
Elliptic Curves and Cryptography

David A. Craven

3rd February 2010

1 Introduction and Terminology

Generally, we have the following terminology and scenario:

• Alice has a message, that she wants to send to Bob. Eve would like to know it.

Depending on the scenario, Eve has access to various methods, including being able to

listen in on everything sent between Alice and Bob, being able to forge data to look

as though it comes from Alice and send it to Bob, and so on.

• The message itself is often thought of as a number, being translated into such probably

by something like ASCII. It is called the plaintext.

• A method of turning plaintext into something else is called a cypher. The cypher

normally takes two inputs: the plaintext and a key, which will be used to obfuscate

the message. The key in general should be private, so that only Alice and Bob know

the key. The result of applying the cypher is the cyphertext.

• The cyphertext is transmitted over open channels, and Eve has access to that.

• Traditionally, the key to encode a message was the same as the key to decode the

message. (One method was to simply add the key and the plaintext together, both

being thought of as points in Fn2 .) In public-key cryptography, the key to encode the

message is not the same as the key to decode it. The key to encode the message is

broadcast in open channels, and can be assumed to be known by Eve.

2 Public Key Cryptography

The RSA algorithm was developed by Cliff Cocks in 1973. Basically, it works as follows:

(i) Choose two (large) prime numbers p and q, and computer n = pq.

1

(ii) Choose an integer e with 1 < e < φ(pq), such that e and φ(pq) are coprime. (Normally,

choose e = 216 + 1 because it is easy to multiply up.)

(iii) Let d = e−1 in the ring Z(p−1)(q−1).

(iv) Tell everyone n and e.

Now suppose that Alice has a message, m. The cyphertext c is given by c = me mod n.

She sends c to Bob, who secretly knows d. Bob computes cd mod n, and gets c. Brilliant!

Let us prove that this works though. By Euler’s theorem, mφ(n) ≡ 1 mod m, and so for

any α ∈ Z, we have mαφ(n)+1 ≡ m mod n. Since e is prime to φ(n), if d is the inverse of e in

the ring Zφ(n), then we have de = αφ(n) + 1 for some α ∈ Z. Hence

mde ≡ mαφ(n)+1 ≡ m mod n,

proving the claim.

Clearly if you know p and q, computing d is easy using the Euclidean algorithm. We

want to know that computing d from n and e is equivalent to knowing p and q. Therefore,

we assume that we know d, e and n, and need to compute p and q. Let s be the largest

number such that 2s | (ed− 1), and write k = (ed− 1)/2s.

We first prove that for all integers a prime to n, the order of ak in Zn divides 2s. Since

ade−1 ≡ 1 mod n (as RSA works) and ed − 1 = k2s, we have (ak)2
s ≡ 1 mod n; hence ak

has order a divisor of 2s.

Now the idea is to choose an integer at random between 1 and n − 1, and compute the

gcd d between it and n. If d = 1 then compute d = gcd(a2
ik mod n, n) for i = s − 1, s − 2

and so on until either d > 1 or s = 0. If d > 1 then we are done! Otherwise, we fouled up.

Theorem 2.1 This algorithm fouls up at most half the time.

The reason for this is as follows: if a has a different order modulo p and mod q, then

gcd(a2
ik − 1, n) is either p or q for some 0 6 i 6 s − 1. The last piece of information that

you need is that there are at least (p − 1)(q − 1)/2 numbers a for which ak has a different

order modulo p and q.

3 Pollard’s p− 1 Algorithm and Strong Primes

Now we have RSA, let’s try to break it. We need to come up with a way of factorizing

numbers. One example is Pollard’s p− 1 algorithm.

(i) Choose a bound B, and (probably small) a prime to n.

2

(ii) Let k be the product of all prime powers less than B.

(iii) Let d be gcd(ak − 1, n).

(iv) If d = 1, then B was too small. If d = n then B was too big!

How is this going to find anything at all? Define a number x to be B-powersmooth if

all prime powers dividing x are at most B. The gcd d above selects all primes p dividing n

such that p− 1 is B-powersmooth. To see this, suppose that p | n, and p is B-powersmooth.

Then k is a multiple of p− 1, and so by Fermat’s little theorem ak ≡ 1 mod p. In particular,

this means that p divides ak − 1, and so divides d.

Similarly, there is Williams’s p + 1 method, that finds prime divisors p of n such that

p+ 1 is B-powersmooth. Therefore, we make the following definition.

Definition 3.1 A large prime p is said to be strong if both p − 1 and p + 1 have at least

one large prime divisor.

It should be pointed out that most randomly generated large primes are strong, so in

practice, unless someone deliberately cripples you, everything should be fine regarding this

particular algorithm. But not the next one, which will need a section on elliptic curves first.

4 Elliptic Curves

Let E be an elliptic curve over R. Without loss of generality, we may assume that E is given

by y2 = x3 + ax + b. The set of points on E can be given a groups structure, well, almost.

Given two points P and Q on an elliptic curve, we draw the line connecting them. This will

intersect the curve in another point, probably. If it does, we want to define P + Q as the

intersection, but that isn’t quite right. If this point is (x, y), then we finally reflect in the

x-axis to get (x,−y). This is the point P +Q. The only cases we haven’t defined it is when

the line PQ only intersects P and Q, and when P = Q. In the latter case we simply use the

tangent, and in the former case, the sum is defined to be ∞, i.e., the point at infinity.

The result is that this makes E(R), the set of points of E over R, into an abelian group,

if ∞ is thrown into the mix. In order to work over other fields, it seems clear that we need

to make this geometric construction algebraic.

