
The Quarterly Journal of Mathematics
Quart. J. Math. 00 (2011), 1–12; doi:10.1093/qmath/har016

RELATING SIMPLE MODULES IN WEIGHT 2 BLOCKS
OF SYMMETRIC GROUPS

by DAVID A. CRAVEN†

(Mathematical Institute, 24–29 St Giles’, Oxford OX1 3LB, UK)

[Received 23 November 2010]

Abstract

In this article, we study weight 2 blocks of symmetric groups for a fixed odd prime p, and the
relationships between them. We first prove that all sources of simple modules from these blocks
come either from S2p or Sp � C2; since this latter group is easy to understand, this result gives
another indication that the principal block of S2p is the ‘most complicated’ block of weight 2. We
then examine which simple modules for S2p share their source with a simple module from Sp � C2.

1. Introduction

The blocks of weight 2 in symmetric groups are well understood, and there is a highly developed
theory that relates the various weight 2 blocks of symmetric groups to each other. In this note, we
will prove some results that describe connections between the simple modules for these blocks.

THEOREM 1.1 Let K be a field of odd characteristic p, and let B be a weight 2 block of a symmetric
group over K . If M is a simple B-module, then the source of M is isomorphic to the source of a
module from the principal p-block of either S2p or Sp � C2.

The proof of this uses the abacus and branching rules, and the work of Scopes [10, 11]. This result
should be of use when studying the properties of simple modules in weight 2 blocks, since many
properties are captured by the source of a module: for example, it is used in [3] to prove that all simple
modules for weight 2 blocks of symmetric groups are algebraic if p = 3 or p = 5. (An algebraic
module is one that satisfies a polynomial with integer coefficients in the Green ring.)

We must introduce some terminology before we can adequately state the next result. In what
follows, K is a field of odd characteristic p, and if G is a finite group, write B0(KG) for the principal
block of KG.

We construct a directed graph as follows: the vertices of the directed graph are all Morita equiva-
lence classes of p-block of a given weight w. (There are only finitely many vertices by [10], see also
Section 3.) We draw an arrow from one class B1 to another B2 if there exist B1 ∈ B1 and B2 ∈ B2

such that B1 and B2 form a [w : k]-pair for k < w in the sense of [10], with B1 a block of Sn and
B2 a block of Sn+k for some n. (We review the theory of [w : k]-pairs in Section 3.) We call this
directed graph the Scopes digraph of weight w. It has a unique vertex with no incoming arrows,
with representative B0(KSwp), and a unique vertex with no outgoing arrows, with representative the
so-called RoCK block BRoCK: this is a block whose p-core has (i − 1)(w − 1) beads on the ith runner
of the abacus (see Section 2 for the definition of the abacus). We call these the minimal and maximal
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vertices, respectively. The following result is the restriction to weight 2 of a general result for all
blocks (Proposition 4.1).

PROPOSITION 1.2 Any path between the minimal and maximal vertices on the Scopes digraph of weight
2 has length p(p − 1)/2. In other words, if

B0(KS2p) = B0 −→ B1 −→ B2 −→ · · · −→ Br = BRoCK

is a collection of weight 2 blocks of symmetric groups, where Bi and Bi+1 form a [2 : ki]-pair (and
if ki = 1 then Bi is a block of Sn and Bi+1 is a block of Sn+1 for some n), then exactly p(p − 1)/2
of the ki are equal to 1.

In the proposition above, we allow the [2 : ki]-pairs for ki ≥ 2 to be either (Bi, Bi+1) or (Bi+1, Bi),
so come from either induction or restriction.

Define the restriction M ↓B or induction M ↑B of a module M to a block B to be the maximal
summand of the restriction or induction of the module to the subgroup or overgroup that belongs
to B. The results of [11] prove that in each (Bi, Bi+1) that forms a [2 : 1]-pair, exactly one simple
Bi-module does not block induce to a simple Bi+1-module; in particular, the sources of all but one
Bi-module are isomorphic to the sources of all but one Bi+1-module. Since any path from B0(KS2p)

to BRoCK has length exactly p(p − 1)/2, exactly p(p − 1)/2 of the sources of the (p + 2)(p − 1)/2
simple B-modules are altered as one moves along the path from the minimal to the maximal vertex.
However, it could be that the same simple module is altered twice; our next result, which together
with Proposition 1.2 proves Theorem 1.1, states that this cannot happen.

