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Abstract

In this short article we study weight 2 blocks of symmetric groups for a fixed odd prime

p, and the relationships between them. We first prove that all sources of simple modules from

these blocks come either from S2p or Sp o C2; since this latter group is easy to understand, this

result gives another indication that the principal block of S2p is the ‘most complicated’ block

of weight 2. We then examine which simple modules for S2p share their source with a simple

module from Sp oC2 (so that the induced module of these simple modules to the so-called RoCK

block is simple).

1 Introduction

The blocks of weight 2 in symmetric groups are well understood, and there is a highly developed

theory that relates the various weight 2 blocks of symmetric groups to each other. In this note we

will prove three results that describe some connections between these blocks.

Theorem A Let k be a field of characteristic p, and let B be a weight 2 block of a symmetric

group over k. If M is a simple B-module then the source of M is isomorphic to the source of a

module from the principal p-block of either S2p or Sp o C2.

The proof of this uses the abacus and branching rules, and the work of Scopes [5] [6]. It is

used in [2] to prove that all simple modules for weight 2 blocks of symmetric groups are algebraic

if p = 3 or p = 5. (An algebraic module is one that satisfies a polynomial with integer coefficients

in the Green ring.) We must introduce some terminology before we can adequately state the next

result. In what follows, k is a field of characteristic p, and if G is a finite group, write B0(kG) for

the principal block of kG.

We construct a directed graph as follows: the vertices of the directed graph are all Puig equiv-

alence classes of block of a given weight w. (There are only finitely many vertices by [5] and [4].)

We draw an arrow from one class B1 to another B2 if there exist B1 ∈ B1 and B2 ∈ B2 such that

B1 and B2 form a [w : k]-pair for k < w in the sense of [5] (with B1 a block of Sn and B2 a

block of Sn+k for some n). This directed graph is called the Scopes digraph of weight w. It has a
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unique vertex with no incoming arrows, with representative B0(kSwp), and a unique vertex with no

outgoing arrows, with representative the so-called RoCK block BRoCK: this is a block whose p-core

has (i− 1)(w − 1) beads on the ith runner of the abacus. We call these the minimal and maximal

vertices respectively. The following result is the restriction to weight 2 of a general result for all

blocks (Proposition 3.2).

Proposition B Any path between the minimal and maximal vertices on the Scopes digraph of

weight 2 has length p(p− 1)/2. In other words, if

B0(kS2p) = B0 → B1 → B2 → · · · → Br = BRoCK

is a collection of weight 2 blocks of symmetric groups, where Bi and Bi+1 form a [2 : ki]-pair (and

if ki = 1 then Bi is a block of Sn and Bi+1 is a block of Sn+1 for some n), then exactly p(p− 1)/2

of the ki are equal to 1.

In the proposition above, we allow the [2 : ki]-pairs for ki > 2 to come from either induction or

restriction.

The results of [6] prove that in each Bi → Bi+1 that forms a [2 : 1]-pair, exactly one simple

Bi-module does not branch to a simple Bi+1-module, i.e., the sources of all but one Bi-module are

isomorphic to the sources of all but one Bi+1-module. Hence, of the sources of the (p+ 2)(p− 1)/2

simple B0(kS2p)-modules, p(p−1)/2 of them will be altered, which means that p−1 of them will be

isomorphic to those of BRoCK. This has the following corollary: define the restriction or induction

of a module to a block B is the maximal summand of the restriction or induction of the module to

the subgroup or overgroup that belongs to B.

Corollary C Let B be a block of weight 2, and let M be a simple B-module. Let B′ denote a

block of Sn for some n, that is Puig equivalent to BRoCK and such that there is a series of Scopes

and Morita moves connecting B and B′ that only involve moving beads to the right. Either the

restriction of M to B0(kS2p) or the induction of M to B′ is simple. In particular, if the p-core of

B is obtained from that of BRoCK by making left bead moves, and M is a simple B-module, then

either the restriction of M to B0(kS2p) or the induction of M to BRoCK is simple.

Via Proposition B, it is seen that there are p(p−1)/2 simple BRoCK-modules that do not remain

simple upon restriction to B0(kS2p), so that there are p − 1 that do. The next theorem identifies

which modules these are.

