Let M denote

the collection of all indecomposable modules belonging to some block B. To each of these

modules one may associate a conjugacy class of p-subgroups P , and thus we get a collection

P of p-subgroups (up to conjugation). This takes on the structure of a poset, using the

obvious ordering. It turns out that this poset has a unique maximal element, and this is

called the defect group of a block.

The defect group is trivial if and only if B is (isomorphic to) a matrix algebra, and

contains a unique indecomposable module, which is a projective simple module. If the

defect group D of B is cyclic, then B contains only finitely many indecomposable modules,

and if D is dihedral, semidihedral or quaternion then, although there are infinitely many

indecomposable modules in B, they can be parameterized. For all other defect groups, the

indecomposable modules belonging to them are too complicated to ‘understand’.
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2 Blocks with a Klein Four Defect Group

Consider the group algebra KV4. This has one simple module, which has trivial source. The

projective indecomposable module for this group algebra has the structure

K

K ⊕ K

K

.

Consider the group algebra KA4. This has a single block, and has three simple modules,

K, S1 and S2, each with trivial source. The projective indecomposable modules for this

group algebra have the structure

K

S1 ⊕ S2

K

,

S1

K ⊕ S2

S1

,

S2

S1 ⊕ K

S2

.

Finally, consider the group algebra KA5. This has two blocks: the principal block (con-

taining the trivial module) and a block of defect zero, containing the 4-dimensional simple

module. The principal block contains three simple modules, K, S1 and S2, with K having

trivial source and Si having 2-dimensional source. The indecomposable modules for this

group algebra have the structure

K

S1 S2

K ⊕ K

S2 S1

K

,

S1

K

S2

K

S1

,

S2

K

S1

K

S2

.

In 1982, Karin Erdmann published a paper in which it was proved that every block with

V4 defect group had either one or three simple modules (originally proved by Brauer) with

the principal indecomposable modules looking as above. These facts can be determined from

the module category, and so Erdmann really proved that there are three types of module

category that can be associated to a block with Klein four defect group.

However, the sources of simple modules cannot be determined using the information in

the module category, the so-called Morita equivalence class of the block. We need something

sharper: this is the notion of a Puig equivalence. We won’t discuss the technical details here,

but rather mention that a Puig equivalence is a Morita equivalence that also remembers

some of the representation theory of the group. For example, two Puig equivalent blocks

have the same sources of the simple modules.
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Conjecture 2.1 (Erdmann, 1982) Let B be a block with defect group V4, and suppose

that it is Morita equivalent to a block b from the list {KV4, KA4, B0(KA5)}. Then the

sources of the simple modules are isomorphic.

In 1996, Linckelmann proved the following result, which gives some more context to the

conjecture.

Theorem 2.2 (Linckelmann, 1996) Erdmann’s conjecture is true if and only if there are

exactly three Puig equivalence types of block with defect group V4.

To give yet another formulation of this conjecture, we look at the Green correspondence.

Recall that if M is an indecomposable module with vertex Q, then the restriction M ↓NG(Q)

splits up as one (indecomposable) summand with vertex Q and other summands with vertex

contained properly within Q (up to conjugacy). In 1982, Erdmann proved the following.

[Here we need a definition of the functor Ω.]

Theorem 2.3 (Erdmann, 1982) Let B be a block with defect group P , and let H =

NG(P ). Let f denote the Green correspondence from B to the corresponding block b of H.

Let S0, S1 and S2 denote (where applicable) the one or three simple modules in B.

(i) If B is Morita equivalent to KV4, then there is an integer i ∈ Z such that Ωi(f(S0)) is

simple.

(ii) If B is Morita equivalent to KA4, then there is an integer i ∈ Z such that Ωi(f(Sj)) is

simple for j = 0, 1, 2 (and the simple modules are non-isomorphic).

(iii) If B is Morita equivalent to B0(KA5), then there is an integer i ∈ Z such that Ωi(f(S0))

is simple, and S1 and S2 are periodic.

Erdmann’s conjecture is equivalent to the statement that in all parts of the theorem

above, the integer i is 0.

