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1 Introduction

In this short note, we unify the currently known ZJ-theorem type results from [4] and [6] for satu-

rated fusion systems. Recall that a finite group G is said to be H-free if there are no subquotients

of G isomorphic with H. By [1, Proposition C], any saturated fusion system F possessing a normal,

centric subgroup Q arises from a unique p-constrained finite group with no normal p′-subgroup,

and we denote this subgroup by LFQ. A (saturated) fusion system F on a p-group P is said to

be H-free if, for every F-centric subgroup Q 6 P , the model LQ of NF (Q) is H-free. Finally, let

Qd(p) be the semi-direct product (Cp × Cp) o SL2(p), with the SL2(p) acting in the natural way.

The theorem here that we will prove is the following.

Theorem A Every Qd(p)-free fusion system arises from a finite group, and has a p-soluble fusion

system.

This is heavily related to work of Kessar and Linckelmann [4] and Onofrei and Stancu [6]; in [4],

Theorem A is given for p odd (using the K∞ and K∞ characteristic p-functors), but for p = 2 this

cannot be done using the original method, since K∞ and K∞ no longer have the right properties.

To state the theorem from which Theorem A follows, we need the concept of characteristic

p-functors. A characteristic p-functor is a map W from all finite p-groups to itself, with several

properties:

• if P 6= 1 then W (P ) 6= 1;

• W (P ) charP ; and

• if φ : P → Q is an isomorphism, then W (P )φ = W (Q).

Theorem B Let H be a finite group. Let W be a positive characteristic p-functor such that, for

all H-free finite groups G, FP (G) = FP (NG(W (P ))), where P is a Sylow p-subgroup of G. Then

every H-free fusion system arises from a finite group, and consequently W (P ) 6 Op(F) for any

H-free saturated fusion system F on a finite p-group P .
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The map P 7→ Z(J(P )) satisfies the conditions on W with H = Qd(p) for p odd (Glauberman’s

ZJ-Theorem), and Stellmacher proved that there is some functor W with this property for p = 2

and H = S4 = Qd(2), whence Theorem A follows from Theorem B.

In this note, we will use the (mostly standard) notations and conventions from [2], nearly all of

which are found for example in [5]. Any definitions not found in [5] will be repeated here.

2 Proof of Theorems A and B

Theorem B will follow quite readily from a few lemmas proved in [4], together with Theorem E

from [2]. We will recall the previously known results now. The first is stated only for H = Qd(p)

in [4], although the generalization to arbitrary H has exactly the same proof.

Proposition 2.1 ([4, Propositions 6.3 and 6.4]) Let F be a saturated fusion system on a finite

p-group P that is H-free, and let Q be a subgroup of P .

(i) If Q is fully normalized then NF (Q) is H-free.

(ii) If Q is strongly F-closed then F/Q is H-free.

The next result we need is to be able to pull up control of fusion from normalizers to the whole

fusion system.

Proposition 2.2 ([4, Proposition 5.3]) Let F be a saturated fusion system on a finite p-group

P , and let W be a characteristic p-functor. Suppose that, for any fully normalized subgroup Q of

P , we have (writing E = NF (Q))

E = NE (W (NP (Q))) .

Then F = NF (W (P )).

The subgroup Op(F) is the largest subgroup for which the normalizer subsystem is all of F ;

define O(i)
p (F) inductively by

O(i)
p (F)/O(i−1)

p (F) = Op

(
F/O(i−1)

p (F)
)
.

Recall from [2] that a fusion system is called p-soluble if there exists an n such that O(n)
p (F) = P ,

where the fusion system F is based on P .

Theorem 2.3 ([2, Theorem E]) Every p-soluble fusion system arises from a finite group.

Given these preliminaries, we prove that if F is H-free and W is a characteristic p-functor for

which

FP (G) = NFP (G)(W (P ))
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for all H-free groups G, then F is a p-soluble fusion system. Suppose that F is a minimal coun-

terexample; since F is chosen to be minimal, we must have that Op(F) = 1 by Proposition 2.1,

and so in particular NF (Q) 6= F for any non-trivial subgroup Q. However, since NF (Q) 6= F for

any fully normalized Q, we have by choice of minimal counterexample that (writing E = NF (Q)),

E = NE(W (NP (Q)),

and so F = NF (W (P )) by Proposition 2.2, contradicting the statement that Op(F) = 1. Hence F
is p-soluble, and is modelled by a finite group by Theorem 2.3, proving Theorem B.

To derive Theorem A from Theorem B, it suffices to assert the existence of a characteristic

p-functor with the desired properties for H = Qd(p). The functor P 7→ Z(J(P )) performs this for

p odd (see [3]) and Stellmacher proved the existence of such a functor for p = 2 in [7], completing

the proof of Theorem A.

References
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