THEOREM 1.3 Let B be a p-block of weight 2 in a symmetric group, where p is odd, and let M be a
simple B-module. Let B ′ be a weight 2 block of some symmetric group that is Morita equivalent to
BRoCK, and such that there is a sequence

B0(KS2p) = B0, B1, . . . , Br = B, Br+1, . . . , Bs = B ′

with (Bi, Bi+1) a [2 : ki]-pair for some ki . (In other words, the [2 : ki]-pairs are always block
induction.) Either the block induction M ↑B ′

or the block restriction M ↓B0 is a sum of isomorphic
simple modules, and modules of cyclic vertex.

Since the sources of the simple B ′-modules are the same as the sources of the simple
BRoCK-modules (by [8]), this yields Theorem 1.1, as we stated earlier. There are p(p − 1)/2 simple
BRoCK-modules that do not restrict to semisimple B0(KS2p)-modules, so there are p − 1 that do. The
next theorem identifies the B0(KS2p)-modules that always remain unaltered along any path in the
Scopes digraph.

THEOREM 1.4 Let λ be either the partition (2p) or (i2, 2p−i ) for 3 ≤ i ≤ p. If B is any weight 2 block
of a symmetric group, then Dλ ↑B is a sum of copies of some simple B-module Dμ, and modules of
cyclic vertex, and similarly Dμ ↓B0 is a sum of copies of Dλ and modules of cyclic vertex.

The simple modules in this theorem appear at the top of the quiver of B0(KS2p), as described in
[4], and are the completely splittable modules in the sense of [6]; this theorem states that their sources
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are sources of simple modules for Sp � C2 (since the sources of the simple BRoCK-modules are the
same as those of Sp � C2 by [2]), and hence are ‘small’. The non-trivial such simple modules are in
some sense ‘double hook’ modules.

The structure of this article is as follows: Section 2 introduces the basic representation theory of
the symmetric groups that we need, and Section 3 summarizes the relevant results of Scopes from
[10, 11]. In Section 4, we prove Proposition 1.2 using Richards’s pyramids, in Section 5 we prove
Theorem 1.3 (and hence Theorem 1.1), and in the final section we prove Theorem 1.4.

2. Abacus combinatorics

For the basics of the representation theory of the symmetric groups, we refer to (for example) [5].
The irreducible ordinary characters of Sn are labelled by partitions λ of n; write Sλ for the Specht
module corresponding to λ, which is an irreducible representation of Sn in characteristic 0.

If λ = (λ1, . . . , λr), then the first-column hook lengths of λ are

λ1 + (r − 1), λ2 + (r − 2), . . . , λr−1 + 1, λr .

(These are the hook lengths of the boxes in the first column of the tableau representation of λ; see
for example [5, Section 2.3] for details on hook lengths.) Since λ is a partition, the first-column hook
lengths are distinct, so form a subset of N+. More generally, a β-set is a finite subset of N≥0. We
introduce an equivalence relation ∼ on the set of all β-sets, by saying that if X is a β-set then X ∼ X′,
where

X′ = {0} ∪ {x + 1 : x ∈ X},
and extending this to an equivalence relation. Each equivalence class contains a unique (possibly
empty) representative X not containing 0, and this is the set of first-column hook lengths for a
partition λ. We will identify β-sets and partitions; when we define an operation on one of these, we
can transport this operation to the other.

We also introduce the p-abacus: it has p columns, called runners, with the first runner on the
left. The top-left corner of the abacus is the entry 0, and a β-set of a partition are placed on the
abacus left-to-right then down the rows (these are called beads), so that the partition (3, 2, 1, 1), with
first-column hook numbers (1, 2, 4, 6), are displayed for p = 5 as the following. (Here a × indicates
a bead, and a − indicates no beads on that runner.)

− × × − ×
×

We number the runners 1 to p, with 1 on the left-hand side.
If X is a β-set, displayed on a p-abacus, then one may add or remove a p-hook, which involves

sliding a bead down or up one space on its runner, respectively, to produce another β-set. The p-
core of a β-set X (or partition) is the β-set (or partition) produced by removing all p-hooks from
X. Removing a p-hook from a partition λ produces a partition μ with |λ| − |μ| = p; the p-weight
(or just weight) of a partition is the number of p-hooks removed from λ to produce the p-core μ, or
equivalently (|λ| − |μ|)/p.