Theorem D Let λ be either the partition (2p) or (i2, 2p−i) for 3 6 i 6 p. The module Dλ of

B0(kS2p), under any series of Scopes and Morita moves, remains simple. In particular, there is a

simple module M of BRoCK such that M ↓S2p is the sum of Dλ and modules outside of the principal

block.
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The simple modules in this theorem appear at the top of the quiver of B0(kS2p), as described

in [3]; this theorem states that their sources are sources of simple modules for Sp o C2, and hence

are ‘small’. The non-trivial such simple modules are in some sense ‘double hook’ modules: it is

natural to ask to what extent this is a small-weight phenomenon, and whether the ‘w-tuple hook’

modules for B0(Swp) are an interesting class of modules to consider.

It should be noted that, by using more advanced combinatorics, one may arrive at the results

in this article more quickly. In Proposition 3.2 we use Richards’s pyramids to easily deduce the

version for all blocks of Proposition B. An analogue of Theorem A for blocks of all weight may

be proved in a more general form using crystals, which we do not perform here. The author feels

however that it is useful to the reader to have fairly short proofs using the basic combinatorial tool

of the abacus, in addition to indicating how the general case might be proved, such as the trivial

proof of Proposition 3.2.

The structure of this article is as follows: In the next section we recall the notation and results

we need from the two papers [5] and [6] of Scopes, and develop some new terminology that we

will need to adequately discuss the proofs of the above three theorems. In Section 3 we prove

Proposition B, in Section 4 we prove Theorem A, and in the final section we prove Theorem D.

2 Notation and Prior Results

We recall briefly the work of Scopes [5] [6], and assume that the reader is fairly familiar with, in

particular, the work in [6]. Recall the Scopes digraph, defined in the introduction.

Our version of the abacus will be (slightly) different from that of [5], in that ours goes upwards.

It has p columns, called runners, with the first runner on the left. The bottom-left corner of

the abacus is the entry 0, and the first-column hook numbers of a partition are placed on the

abacus left-to-right, so that the partition (3, 2, 1, 1), with first-column hook numbers (1, 2, 4, 6), are

displayed for p = 5 as the following. (Here a × indicates a bead, and a − indicates no beads on

that runner.)

×
− × × − ×

We will freely identify a partition with its representation on the abacus. As usual, a p-core is a

partition where no bead can fall downwards on the abacus. We will identify a p-block of a symmetric

group with its p-core.

A path from the minimal vertex to the maximal vertex in the Scopes digraph is called a Scopes

series; indeed, there is a sequence B0(kSwp) = B0 → B1 → B2 → · · · → Bn = BRoCK, where each

arrow Bi → Bi+1 is either a Puig equivalence (so Bi and Bi+1 represent the same vertex in the

Scopes series) or involves shifting k beads (k < w) from one runner of the abacus to the runner
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directly to its right. We call the former a Morita move (since it is a Morita equivalence) and the

latter a Scopes move.

From now on we specialize to the case w = 2. In this case, the partitions belonging to a block

B with a particular p-core µ are labelled by symbols 〈i〉, 〈i, i〉 and 〈i, j〉 = 〈j, i〉 (1 6 i < j 6 p),

where 〈i〉 is the symbol for the partition obtained from µ by raising the highest bead on the ith

runner up two places, 〈i, i〉 is the symbol for the partition obtained from µ by raising the highest

two beads on the ith runner up one place, and 〈i, j〉 is the symbol for the partition obtained from µ

by raising the highest bead on each of the ith and jth runners down up place. (In the event of there

being insufficient beads on a given runner, we may imagine an extra two rows of beads underneath

the abacus and raise those: in this case, the first space (counting from the bottom left as before)

should label 0, and all beads above or to the right of this should represent the number relative to

this new position 0, so that the symbol 〈1, 4〉 applied to the above 5-core yields the abacus

×
× × × × ×
− × × − ×
× × × × ×

,

and the hook numbers (1, 2, 4, 5, 6, 7, 8, 9, 11) and partition (3, 26, 1, 1).) Since the symbols are

easier to manipulate than the partitions we will concentrate on them, and only relate them to the

partitions (and modules Dλ if the partition λ is p-regular) when we consider the main theorems of

this article.

The moves Bm → Bm+1 above are obtained by swapping adjacent runners of the abacus that

contain different numbers of beads (write k for the difference in bead numbers). This induces a

bijection between the symbols for Bm and the symbols to Bm+1, which we describe now: suppose

that runners a and a+ 1 are swapped.

If k > 1 (i.e., it is a Morita move), it is easy to describe the bijection: the partitions 〈i〉, 〈i, i〉
and 〈i, j〉 for block Bm are sent to the same labels for block Bm+1, acted on by the transposition

(a, a+ 1) (so that there is no change unless i or j is one of a and a+ 1).

