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Representing groups in groups

Let H be a finite group. If G is an algebraic group, we can try to
understand embeddings H → G.

G = GLn(k). Then embeddings are kH-modules of dimension n.

G = Sp2n(k). Then embeddings need to fix an alternating form.

G = On(k). Then embeddings need to fix a symmetric form.

G = En,F4,G2. Then what?

Definition

Let H(q) be a finite group of Lie type, and let V be a module for H. If V
is the restriction of a module for H then V is a blueprint. If H and H fix
the same subspaces of V then H is an accurate blueprint.
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Blueprints are where it’s at

This completely answers the question for GLn.

Proposition

Let H(q) be a finite group embedded in GLn. Let V be the corresponding
n-dimensional module for H. The injection H(q)→ GLn extends to a map
H→ GLn if and only if V is a blueprint.

That’s GLn. What about the other classical groups? Assume p is odd
here, to make life simpler. This embedding lies in Dn or Bn if S2(V )H is
non-zero, and lies in Cn if Λ2(V )H is non-zero. If S2(V )H 6= 0 then
certainly S2(V )H 6= 0, but the converse might fail for some small q (e.g.,
q = 3 and H = SL2). In almost all cases though S2(V )H = S2(V )H (and
Λ2(V )H = Λ2(V )H, and so this mostly answers the question for classical
groups, in particular if the blueprint is accurate.

We are still left with the exceptional groups though.
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Blueprints and maximal subgroups

Let H = H(q0) be a subgroup of G = G (q). (Note that q0 need not equal
q, e.g., subfield subgroups.) If H is the restriction of an algebraic subgroup
H in G, then we can tell whether H is maximal in G by taking the fixed
points of the maximal positive-dimensional subgroups of G.

Hence, if we want to understand how to extend morphisms we need to
understand finite subgroups of exceptional groups, and for those that are
equicharacteristic Lie type groups know whether they lie inside algebraic
subgroups of the same type

Therefore we will look at what is known about maximal subgroups of the
finite exceptional groups of Lie type.

Of course, the maximal subgroups of finite simple groups are of interest for
other reasons (I needed to know them for understanding generating a
simple group by elements of specified orders).
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Maximal subgroups of finite classical groups

Aschbacher in some sense classified all maximal subgroups of the finite
classical groups. We will briefly see how this works.

Let M be a maximal subgroup of SLn(q). If M acts reducibly then it lies
inside the stabilizer of an m-space for some m, which is a parabolic
subgroup. Hence we may assume that M acts irreducibly.

If M acts irreducibly but not absolutely irreducibly then it lies inside
GLn/d(qd) for some d dividing n. Hence we may assume that M acts
absolutely irreducibly.

We take the Fitting subgroup. If this is non-trivial, either M normalizes a
p-subgroup, so is in a parabolic, or a p′-subgroup, and this is a semisimple
subgroup or the extraspecial type maximal subgroups.
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Maximal subgroups of finite classical groups

We take the Bender subgroup E (M), the largest normal subgroup that is a
product of simple groups. One can see that either E (M) is simple or we lie
inside a normalizer of another subspace decomposition.

Hence M is an almost simple group. If M is a group of Lie type in defining
characteristic then M is the intersection of GLn(q) with an algebraic
version of M.

Thus we see that M is either the intersection of GLn(q) with an algebraic
subgroup of GLn, so M is a blueprint, or it is an almost simple (modulo
the center) group acting absolutely irreducibly on the natural module, and
this simple group is either alternating, sporadic or Lie type in non-defining
characteristic.
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What about exceptional groups instead?

If that is the situation with classical groups, what is the situation with
exceptional groups? The ideal case we can hope for is the same
distinction, that a maximal subgroup is a blueprint for a
positive-dimensional subgroup of G or that it is almost simple acting
absolutely irreducibly on a minimal module.

Unfortunately this isn’t true. Let’s work through some of the proof to see
what’s wrong. Subspace stabilizers are algebraic subgroups, true, but they
need not be positive dimensional, so that’s the first problem.