We now move on to p-blocks. The Nakayama conjecture (which is a theorem—see [5, 6.1.21])
states that two ordinary characters Sλ and Sμ lie in the same p-block of Sn if and only if λ and μ have
the same p-core; the p-blocks of Sn are therefore parametrized by the p-cores of the partitions of n.
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The irreducible modules Dλ in characteristic p are parametrized by p-regular partitions, i.e.,
partitions λ = (λ1, . . . , λr) such that no p of the λi are equal. (The module Dλ is the head of the
Specht module Sλ, defined over the field Fp.) Again, two simple modules Dλ and Dμ lie in the same
p-block of Sn if and only if λ and μ have the same p-core. The weight of a p-block B is the weight
of any partition λ such that Sλ belongs to B.

3. Scopes moves

In this section we briefly summarize the theory from [10, 11] that we need. Suppose that B̄ and B

are p-blocks of symmetric groups, with p-cores κ̄ and κ , and both of weight w. We say that (B̄, B)

forms a [w : k]-pair if there are β-sets X̄ and X for κ̄ and κ , respectively, and some 1 ≤ a ≤ p − 1
such that, in the abacus representation of X̄, there are k more beads on runner a than runner (a + 1),
and by swapping runners a and (a + 1) in the abacus for X̄, we obtain the abacus for X. In this case,
if B is a block of Sn (so that n = wp + |κ|), we have that B̄ is a block of Sn−k .

In [10], Scopes proved that, if (B̄, B) forms a [w : k]-pair for k ≥ w, then B̄ and B are Morita
equivalent. This proves that there are only finitely many Morita equivalence classes of p-blocks of
symmetric groups of a given weight w, and these are the vertices of the Scopes digraph of weight w

(as defined in the introduction). If (B̄, B) forms a [w : k]-pair, then we draw an arrow from B̄ to B,
where B̄ ∈ B̄ and B ∈ B. (We could label this arrow with ‘k’ to keep track of the k’s involved, but
since we will specialize to weight 2, we do not need to do this here.)

A path from the minimal vertex to the maximal vertex in the Scopes digraph is called a Scopes
series; this is a sequence B0(KSwp) = B0 → B1 → B2 → · · · → Bn = BRoCK, where each arrow
Bi → Bi+1 is either a Morita equivalence (so, Bi and Bi+1 represent the same vertex in the Scopes
series) or (Bi, Bi+1) forms a [w : k]-pair for k < w. We call the former a Morita move (since it is a
Morita equivalence) and the latter a Scopes move.

From now on we specialize to the case w = 2. In this case, the partitions belonging to a
block B with a particular p-core κ , and a fixed β-set X, are labelled by symbols 〈i〉, 〈i, i〉 and
〈i, j〉 = 〈j, i〉 (1 ≤ i < j ≤ p), where 〈i〉 is the symbol for the partition with β-set that obtained
from X by lowering the lowest bead on the ith runner two places, 〈i, i〉 is the symbol for the par-
tition with β-set that obtained from X by lowering the lowest two beads on the ith runner down
one place, and 〈i, j〉 is the symbol for the partition with β-set that obtained from X by lower-
ing the lowest bead on each of the ith and j th runners down one place. (In the event of there
being insufficient beads on a given runner, we may imagine extra rows of beads above the aba-
cus and lower those, or equivalently replace the β-set by one with a multiple of p more elements
in it.)

An important remark is that this labelling is not canonical, and depends on the choice of β-set X;
as suggested in the previous paragraph, if X′ is another β-set, then the symbols correspond to the
same partition if and only if |X| − |X′| is a multiple of p.

In the example 5-core above, the symbol 〈1, 4〉 (with five extra elements in the β-set) has abacus

− × × − ×
× × × × ×

×

yielding hook numbers (1, 2, 4, 5, 6, 7, 8, 9, 11) and partition (3, 26, 1, 1). Since the symbols are
easier to manipulate than the partitions, we will concentrate on them, and only relate them to the
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partitions (and modules Dλ if the partition λ is p-regular) when we consider the main theorems of
this article.

We now describe a bijection between the symbols for B̄ and the symbols for B, when (B̄, B)

forms a [w : k]-pair, achieved by swapping runners a and a + 1. If k > 1 (i.e., it is a Morita move),
it is easy to describe the bijection: the partitions 〈i〉, 〈i, i〉 and 〈i, j〉 for the block B̄ are sent to the
same labels for block B, acted on by the transposition (a, a + 1) (so that, for example, if a = 2, then
〈2, 4〉 goes to 〈3, 4〉 and 〈1, 4〉 is left invariant).