Let (x1, y1) and (x2, y2) denote the co-ordinates of P and Q. Suppose that x1 6= x2, so

that we are in the general case. The line connecting P and Q is given by the formula

y − y1
y2 − y1

=
x− x1
x2 − x1

.

3

If α = (y2 − y1)/(x2 − x1) and β = y1 − αx1, then this becomes y = αx + β. A point

(x, αx+ β) lies on E if and only if (αx+ β)2 = x3 + ax+ b, and we get the cubic

x3 − α2x2 + (a− 2αβ)x+ (b− β2).

This equation has two solutions already, namely x1 and x2, and so must have exactly one

more, x3 = α2 − x1 − x2. (This comes from the fact that the trace is −α2.) This therefore

gives the co-ordinates of the final point, reflected, as(
α2 − x1 − x2,−(α(α2 − x1 − x2) + β)

)
.

If P = Q, which we will have to deal with, we have that α = dy/dx, so we get (if the

co-ordinates of 2P are (x3, y3)),

α =
3x21 + a

2y1
, x3 =

(
3x21 + a

2y1

)2

− 2x1, y3 = −y1 +

(
3x21 + a

2y1

)
(x1 − x3).

This algebraic description makes it easy to translate the result into other fields, since all

we are doing is using field operations. Hence there are abelian group structures on E(F) for

any field F.

The last piece of information that we need is Hasse’s theorem on |E(Fq)|.

Theorem 4.1 (Hasse) Let E be an elliptic curve over a field Fq. Then

q + 1− 2
√
q 6 |E(Fq)| 6 q + 1 + 2

√
q.

For different choices of a and b we get different sizes of |E(Fq)| for a given prime power

q.

If R is a ring, rather than a field, then we can define E(R) perfectly well. This fails to

inherit an abelian group structure, although some products are defined. The only thing that

we need to invert is the denominator of the slope α of the line. If x2− x1 or 2y1 is invertible

in R, then this addition can be performed in E(R). This partial abelian group structure is

important, notably because it fails in R = Zn if and only if the denominator and n have a

common factor!

5 Lenstra’s Elliptic Curve Factorization

This is the third-fastest factoring algorithm, according to Wikipedia, behind two number

field sieve algorithms, that I will not talk about.

4

The idea is that the number of points on an elliptic curve over Fp is somewhere between

p+1−2
√
p and p+1+2

√
p. Whereas the p−1 algorithm failed if p−1 is not powersmooth,

this algorithm fails if |E(Fp)| is not powersmooth. Since this bops around randomly in the

interval above, we stand a good (subexponential) chance that it might well be powersmooth,

and then we are in business.

We have a number n to factorize, as always.

(i) Let E be an elliptic curve over Zn, say y2 = x3 + ax + b, and let P = (x, y) be a

non-trivial point on E.

(ii) Try to compute B! · P for small numbers B. One of three things might happen.

(a) It works, and you don’t get ∞. In this case, B was too small.

(b) It works, and you get ∞. In this case, B was too large, and you have to start

again.

(c) At some point you cannot multiply the points, because you are on an elliptic

curve over Zn rather than over a field, and you cannot invert the denominator of

the slope.

(iii) If (a) happens, choose a different curve and start again. If (b) happens, you have the

right curve, choose a smaller B and/or another point P . If (c) happens, party time.

Why does this work at all efficiently? E is an elliptic curve over Zn; if p | n then we can

think about E(Fp), and every point on E(Zn) projects onto E(Fp). The number of points

|E(Fp)| is approximately p+ 1, but since it varies a little, it could be that |E(Fp)| is smooth,

or something similar, like |E(Fp)| | B! for some ‘small’ B.

Suppose that |E(Fp)| | B!. When computing B! ·P , we get that the slope of the line has

denominator 0. However, if this isn’t true for one of the other factors q dividing n we will

get something non-zero in the specialization E(Fq). This means that the point doesn’t exist

in E(Zn), and so the multiplication breaks down.

This algorithm actually works fairly well, and is also really cool.

6 Elliptic Curve Cryptography

Having used elliptic curves to try to break cyphers, let’s use elliptic curves to try to make

cyphers. One thing we want to do is produce a private key that two people can use to

communicate, but be able to do this in the open. The standard method is to use the

discrete-log problem.

5

Let p be a prime number. If I give you a mod p and ak mod p, can you tell me k mod (p−
1)? The answer is yes, obviously, but with great difficulty. This is the basis of the standard

Diffie–Hellman key exchange.

Alice sends Bob a prime p and a base a. Both Alice and Bob choose private numbers k

and l. Alice sends Bob ak and Bob sends Alice al. Then both raise their received numbers to

the apprropriate powers to get akl. Eve knows p, a, ak, and al, but not k or l. The problem

is to construct akl from these data. At the moment it is not known, but suspected, that

obtaining akl is equivalent to getting either k or l.

Like public-key cryptography, there are several sub-exponential-time algorithms to solve

the discrete-log problem. To Koblitz and Miller, this was not helpful, and so they (indepen-

dently) suggested using elliptic curves to make things even harder.

In this implementation, Alice decides on an elliptic curve E over a field Fp, and a random

point P . Again Alice dreams up a number k and Bob a number l, and they send each other

kP and lP , then multiply the public point by their private multiplier to get the answer.

Simples.

Even in this case you can do something, but not very often. One method is to try to

reduce the problem to the standarrd discrete log by using the Weil pairing (this embeds

E(Fp) insude Fpa for some a, in a certain sense). This doesn’t work, however, unless the

Weil pairing produces a low a, which doesn’t happen.

6