If M has a centre then M is contained in a p-local subgroup, but these are
not so easy to understand any more.

So, everything looks pretty bad then.
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What about exceptional groups instead?

Despite this, we can get the following theorem.

Theorem

Let M be a maximal subgroup of a finite exceptional group of Lie type.
One of the following holds:

1 M is the fixed points of a Frobenius map of a positive-dimensional
subgroup of the corresponding algebraic group.

2 M is an exotic p-local subgroup

3 M is the subgroup (Alt5 × Alt6) · 22 and G = E8, p > 5.

4 M is almost simple.

The subgroup in part 3 was discovered by Borovik, who proved this
theorem, as did Liebeck–Seitz. The exotic p-local subgroups are known.
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The exotic p-locals

Here are the exotic p-local subgroups. These are all maximal in the cases
below.

23.SL3(2) < G2(p), p ≥ 3,

33.SL3(3) < F4(p), p ≥ 5,

33+3,SL3(3) < E ε6(p), p ≡ ε mod 3, p ≥ 5

53.SL3(5) < E8(pa), p 6= 2, 5, a ∈ {1, 2}, p2 ≡ (−1)3−a mod 5

25+10.SL5(2) < E8(p), p ≥ 3.

They exist for other primes as well, but are not maximal.
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Maximal subgroups of exceptional algebraic groups

The maximal subgroups M of positive dimension in exceptional algebraic
groups have been completely classified by Liebeck and Seitz. They are
maximal parabolics, maximal-rank subgroups, (22 × D4).Sym3 < E7 (p
odd), A1 × Sym5 < E8, (p > 5), or M0 is one of a short list:

G M0

G2 A1 (p ≥ 7)
F4 A1 (p ≥ 13), G2 (p = 7), A1G2 (p ≥ 3)
E6 A2 (p ≥ 5), G2 (p 6= 7), C4 (p ≥ 3), F4, A2G2

E7 A1 (p ≥ 17), A1 (p ≥ 19), A2 (p ≥ 5), A1A1 (p ≥ 5),
A1G2 (p ≥ 3), A1F4, G2C3

E8 A1 (p ≥ 23), A1 (p ≥ 29), A1 (p ≥ 31), B2 (p ≥ 5),
A1A2 (p ≥ 5), A1G2G2 (p ≥ 3), G2F4
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Almost simple subgroups

So we are now looking at classifying the maximal almost simple subgroups.
Unlike the classical case, where there are infinitely many cases so probably
no reasonable answer, here there should just be a list. This has already
been done for G2(q), 2B2(q2), 2G2(q2) and 2F4(q2) (and 3D4(q3) if you
think of that as an exceptional group).

This leaves F4(q), E6(q), 2E6(q2), E7(q) and E8(q).
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A trifurcation

We want to focus on subgroups of Lie type in the same characteristic as
the ambient algebraic group, and we make the following distinction.
Suppose that the rank of the algebraic group is n.

A (finite) subgroup is large rank if it has untwisted rank more than
n/2.

A (finite) subgroup is medium rank if it has untwisted rank between
2 and n/2, except for 2B2(q2) and 2G2(q2).

A (finite) subgroup is small rank if it is one of SL2(q), 2B2(q2) and
2G2(q2).

The results about embedding H(q) into an algebraic group G depend on
whether H has large, medium or small rank, at least until now.
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Large-rank subgroups

Here we know the most, since there are not really many possible ways that
(for instance) E6 can be embedded in E8.

Theorem (Liebeck–Saxl–Testerman, 1996)

Let q > 2. If H(q) is a large-rank subgroup of an exceptional algebraic
group G, then the inclusion map extends to a morphism of algebraic
groups.

If q = 2 then something similar was proved by Liebeck and Seitz.

Theorem (Liebeck–Seitz, 2005)

If H(2) is a large-rank subgroup of an exceptional algebraic group G then
H(2) is an accurate blueprint for some H < G, except for GL4(2) inside F4.
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Medium-rank subgroups

In this case not everything has been done, but there was still a strong
theorem of the same form as above.