If k = 1 (i.e., it is a Scopes move, and runner a must have one fewer bead than runner a + 1)

then the bijection is more complicated: the images of 〈i〉, 〈i, i〉 and 〈i, j〉 are as in the previous case

except for ᾱ = 〈a+1〉, β̄ = 〈a, a+1〉 and γ̄ = 〈a, a〉 (labelling partitions of Bm), which have images

α = 〈a+ 1, a+ 1〉, γ = 〈a〉 and β = 〈a, a+ 1〉 respectively (labelling partitions of Bm+1).

If 1 < a < p then this description is valid, and we refer to these as standard moves. If a = 1

(and k > 2 so that this is a Morita move, as Scopes moves to the left are not permitted), the effect

of swapping runners 1 = a and 2 = a + 1 is to yield a p-core that has at least one bead in the

first column. To get a valid p-core, we must then move the first column to the pth column and

remove one bead. Another way to describe this move then is to say that the ith runner moves to

the (i − 1)th runner for 3 6 i 6 p, the second runner is moved to the pth runner and has a bead
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removed, and the first runner stays where it is. The effect of this on the symbols is to apply the

permutation (p, p− 1, . . . , 2) to the entires in the symbols 〈i〉, 〈i, i〉 and 〈i, j〉.
We must also allow the case “a = p”, which is simply the reverse of the move above. In the

reverse however, the case k = 1 is also possible, when there are no beads on the pth runner of Bm.

This move fixes the first runner, moves the ith to the (i + 1)th for 2 6 i < p, and moves the pth

runner to the second, adding a bead. The effect on the symbols 〈i〉, 〈i, i〉 and 〈i, j〉 of Bm is to

apply the permutation (2, 3, . . . , p) to the entries, as in the previous paragraph, except for the three

symbols ᾱ = 〈1〉, β̄ = 〈1, p〉 and γ̄ = 〈p, p〉, which have images α = 〈2, 2〉, γ = 〈1〉 and β = 〈1, 2〉
respectively, as partitions belonging to Bm+1. The Morita and Scopes moves of this type are called

wrap moves, since they wrap the first runner round to the pth runner or vice versa.

If Bm → Bm+1 is a Scopes move then the only simple Bm+1-module whose restriction to Bm

(i.e., take the restriction between the relevant symmetric group and then keep only the summand

that belongs to the block Bm) is not simple is the one whose (p-regular) partition corresponds

to the symbol 〈i, i〉, i.e., to α. Thus the sources of the simple Bi+1-modules and the simple Bi-

modules are isomorphic, and in correspondence via the bijection of symbols, except for the modules

corresponding to the symbols ᾱ and α.

3 The Scopes Series

This section contains a proof of Proposition B using the abacus, and then notes the general case

in Proposition 3.2. To each p-core λ we associate a number f(λ), which is the number of pairs

(i, j) with 1 6 i < j 6 p, and such that either there are more beads on runner j than runner i,

or there are at least two more beads on runner i than runner j (call such a pair acceptable for

λ). Notice that if λ is the empty partition (i.e., the core of B0(kS2p)) then f(λ) = 0, and if λ is

the p-core of the RoCK block (so that its abacus representation has i− 1 beads on runner i) then

f(λ) = p(p− 1)/2. We prove the following proposition, which immediately implies Proposition B.

Proposition 3.1 Let λ and µ be p-cores, and suppose that they label weight 2-blocks Bλ and Bµ

that form a [2 : k]-pair (with Bλ a block of Sn and Bµ a block of Sn+k).

(i) If k > 2 then f(µ) = f(λ).

(ii) If k = 1 then f(µ) = f(λ) + 1.

Proof: Since Bλ and Bµ form a [2 : k]-pair, µ is obtained from λ by swapping runners i and i+ 1

on the abacus, and there are more beads on runner i than runner i+ 1 in λ.