If k = 1 (i.e., it is a Scopes move), then the bijection is more complicated: the images of 〈i〉, 〈i, i〉
and 〈i, j〉 are as in the previous case, except for ᾱ = 〈a + 1〉, β̄ = 〈a, a + 1〉 and γ̄ = 〈a, a〉 (labelling
partitions of B̄), which have images α = 〈a + 1, a + 1〉, γ = 〈a〉 and β = 〈a, a + 1〉, respectively
(labelling partitions of B).

The above yields a bijection �B̄,B from symbols for B to symbols for B̄ (or vice versa). If k > 1, λ

is p-regular, and if Dλ is a simple B-module, then Dλ ↓B̄ is a sum of k! copies of Dλ̄ for λ̄ = �B̄,B(λ)

(see [10]). If k = 1, then for λ �= α, β, γ , we get Dλ ↓B̄= Dλ̄, as before (see [11, Corollary 3.7]). If
β is p-regular, then Dβ ↓B̄= Dγ̄ , and if γ is p-regular, then Dγ ↓B̄= Dβ̄ (see [11, Section 4]). The
module Dα does not have a simple restriction to B̄ (it has composition length at least three, and has
both head and socle isomorphic to Dᾱ).

In later applications we wish to chain together sequences of Scopes and Morita moves, and for this
purpose we need to fix a β-set from the beginning, as we have seen that the symbols depend on the
β-set chosen. The obvious β-set we choose is the set of first-column hook lengths of a p-core, so the
first runner should not have beads on it after a sequence of runner swaps; hence, after each move, we
will always readjust the β-set so that the abacus display has an empty first runner. Swapping runners
a and a + 1 for 1 < a < p presents no problem, and we refer to these cases as standard moves.
However, we also need to be able to swap runners 1 and 2 (which results in there being beads on the
first runner), and swap runners 1 and p (because these runners can be adjacent if one uses a different
β-set).

We deal with the case a = 1 first. Since there cannot be more beads on runner 1 than runner 2,
swapping runners 1 and 2 must be the ‘reverse’ of a move, and we only need to define these in the
Morita case. The effect of swapping runners 1 = a and 2 = a + 1 is to yield a p-core that has at least
one bead in the first column. To get the first-column hook lengths for a p-core, we must then move
the first column to the pth column and remove one bead. Another way to describe this move then is
to say that the ith runner moves to the (i − 1)th runner for 3 ≤ i ≤ p, the second runner is moved
to the pth runner and has a bead removed, and the first runner stays where it is. The effect of this on
the symbols is to apply the permutation (p, p − 1, . . . , 2) to the entries in the symbols 〈i〉, 〈i, i〉 and
〈i, j〉. (Since this is a Morita move, we do not need to worry about the symbols α, β and γ .)

For a = p, this is essentially the reverse of the previous case. Here, however, the case k = 1 is also
possible, which is when there are no beads on the pth runner of B̄. This move fixes the first runner,
moves the ith to the (i + 1)th for 2 ≤ i < p and moves the pth runner to the second, adding a bead.
The effect on the symbols 〈i〉, 〈i, i〉 and 〈i, j〉 of B̄ is to apply the permutation (2, 3, . . . , p) to the
entries, as in the previous paragraph, except for the three symbols ᾱ = 〈1〉, β̄ = 〈1, p〉 and γ̄ = 〈p, p〉,
which have images α = 〈2, 2〉, γ = 〈1〉 and β = 〈1, 2〉, respectively, as partitions belonging to B.
The Morita and Scopes moves of this type are called wrap moves, since they wrap the first runner
round to the pth runner or vice versa.

The previous paragraphs give, for any [2 : k]-pair (B̄, B), a bijection from the symbols for B̄ to
the symbols for B, and this bijection induces a bijection between the simple B̄-modules and the
simple B-modules; this bijection is compatible with block induction for all modules except Dᾱ in
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the case of a [2 : 1]-pair, and this induced module is not a direct sum of copies of a single simple
B-module.

