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What is a minimally active module?

Let G be a finite group, let p be a prime, and suppose that the Sylow
p-subgroup T of G has order p. Let k = Fp.

Definition

A kG -module M is minimally active if the indecomposable summands of
the restriction of M to T contain at most one non-trivial module.

Equivalently:

1 As a kT -module, dim(soc(M) ∩ rad(M)) ≤ 1. (CM(T ) ∩ [M,T ] has
order p.)

2 The sizes of the Jordan blocks of an element x of order p are a, 1i for
some a ≥ 1 and i ≥ 0.

David A. Craven (Birmingham) Minimally active modules 5th March, 2015 2 / 19



Some easy properties

1 Submodules and quotients of minimally active modules are minimally
active.

2 If M is minimally active and M = M1⊕M2, then Op′(G ) acts trivially
on at least one of the Mi .

3 Restrictions of minimally active modules are minimally active.

4 If M is indecomposable, minimally active and dim(M) > p then M is
a trivial-source module (i.e., a summand of a permutation module).

5 If M is indecomposable, minimally active and dim(M) > p + 1 then
M is simple.
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But David: why should I care?

I had better have a good reason to introduce these modules and occupy an
hour of your life with them. If you think fusion systems are a good thing
then I have a good reason. If you don’t then I don’t, really.

A fusion system was introduced last week by Sejong, I hope. I won’t do a
formal introduction, but I’ll just give a working definition.

Let S be a finite p-group. We construct a category F with objects all
subgroups of S , and as morphisms some injective group homomorphisms
between them, that

contain all conjugation maps induced by elements of S ,

have the map φ : P → im(φ) whenever there is a map φ : P → Q, and

have the inverses φ−1 : Q → P whenever φ is a bijection.
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Saturated fusion systems

As a fundamental example, we take a finite group G , a fixed Sylow
p-subgroup S of G , and let FS(G ) be the fusion system whose morphisms
are all conjugation maps cg : P → Q where g ∈ G satisfies Pg ≤ Q for
P,Q ≤ S .

If we want to use fusion systems, we need another axiom, called
saturation. This is the bit I won’t formally define, but it concerns being
able to extend maps φ : P → Q to certain overgroups of P, so that one
may use induction on the index |S : P|.

Even though I haven’t defined it, I will now assume that all fusion systems
are saturated. A saturated fusion system that doesn’t come from a finite
group is called exotic.
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The search for exotic systems

Exotic fusion systems seem to offer a glimpse into what finite simple
groups that don’t exist should look like. More or less all exotic fusion
systems are simple (or built up from exotic simple fusion systems), and
many fusion systems of simple groups (at least for p small, as we shall see)
are themselves simple.

The ‘simplest’ exotic systems were found by Ruiz and Viruel, and are on
the extraspecial group 71+2

+ of exponent 7. Others have been found, for
example by Solomon–Benson on Sylow 2-subgroups of Spin7(r) for r odd
(the only known simple exotic systems at the prime 2) and by on certain
3-groups of maximal class by D́ıaz–Ruiz–Viruel. Another set of exotic
fusion systems were constructed by Clelland and Parker, using modules for
GL2(p).

What the Ruiz–Viruel and the Clelland–Parker examples have in common
is that the Sylow p-subgroup S in both cases possesses an abelian
subgroup A of index p.
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Minimal examples?

If S is abelian, then Alperin’s fusion theorem, which states that every map
in F is a product of (restrictions of) automorphisms of subgroups that
contain their own centralizer, proves that every map in S is a restriction of
an automorphism of S .

In other words, if H is a p′-group of automorphisms of S , then we can
construct the group S o H, and FS(S o H) is a saturated fusion system
on S , and all saturated fusion systems on S arise in such a way.

If however, the abelian subgroup has index p, then we have lots of
examples where this is not the case, for example G = Sp2 , where the Sylow
p-subgroup is Cp o Cp, or GLp(q) for p | (q − 1), or the Monster at p = 13,
and so on.

It therefore seems like a good idea to ‘classify’ (in a suitable sense) all
saturated fusion systems on p-groups with an abelian subgroup of index p.
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What do you mean, ‘classify’?

I don’t want to try to classify every saturated fusion system on such
groups, because in particular it would require classifying all p′-subgroups of
GLn(p).

The theory of tame and reduced fusion systems was started was
Andersen, Oliver and Ventura and 2012. The central tenet is as follows:

A reduced fusion system is tame if an only if all saturated fusion systems
reducing to it are realizable as fusion systems of finite groups.