Firstly suppose that this is a standard move (so that i > 1). Notice that runners i and i + 1

maintain their positions relative to all other runners, and so we are only concerned with whether

(i, i+ 1) is an acceptable pair for λ and µ. If k > 2 then it is acceptable for both λ and µ, and so

f(λ) = f(µ). If k = 1 then it is not acceptable for λ but is for µ, so that f(µ) = f(λ) + 1.
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Finally, suppose that we have a wrap move. We might as well assume that this is the case

“a = p” in the description in Section 2, as we will show that Morita moves do not affect f(λ), so

will not when performed in the opposite direction. This move from λ to µ fixes the first runner,

moves the ath runner to the (a + 1)th runner for 2 6 a < p, and moves the pth runner to the

second, adding a bead. If a = 1 and 2 6 b 6 p− 1, or 2 6 a < b 6 p− 1, then the number of beads

on runners a and b, and their relative position, do not change in the move from λ to µ, so (1, b)

and (a, b) (for a > 2) are acceptable for λ if and only if (1, b+ 1) and (a+ 1, b+ 1) are acceptable

for µ. The pair (1, p) is acceptable for λ if and only if there are beads on the pth runner, and this

is true if and only if k > 2 (i.e., the move is a Morita move rather than a Scopes move). Note that

(1, 2) is always acceptable for µ, since there must be at least one bead on the 2nd runner of µ (as

a wrap move has taken place).

It remains to deal with the case where 2 6 j 6 p−1 and k = p: there are more beads on runner

p than runner j in λ if and only if there are at least two more beads on runner 2 than runner j + 1

in µ; and there are at least two more beads on runner j than runner p in λ if and only if there are

more beads on runner j + 1 then runner 2 on µ. This implies that (j, p) is acceptable for λ if and

only if (2, j+ 1) is acceptable for µ. Hence f(µ) = f(λ) if it is a Morita move, and f(µ) = f(λ) + 1

if it is a Scopes move. This completes the proof in this case as well.

This immediately shows that there are exactly p(p − 1)/2 Scopes moves in any sequence of

moves (either Scopes moves, or Morita moves in either direction) between B0(kS2p) and BRoCK, as

claimed in Proposition B.

More generally, using Richards’s pyramids, it is easy to see the following more general result.

Proposition 3.2 Any path between the minimal and maximal vertices on the Scopes digraph of

weight w has length wp(p− 1)/2. Moreover, if

B0(kSwp) = B0 → B1 → B2 → · · · → Br = BRoCK

is a collection of weight w blocks of symmetric groups, where Bi and Bi+1 form a [w : ki]-pair (and

if ki < w then Bi is a block of Sn and Bi+1 is a block of Sn+1 for some n), then exactly p(p− 1)/2

of the ki are equal to j for each 1 6 j 6 w − 1.

Proof: The block BRoCK has pyramid consisting solely of p(p − 1)/2 zeros, and B0(kSwp) has

a pyramid consisting solely of p(p − 1)/2 copies of w − 1. Each non-Morita Bi → Bi+1 move

decrements exactly one of the entries by 1, and if the entry changes from j to j − 1 then Bi and

Bi+1 form a [w : w − j] pair. This completes the proof.

4 Sources of Weight 2 Blocks

Having dealt with cores, we now move on to the partitions associated to cores. As each Scopes

and Morita move induces a bijection between the symbols 〈i〉, 〈i, i〉 and 〈i, j〉 of the two blocks, a
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composition of moves yields a composition of bijections of symbols. In addition, since each move

induces a permutation of the runners, a composition of moves yields a permutation of the runners,

which is related to the bijection of the symbols above.

Our first claim is that, if

B0(kS2p) = B0 → B1 → B2 → · · · → Bm = BRoCK

is a sequence of moves, that λ is a symbol for B0, and that it (or rather its image under the bijection

between symbols) plays the role of γ̄ in some Scopes move Br → Br+1, then it never plays the role

of β̄ in any Scopes move Bs → Bs+1 for r < s. More formally, we have the following proposition.

Proposition 4.1 Let λ be the symbol of a p-regular partition associated to B0(kS2p) = B0, and

let B0 → B1 → B2 → · · · → Bm = BRoCK be a sequence of Morita and Scopes moves. Let φt

denote the bijection of partitions induced by the first t maps (from those belonging to B0 to those

belonging to Bt). If φr(λ) is the symbol γ̄ for some Scopes move Br → Br+1 then none of the

φs(λ), for s > r, is the symbol β̄ for some Scopes move Bs → Bs+1.

Proof: Suppose that φr(λ) is the symbol γ̄ for a Scopes move Br → Br+1. If this Scopes move is a

wrap move, then φr(λ) = 〈1, 1〉, which is easily seen not to be the symbol of a p-regular partition.

Since the φt send p-regular partitions to p-regular partitions [6, Lemma 3.5(2)], we arrive at a

contradiction. Hence this Scopes move is a standard move.

Label the runners involved in the swap a and a+1, with b and b+1 beads respectively in Br+1.