There is another equivalent formulation, which is how I became interested in this con-

jecture: recall that a module is algebraic if it satisfies a polynomial with integer coefficients,

where addition and multiplication are given by direct sum and tensor product.

Proposition 2.4 (C, 2007) Erdmann’s conjecture is true if and only if all simple modules

in blocks with Klein four defect group are algebrai.

Thus Erdmann’s conjecture determines the possible sources of the simple modules, the

Green correspondence in such blocks, and the Puig equivalence classes of block.
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3 The Proof of Erdmann’s Conjecture

The first step is what makes it possible to attack this conjecture.

Theorem 3.1 (EKL, 2006) Erdmann’s conjecture is true for all groups if and only if it

is true for all groups HP , where H is an odd central extension of a simple group, and P is

isomorphic with a Klein four group, which acts as automorphisms on H/ Z (H).

Thus we reduce the entire conjecture to checking it for each finite quasisimple group,

possibly with automorphisms on top. The idea is that P is the defect group of a block B

with defect group V4 that we are examining. This will be our situation from now on.

One of the main tools in attacking this conjecture is to notice that it is true for real

blocks. To see this, note that a source is only defined up to conjugacy; however, if it is of

the form Ωi(K), as we know it is, then it is unique up to isomorphism. The dual of Ωi(K)

is Ω−i(K); so if a block is self-dual, then a simple module in it is self-dual, and therefore its

source is self-dual. Thus the source is K, and so the conjecture is true for this block.

The first theorem is easy.

Theorem 3.2 (E (2006), and C (2007)) Suppose that H is sporadic or alternating. Then

B is real, and hence Erdmann’s conjecture is true.

The next theorem is also easy, but it requires some knowledge of the groups involved.

Theorem 3.3 (C, 2008) Suppose that H is symplectic, orthogonal or of type 3D4(q). Then

B is real, and hence Erdmann’s conjecture is true.

To prove this, we actually show that all 2-blocks of the quasisimple group H are real.

Charles Eaton and I sorted out the exceptional groups, with two exceptions (!).

Theorem 3.4 (CE, 2008) Let H be an exceptional group, except for E6(q) or E7(q) when

P ∩ H = 1. Then Erdmann’s conjecture is true.

Radha Kessar is responsible for the next two theorems, which finish off all finite qua-

sisimple groups.

Theorem 3.5 (K, 2007/8) Let H be linear or unitary. Then Erdmann’s conjecture is

true.

Theorem 3.6 (K, 2008) Let H be of type E6(q) or E7(q), where P ∩ H = 1. Then

Erdmann’s conjecture is true.
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This last result is a nice application of Deligne–Lusztig theory, and so we will briefly

describe some of the highlights, in the case where H is of type E6(q).

• There is a unique V4 subgroup of Out(H/ Z (H)) up to conjugation, and so we may

assume that P consists of the graph automorphism, field automorphism, and their

product.

• Since the graph automorphism inverts the centre of 3.E6(q), and P is meant to cen-

tralize Z (H), we see that we may assume that Z (H) = 1.

• The adjoint group is actually E6(q).3, and we can take this group instead. (This

makes the Deligne–Lusztig theory easier.) The dual group is the simply connected

group L = 3.E6(q).

• By a theorem of Feit and Zuckerman, all semisimple elements of L are real. (Remember

that the semisimple elements of L label the Lusztig series.)

• Let B be a block of defect zero in KH, and let M denote the unique simple module.

Then M comes from a Lusztig series with (real) semisimple label s.

• Since M has trivial vertex, the centralizer of s is a torus. Hence the Lusztig series

contains a single element, namely the module M .

• Finally, as s is real, the dual of M also lies in the series defined on s, and so M is

self-dual, as required.

4 After the Proof

There are several avenues of possible further development.

• The Feit conjecture for V4 vertex.

• Blocks with quaternion group Q8.

• Studying dihedral blocks.

• Blocks with defect group C3 × C3.

• 2-blocks with abelian defect group.
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