Theorem (Liebeck–Seitz, 1998)

Let H(q) be a medium-rank subgroup, and assume that q > 9 unless H is
of type A2, which case q > 9 and q 6= 16. If H(q) is contained in an
exceptional algebraic group G then H(q) is an accurate blueprint for some
H < G.

So this is the first case where not everything is known. This is the case we
are mainly going to focus on in this talk.
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Small-rank subgroups

We should of course complete the case of the rank-1 subgroups. Define

u(G ) =



12 G = G2,

68 G = F4,

124 G = E6,

388 G = E7

1312 G = E8.

and t(G ) = u(G ) · gcd(2, p − 1).

Theorem (Liebeck–Seitz 1998, Lawther)

Let H(q) be a small-rank subgroup contained in an exceptional algebraic
group G. If q > t(G ) then H(q) is an accurate blueprint for some H < G.
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Why are F4, E6 and E7 different?

With F4, E6 and E7, they each have a faithful module of dimension smaller
than that of the group, and hence the stabilizer of a line in this module
must be a positive-dimensional subgroup. If we can prove that a subgroup
H stabilizes a line, then we must have that H lies inside a
positive-dimensional subgroup.

Hence from now on, we exclude the case of E8. That particular trick will
work with E8, but the size of the module is too large to get a good handle
on it. However, there are some methods that will still work there, and it
might be possible to produce analogues of some of our results.
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An example: Sp4(2n)

Suppose that we want to show that if H(q) = Sp4(2n) lies inside G , one of
F4, E6 and E7, then it has a trivial submodule in its action on the minimal
module, and hence is contained in a line stabilizer.

The simple modules for H have dimension 4i for i ≥ 0. Since the
minimal module for G has dimension at most 56, the dimensions of
simple modules are 1, 4 and 16.

H has a single conjugacy class of elements x of order 5, which are
hence rational (i.e., conjugate to all their powers). The trace of x on
the modules of dimension 1, 4 and 16 are 1, −1 and 1 respectively.

There is a single conjugacy class of rational elements of order 5 in G ,
with character value 1, 2 and 6 as G = F4,E6,E7.

There are no extensions between 1s and 16s, so there must be more
4s than 1s in the composition factors of the minimal module, else H
fixes a line or hyperplane. This yields a contradiction.
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A theorem

This sort of thing can be used to attack lots of cases, but there are still
obdurate cases that are not amenable to these ideas. There we have to try
harder.

Trying harder, we can prove the following theorem.

Theorem (C.–Magaard–Parker)

If G is one of F4, E6 or E7, and H(q) is a group of Lie type in the same
characteristic as G not equal to SL2(q), then any image of H in G is
contained in a positive-dimensional subgroup of G.
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SL2

Notice that we haven’t dealt with SL2 yet. This is what we had

u(G ) =



12 G = G2,

68 G = F4,

124 G = E6,

388 G = E7

1312 G = E8.

and t(G ) = u(G ) · gcd(2, p − 1).

If we are just interested in maximal subgroups, we can reduce F4 to
q = 9, 27, 81 (this is for a very good reason) or q = 13, and for E6 to
q = 11. For E7 some cases have been dealt with, but this is work in
progress.
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Coming back to morphisms

So that was a long aside to answer the question of can we extend finite
groups to a morphism of algebraic groups.

The plan is as follows. If H = H(q) is embedded in G then H is contained
in a maximal algebraic subgroup by the above. By induction we can
understand the semsimple subgroups, so we need to understand the
parabolics. Non-abelian cohomology theory can be used to go from having
H < P = LU to having H < L (or not, if this is false), and we can use
induction again.

Since the maximal subgroups haven’t been finally classified yet, this
procedure cannot start. But in many cases we can see that the minimal
module being a blueprint for H(q) really is enough for H to be contained
in H < G.
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