×
× ×

· · · · · · × × · · · · · ·
a

We suppose that there is an s > r such that φs(λ) is the symbol γ̄ for a Scopes move Bs → Bs+1

(and choose the smallest such s), and for r+ 1 6 t 6 s write θt for the permutation of the runners

induced by the Morita and Scopes moves from Br+1 to Bt.

Notice that φr+1(λ) has label 〈a, a + 1〉, and for r + 1 6 t 6 s, φt(λ) = 〈θt(a), θt(a + 1)〉,
until φt(λ) becomes the partition β̄ for some Scopes move, i.e., t = s. However, in order for

〈θt(a), θt(a + 1)〉 to be β̄ in some Scopes move, the runners θt(a) and θt(a + 1) must be adjacent,

and there must be one fewer bead on the runner to the left than the one to the right.

After any sequence of standard moves, the runner θt(a) still has b beads on it, and lies to the
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left of θt(a+ 1), which has b+ 1 beads.

×
× ×

· · · · · · × · · · · · · × · · · · · ·
θt(a) θt(a+ 1)

Hence, unless wrap moves are performed, 〈θt(a), θt(a+ 1)〉 cannot be β̄. In this case, a wrap move

involving θt(a) (which must wrap from the left-hand side to the right-hand side of the abacus)

will lose one bead, so the difference in beads will be 2, similarly for θt(a + 1) wrapping from the

right-hand side to the left.

×
×
× ×

· · · · · · × · · · · · · × · · · · · ·
θt(a+ 1) θt(a)

Wrap moves in these directions can only increase the difference in beads between the two

runners, and so the last wrap move made before we reach the Scopes move Bs → Bs+1 (in which

the two runners differ by one bead) must be in the other direction. This still leaves θt(a+ 1) with

one more bead than θt(a) (as in order to wrap from the other side the two runners must swap at

some point, and they can only do this if the difference in beads is at least 2, so that it is a Morita

move), and must be on the right of θt(a), as in the following situation (again).

×
× ×

· · · · · · × · · · · · · × · · · · · ·
θt(a) θt(a+ 1)

This means that a second Scopes move involving θt(a) and θt(a+ 1) cannot be performed, proving

the proposition.

Corollary 4.2 Let λ be the symbol of a p-regular partition associated to B0(kS2p) = B0, and

let B0 → B1 → B2 → · · · → Bm = BRoCK be a sequence of Morita and Scopes moves. Let φt

denote the bijection of partitions induced by the first t maps (from those belonging to B0 to those

belonging to Bt). If φr(λ) is the symbol ᾱ for some Scopes move Br → Br+1 then none of the

φs(λ), for s > r, is the symbol ᾱ again, for some Scopes move Bs → Bs+1.
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Proof: From the definition of a Scopes move, unless the symbols involved are ᾱ, β̄ and γ̄, the move

permutes the symbols of the form 〈i〉, and those of the form 〈i, i〉, and those of the form 〈i, j〉 for

i 6= j. Hence if φr(λ) is the symbol ᾱ, in order for φs(λ) to also be the symbol ᾱ there must exist

r < u < v < s such that φu(λ) is γ̄ and φv(λ) is β̄, for Scopes moves Bu → Bu+1 and Bv → Bv+1.

This is impossible by the previous proposition.

From here the proof of the theorem is clear: if Bi → Bi+1 is a Scopes move, the only simple

Bi+1-module that does not share a source with a Bi module is that corresponding to α. If no

partition can be ᾱ twice in a Scopes series, then if N replaces M in some Scopes move Bi → Bi+1

(so that the sources of the other simple Bi+1-modules are the same as the sources of the other

Bi-modules) then M cannot be replaced in any later Scopes move, so it shares a source with a

simple module from the RoCK block, and N can never have been replaced in any previous Scopes

move, so that N shares a source with a simple B0(kS2p)-module. Thus the source of any simple

module of any block of weight 2 is isomorphic with that of a simple module for B0(kS2p), or that

of a simple module for the RoCK block. The final step is that the RoCK block is Puig equivalent

to the principal block of Sp o C2, which is proved in [1]; this completes the proof of Theorem A.

5 Restrictions of Partitions

The objective of this section is to prove Theorem D. In order to prove this we will show that

the partitions labelled by the symbols 〈i〉 for 1 6 i 6 p − 1, 〈1, i〉 for 3 6 i 6 p and 〈i, j〉 for

2 6 i < j 6 p and j − i > 1, are all ᾱ for some Scopes move; since this accounts for p(p − 1)/2

partitions, this must be all partitions that have their sources altered, and so the branching rule

proves the result (noting that the remaining symbols – 〈p〉 and 〈i, i + 1〉 for 2 6 i 6 p − 1 – yield

the partitions (2p) and (i2, 2p−i)).