4. The scopes series

This section contains a proof of Proposition 1.2 using Richards’s pyramids, which appear in [9]
(although we slightly modify the definition, in keeping with modern convention). We describe
them briefly now: let B be a p-block of a symmetric group, with p-core κ and weight w. Let
X = {x1, . . . , xs} with xi > xi+1 be a β-set for κ; consider the subset Y of all x ∈ X such that x + p

is not in X (i.e., the beads that lie at the end of their runner), and note that if |X| is sufficiently large
then |Y | = p. Inheriting the ordering from X, we have y1 > y2 > · · · > yp, yielding p(p − 1)/2
numbers ai,j , for 1 ≤ i < j ≤ p, defined by

ai,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 0 < yi − yj < p

1 p < yi − yj < 2p

...

w − 2 (w − 2)p < yi − yj < (w − 1)p

w − 1 (w − 1)p < yi − yj

.

(Notice that, since yi and yj lie on different runners of the abacus, yi − yj is not divisible by p, and
also that they do not depend on the β-set X, only on κ .) We may arrange these numbers, which lie
in the range 0,…,(w − 1), into a pyramid, with a1,p at the top, then a1,p−1 and a2,p in the second
row, down to ai,i+1 for 1 ≤ i ≤ p − 1 at the bottom. By [9, Lemma 3.1], if B and B̄ are related by a
sequence of Morita moves, then the p-cores labelling B and B̄ have the same pyramid.

Suppose that (B̄, B) form a [w : k]-pair for some k < w: we let X̄ be a β-set for the p-core of
B̄, define Ȳ as above, and suppose that runners a and a + 1 are swapped by the Scopes move. This
move replaces some yα with yα + 1 and some yβ with yβ − 1, with α < β. Furthermore, since there
are k more beads on runner a than a + 1, we see that yα − yβ = kp − 1, and (yα + 1) − (yβ − 1) =
kp + 1. Hence, the pyramid number aα,β goes from k − 1 to k, so increments a single element of the
pyramid by 1. (Clearly, all other numbers in the pyramid are unaffected.)

This yields the following proposition.

PROPOSITION 4.1 Any path between the minimal and maximal vertices on the Scopes digraph of weight
w has length wp(p − 1)/2. Moreover, if

B0(KSwp) = B0, B1, B2, . . . , Br = BRoCK

is a collection of weight w blocks of symmetric groups, where either (Bi, Bi+1) forms a [w : ki]-
pair, or (Bi+1, Bi) forms a [w : k]-pair for k ≥ w (i.e., Bi → Bi+1 is a Morita move), then exactly
p(p − 1)/2 of the ki are equal to j for each 1 ≤ j ≤ w − 1.

Proof . It is easy to see that the block BRoCK has pyramid consisting solely of p(p − 1)/2 copies of
w − 1, and B0(KSwp) has a pyramid consisting solely of p(p − 1)/2 copies of 0. Each Scopes move
Bi → Bi+1 increments exactly one of the entries by 1, and if the entry changes from k to k + 1 then
(Bi, Bi+1) forms a [w : k]-pair. This completes the proof.
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In the case of weight 2 blocks, pyramids have only entry 0 or 1, so for a p-core κ one may associate
f (κ), which is the number of pairs (i, j) with 1 ≤ i < j ≤ p such that either there are more beads
on runner j than runner i, or there are at least two more beads on runner i than runner j . This statistic
is the sum of the ai,j : it is not difficult to see that a Morita move does not alter f (κ), and a Scopes
move increases f (κ) by 1, which is the specialization to w = 2 of Proposition 4.1.

5. Sources of weight 2 blocks

Having dealt with cores, we now move on to the partitions associated with cores, and prove
Theorem 1.3. As each Scopes and Morita move induces a bijection between the symbols 〈i〉, 〈i, i〉
and 〈i, j〉 of the two blocks, a composition of moves yields a composition of bijections of symbols.
In addition, since each move induces a permutation of the runners, a composition of moves yields a
permutation of the runners, which is related to the bijection of the symbols above.

Our first claim is that, if

B0(KS2p) = B0 −→ B1 −→ B2 −→ · · · −→ Bm = BRoCK

is a sequence of moves, that λ is a symbol for B0, and that it (or rather its image under the bijection
between symbols) plays the role of γ̄ in some Scopes move Br → Br+1, then it never plays the role
of β̄ in any Scopes move Bs → Bs+1 for r < s. More formally, we have the following proposition.

PROPOSITION 5.1 Let λ be the symbol of a p-regular partition associated to B0(KS2p) = B0, and let
B0 → B1 → B2 → · · · → Bm = BRoCK be a sequence of Morita and Scopes moves. Let φt denote
the bijection of symbols induced by the first t maps (from those belonging to B0 to those belonging
to Bt). If φr(λ) is the symbol γ̄ for some Scopes move Br → Br+1 then none of the φs(λ), for s > r,

is the symbol β̄ for some Scopes move Bs → Bs+1.