OK, great. So what is a reduced fusion system? What is a tame fusion
system for that matter?

Definition

A saturated fusion system F on S is reduced if it has no normal
subgroups, no normal subsystems on S itself, and no non-trivial morphisms
F → FT (T ) for some T > 1 (i.e. Op(F) = 1 and Op(F) = Op′(F) = F).
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Have I thrown away too much?

No. In particular, all simple fusion systems and semisimple fusion systems
are reduced. Hence if we are interested in simple fusion systems, the larger
class of reduced fusion systems is still fine for us.

I seem to have a lot more room on this slide, so I can say a few words
about tameness. A fusion system F is tame if there exists a finite group
G with Sylow p-subgroup S , and firstly F = FS(G ), and secondly the map

κG : Out(G )→ Outtyp(LcS(G ))

is split surjective, where LcS(G ) is the centric linking system. Since I am
interested in simple fusion systems, and we will not be checking whether
any of these things are tame, this isn’t really important for us today.
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More than one abelian maximal subgroup

It seems reasonable to split the cases up into where there is more than one
abelian subgroup of index p, and where there isn’t.

In the case where S has more than one abelian subgroup of index p, Bob
Oliver has already done this case. This will clearly contain the examples on
S = p1+2

+ , and won’t contain the examples on Cp o Cp.

Theorem (Oliver)

In this case, if S possesses a reduced fusion system then S = p1+2
+ .

So from now on we will assume that S contains a unique abelian subgroup
of index p.
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The action on A

Let G = AutF (A). We will assume that A is elementary abelian in the rest
of this talk. Thus A becomes an FpG -module. What kind of structure
does this module and the group G have?

Firstly, since A is fully normalized and has index p in S , G has a Sylow
p-subgroup T of order p. We get the following conditions on A and G :

1 |AutG (T )| = p − 1;

2 A is minimally active;

3 A has no trivial quotients, i.e., [G ,A] = A.

4 CA(G ) ≤ [T ,A], which is slightly weaker than A having no trivial
submodules;

5 And a technical condition on the action of AutG (T ). Always satisfied
if dim(A) ≤ p.
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Understanding G

Suppose that A is a (faithful) simple minimally active module of dimension
n, yielding an embedding of G into GLn(q). Suppose that G/Z (G ) is not
an almost simple subgroup of PGLn(q). This means that G falls into one
of a few geometrically defined classes of maximal subgroups, e.g.,
parabolic subgroups, direct products of GLms, wreath products, etc.

As A is simple, this gets rid of things like parabolics and products of
groups. If A is not absolutely irreducible then the action of T on A would
have multiple non-trivial Jordan blocks, and the same if A were writeable
as X ⊗ Y for X ,Y of dimension at least 2. Thus A is not in extension
type subgroups or wreath products.

We continue like this until G ≤ Cp−1 o Sn is a collection of monomial
matrices, a couple of central products inside extraspecial type maximal
subgroups, or is almost simple (modulo the centre). Thus we want to
understand minimally active modules for almost simple groups.
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GL2(p)

Since T has order p, if G is Lie type in defining characteristic then G is of
type PSL2(p). For GL2(p) there are simple modules of dimension 1, . . . , p,
and each of these is minimally active, and in addition |AutG (T )| = p − 1.
These yield the Clelland–Parker examples.

However, there are more modules for GL2(p). If A is a module of
dimension i > 1, then A has extensions with two other modules N1 and
N2, of dimensions p + 1− i and p − 1− i . This yields indecomposable
modules of dimension p + 1 and p − 1, both minimally active also. Apart
from a couple of modules with 1-dimensional socle, these are all minimally
active modules for G .

The indecomposable modules of dimension p − 1 yield new, exotic fusion
systems, whereas almost all of those of dimension p + 1 fail the technical
condition that I sort of told you about, which is satisfied whenever
dim(A) ≤ p. (This comes back later.)
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Alternating and sporadic groups

For alternating and sporadic groups, there is a useful result that we can
apply that will make our lives much easier.

Proposition

If a simple group G is either of alternating or sporadic type, and p > 3
divides |G |, then G is generated by two elements of order p.

This is important: if A is a minimally active module then the socle of the
action of an element x of order p has codimension at most p − 1 (since
the non-trivial block has dimension at most p). If G = 〈x , y〉 then the
intersection of CA(x) and CA(y) has codimension at most 2p − 2.