We now describe sequences of Scopes moves that prove that each of these can be ᾱ; each of

the sequence of Scopes moves described here results in a p-core that has runners with either zero

or one bead on them. A symbol or partition λ of B0(kS2p) is called replaced if there is a series of

Scopes and Morita moves, ending with a Scopes move, for which the image of λ under the previous

moves is the symbol or partition ᾱ in the final Scopes move.

From the empty p-core we may only perform a wrap Scopes move, for which the symbol 〈1〉 is

ᾱ. At this stage, if one performs the standard Scopes moves with runner swaps the transpositions

(2, 3), (3, 4), (4, 5), . . . , (i, i + 1), then the last move has as ᾱ the symbol 〈i〉 of B0(kS2p). This is

easy to see, as the wrap move sends 〈i〉 to 〈i + 1〉, and all swaps leave 〈i + 1〉 fixed until the final

one, for which it is ᾱ. This proves that the symbols 〈i〉 for 1 6 i 6 p− 1 label replaced partitions.

Alternatively, one may repeatedly perform wrap Scopes moves, and after i wrap Scopes moves

(i > 2), the partition 〈1, p− i+ 2〉 has been replaced: to see this, a wrap Scopes move replaces 〈1〉,
sends 〈1, p〉 to 〈1〉, and maps 〈1, p − i + 2〉 to 〈1, p − i + 3〉, which by induction proves the claim.

Hence the symbols 〈1, i〉 for 3 6 i 6 p are replaced symbols.
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In general, let λ = 〈i, j〉 be a symbol with 2 6 i < j 6 p and j − i > 1. There is a four-step

process to produce a series of Scopes moves, whose last one replaces λ.

Step 1: perform p − j + 1 wrap Scopes moves. Letting φ1 denote the bijection of the symbols

obtained from these moves, we have φ1(λ) = 〈2, x〉, where x = p+ 1− (j− i). (As j− i > 1, x < p.)

− × × · · · · · · × − · · · · · · − · · · · · · −
2 x︸ ︷︷ ︸

p−j+1

Step 2: move all but one of the beads to the last but one runner, so that the core looks as follows.

− × − · · · · · · − · · · · · · − × · · · · · · × −
2 i+ 1 ︸ ︷︷ ︸

p−j

Let φ2 denote the bijection of the symbols obtained from these moves. As we have passed p − j
beads through the runner labelled x, we get φ2(φ1(λ)) = φ2(〈2, x〉) = 〈2, i+1〉, as each bead reduces

x by 1.

Step 3: move the bead on the 2nd runner as far to the right as it may go. Let φ3 denote the

bijection of the symbols obtained from these moves. This final bead has the property that as it

moves from the 2nd to the ath runner, the symbol 〈2, i + 1〉 becomes 〈a, i + 1〉 until a = i, when

it becomes 〈i, i + 1〉. At this point the bead is on the ith runner, and so the next move changes

〈i, i+ 1〉 into 〈i〉 (as it is β̄ for this move), and subsequent moves do not affect this symbol. Hence

φ3(〈2, i+ 1〉) = 〈i〉.
To see that this is possible, as j − i > 1, the (i+ 1)th runner on the abacus at the end of Step

2 is empty, and so the bead on the 2nd runner may be passed through it. At this stage the core

looks as follows.

− · · · · · · − · · · · · · − × · · · · · · × −
i ︸ ︷︷ ︸

p−j+1

Step 4: perform one wrap move then move the new bead on the 2nd runner to the (i+1)th runner.

Performing a wrap move alters the symbol 〈i〉 to 〈i+ 1〉, and makes the core look as follows.

− × − · · · · · · − · · · · · · − × · · · · · · ×
i ︸ ︷︷ ︸

p−j+1

Moving the bead on the 2nd runner to the ith runner does not alter the symbol 〈i+1〉, but swapping

the ith and (i+ 1)th runners has the effect of replacing 〈i+ 1〉, as it is the symbol ᾱ for this move.

Hence λ is replaced, as claimed.
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Theorem D now follows since we have shown that all other p-regular partitions are replaced, so

those remaining – 〈p〉 and 〈i, i+ 1〉 for 2 6 i 6 p− 1, which label (2p) and (i2, 2p−1) for 3 6 i 6 p

– form the p− 1 partitions that are not replaced.
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