Proof . Suppose that φr(λ) is the symbol γ̄ for a Scopes move Br → Br+1. If this Scopes move is a
wrap move, then φr(λ) = 〈1, 1〉, which is easily seen not to be the symbol of a p-regular partition.
Since the φt send p-regular partitions to p-regular partitions [11, Lemma 3.5(2)], we arrive at a
contradiction. Hence, this Scopes move is a standard move.

Label the runners involved in the Scopes move Br → Br+1 by a and a + 1, with b and b + 1
beads, respectively, in Br+1.

· · · · · · × × · · · · · ·
× ×

×

a

We suppose that there is an s > r such that φs(λ) is the symbol γ̄ for a Scopes move Bs → Bs+1

(and choose the smallest such s), and for r + 1 ≤ t ≤ s write θt for the permutation of the runners
induced by the Morita and Scopes moves from Br+1 to Bt .

Notice that φr+1(λ) has label 〈a, a + 1〉, and for r + 1 ≤ t ≤ s, φt(λ) = 〈θt (a), θt (a + 1)〉,
until φt(λ) becomes the partition β̄ for some Scopes move, i.e., t = s. However, in order for
〈θt (a), θt (a + 1)〉 to be β̄ in some Scopes move, the runners θt (a) and θt (a + 1) must be adjacent,
and there must be one fewer bead on the runner to the left than the one to the right.
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After any sequence of standard moves, the runner θt (a) still has b beads on it, and lies to the left
of θt (a + 1), which has b + 1 beads.

· · · · · · × · · · · · · × · · · · · ·
× ×

×

θt (a) θt (a + 1)

Hence, unless wrap moves are performed, 〈θt (a), θt (a + 1)〉 cannot be β̄. In this case, a wrap move
involving θt (a) (which must wrap from the left-hand side to the right-hand side of the abacus) will lose
one bead, so the difference in beads will be 2, similarly for θt (a + 1) wrapping from the right-hand
side to the left.

· · · · · · × · · · · · · × · · · · · ·
× ×
×
×

θt (a + 1) θt (a)

Wrap moves in these directions can only increase the difference in beads between the two runners,
and so the last wrap move made before we reach the Scopes move Bs → Bs+1 (in which the two
runners differ by one bead) must be in the other direction. This still leaves θt (a + 1) with one more
bead than θt (a) (as in order to wrap from the other side the two runners must swap at some point,
and they can only do this if the difference in beads is at least 2, so that it is a Morita move), and must
be on the right of θt (a), as in the following situation (again).

· · · · · · × · · · · · · × · · · · · ·
× ×

×

θt (a) θt (a + 1)

This means that a second Scopes move involving θt (a) and θt (a + 1) cannot be performed, proving
the proposition.

COROLLARY 5.2 Let λ be the symbol of a p-regular partition associated with B0(KS2p) = B0, and let
B0 → B1 → B2 → · · · → Bm = BRoCK be a sequence of Morita and Scopes moves. Let φt denote
the bijection of partitions induced by the first t maps (from those belonging to B0 to those belonging
to Bt). If φr(λ) is the symbol ᾱ for some Scopes move Br → Br+1 then none of the φs(λ), for s > r,

is the symbol ᾱ again, for some Scopes move Bs → Bs+1.

Proof . From the definition of a Scopes move, unless the symbols involved are ᾱ, β̄ and γ̄ , the
move permutes the symbols of the form 〈i〉, those of the form 〈i, i〉 and those of the form 〈i, j〉 for
i �= j . Hence, if φr(λ) is the symbol ᾱ, in order for φs(λ) to also be the symbol ᾱ there must exist
r < u < v < s such that φu(λ) is γ̄ and φv(λ) is β̄, for Scopes moves Bu → Bu+1 and Bv → Bv+1.
This is impossible by the previous proposition.
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From here we can prove Theorem 1.3 (using the notation of that theorem), via another proposition.
If Bi → Bi+1 is a Scopes move, the only simple Bi+1-module that does not share a source with a
Bi module is that corresponding to α. If no partition can be ᾱ twice in a Scopes series, then if N

replaces M in some Scopes move Bi → Bi+1 (so that the sources of the other simple Bi+1-modules
are the same as the sources of the other Bi-modules) then N cannot be replaced in any later Scopes
move, and M can never have been replaced in any previous Scopes move. In particular, this means
that M ↓B0 has a simple summand S with M | S ↑B , and N ↑B ′

has a simple summand.
The next proposition completes the proof of Theorem 1.3, by specializing to the case w = 2.