Thus if A is simple then dim(A) ≤ 2p − 2. Since dim(A) > p + 1 meant
that A is simple (I told you that before: were you not listening?) this
means that dim(A) < 2p − 2 whenever G is generated by two elements of
order p.
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Lie type in non-defining characterstic

For groups of Lie type in non-defining characteristic, it looks as if, for
p > 5 dividing |G |, they are also generated by two elements of order p.
However, we are some way from proving this statement, so we cannot use
it.

We need another way to bound the dimension of a minimally active
module.

Proposition

If T ∈ Sylp(G ) and CG (T ) is abelian, then the dimension of any minimally
active module is at most 2p − 1.

This follows from the theory of canonical characters, which implies that
there are at most (p − 1)χ(1) trivial summands in the restriction of a
minimally active module to T , where χ ∈ Irr(CG (T )).

Now, if we could only find a way to make the centralizer CG (T ) abelian.
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Induction to the rescue

Obviously the centralizer isn’t abelian in all cases. But we can set up an
induction using the following result.

Proposition

Suppose that G = G (qδG ) is a group of Lie type. If T ∈ Sylp(G ) has order
p then either CG (T ) is abelian (p is regular semisimple) or there exists
H = H(qδH ) a subgroup of G such that T ≤ H, CH(T ) is abelian and
AutG (T ) = AutH(T ).

As an example, if G = GLn(q) and p | Φd(q), then H = GLd(q) or
H = GLd+1(q) will work.

Thus we now simply have to construct all modules for groups of Lie type
of dimension at most 2p − 1, where p | Φd(q) | (qd − 1), and where
|AutG (T )| is of order at most 4dt where t is the maximal size of a graph
automorphism (this follows from knowledge of normalizers of Φd -tori in
Lie type groups).
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All the modules

So p | Φd(qt) | (qtd − 1) and |AutG (T )| ≤ 4dt.

The twin statements p − 1 ≥ 4dt and p ≤ qtd − 1 already put strong
conditions on p, q and d . Throw in Landazuri–Seitz lower bounds on
dimensions of modules for groups of Lie type, e.g., dim(A) ≤ q(n−1)t − 1
for GLn(qt) and we get a finite, and small, list of possibilities.

Assume G is not alternating or PSL2(p). We have one of:
1 G = SL2(8) : 3 = 2G2(3) or G = 6 · PSL3(4) and p = 7;
2 G = PSU3(3).2 = G2(2) or G = 61 · PSU3(4).22 = G34 and p = 7;
3 G = PSU3(4) : 4 and p = 13;
4 G = PSU4(2) = PSp4(3) and p = 5;
5 G = PSU5(2).2 and p = 11;
6 G = Sp4(4).4 and p = 17;
7 G = Sp6(2) and p = 5, 7 or G = 2 · Sp6(2) and p = 7;
8 G = 2 · Ω+

8 (2) and p = 7;
9 G = G2(3).2 or G = 2B2(8) : 3 and p = 13.
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Do all of these give exotic fusion systems?

No.

The ones of dimension at most p do, and there are a lot of those, but if
the dimension is more than p then this technical condition on the action of
AutG (T ) on the socle of A and on T needs to be satisfied. This fails for
(for example) 6 · Suz and p = 11, where there is a 12-dimensional module,
but is satisfied by the group GL2(p), where A is a (p + 1)-dimensional
indecomposable module whose top is the natural module.

The complete list of groups and modules is now known, except for groups
G lying inside Cp−1 o Sn.
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What is this technical condition?

If we have a non-trivial G -action, we can consider Z0 = CA(T ) ∩ [T ,A].
This 1-dimensional subspace is an NG (T )-module. We also have the
conjugation action of NG (T ) on T . This yields an action of NG (T ) on

Z0 × T ∼= Zp × Zp.

If dim(A) > p, then instead of NG (T ) we need to take the centralizer in
this of CA(T )/Z0, which is of course much smaller. Write µ for the image
in Z0 × T .

Write ∆i for the twisted diagonal subgroup {(x i , x) | x ∈ Zp}. If µ
contains ∆0 or ∆−1 then we get an exotic fusion system. If it contains
both (in the case where dim(A) ≤ p) we can potentially build others.
Depending on the image of µ, either P = Cp × Cp or Q = p1+2

+ or both
are essential.
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