PROPOSITION 5.3 Let m < n be integers, and let B1 be a block of G1 = Sm and let B2 be a block
of G2 = Sn, both of weight w < p, with (the same) defect group P . Suppose that Dλi is a simple
Bi-module, and Dλ1 ↑B2 has Dλ2 as a summand. We have that, up to modules with vertex strictly
contained in P,

Dλ1 ↑B2= a · Dλ2 , Dλ2 ↓B1= b · Dλ1

for some a, b ∈ N.

Proof . Since w < p, the defect groups of B1 and B2 are abelian, so that Dλ and Dμ have vertex the
whole defect group, by [7]. Let H = Sym(1, . . . , wp), and choose P to be a Sylow p-subgroup of H .
Let L1 = Sym(wp + 1, . . . , m) and L2 = Sym(wp + 1, . . . , n), and note that NGi

(P ) ≤ H × Li .
Hence, since P is a defect group of Bi , there is a block B̄i of K(H × Li) with defect group P that
is the Brauer correspondent of Bi .

Let S be an indecomposable KH -module such that Dλ1 | S ↑G1 (and hence Dλ2 | S ↑G2 ). We have
that S ↑H×Li is the (outer) tensor product of S with the free KLi-module KLi , so is the direct sum of
modules of the form S ⊗ P , where P is a projective KLi-module. Notice that the block containing
S ⊗ P has defect group P if and only if P is a simple module; in this case, copies of S ⊗ P are the
only summands of S ↑H×Li that come from this block, and so the block induction of S to this block
is the sum of copies of S ⊗ P .

We now apply Green correspondence to Bi and B̄i : there is a unique K(H × Li)-module Mi , which
belongs to B̄i by [1, Corollary 6.3.2], such that Dλi | Mi ↑Bi . However, as Dλi | S ↑Gi = (S ↑H×Li )↑Gi ,
we see that Mi = S ⊗ Pi for some projective KLi-module Pi . As Mi belongs to a block with defect
group P , by the previous paragraph we see that Pi is a projective simple KLi-module, and S ↑B̄i

= ai · Mi , for some ai ∈ N. By Green correspondence, up to modules with vertex strictly contained
in P ,

S ↑Bi = ai · Dλi .

We see from this that Dλ1 ↑B2 , which is a summand of S ↑B2 , has the required form.
We now consider the converse. In this case, Dλi ↓H is a summand of (S ↑Gi )↓H , which by the

Mackey formula is a sum of modules of the form (S ↓X)↑H , for X a subgroup of the form H ∩ Hg .
However, since H ∼= Swp, H ∩ Hg is a symmetric group on at most wp letters, so that either H = Hg

or H ∩ Hg has a smaller Sylow p-subgroup than H . This proves that (S ↑Gi )↓H is a sum of copies of
S and modules of smaller vertex, whence so is Dλi ↓H . Now suppose that Y is a summand of Dλ2 ↓B1

with vertex P . Since Dλ2 ↓H is a sum of copies of S and modules of smaller vertex, so is Y ↓H ;
however, since Y has vertex P ≤ H , Y | S ↑G1 , and actually Y | S ↑B1 . However, the only modules
in S ↑B1 with vertex P are Dλ1 , so Y ∼= Dλ1 , as claimed.
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This proposition might be of independent interest, as in some sense it allows you to deduce
information about a general block induction just going in stages. The restrictions of w < p and Gi

being symmetric groups can be replaced by weaker conditions, with the result still holding.

6. Restrictions of partitions

The objective of this section is to prove Theorem 1.4. In order to prove this, we will show that
the partitions of 2p labelled by the symbols 〈i〉 for 1 ≤ i ≤ p − 1, 〈1, i〉 for 3 ≤ i ≤ p and 〈i, j〉
for 2 ≤ i < j ≤ p and j − i > 1, are all eventually ᾱ for some series of Scopes moves; since this
accounts for p(p − 1)/2 partitions, this must be all partitions that have their sources altered, and
so the branching rule proves the result (noting that the remaining symbols – 〈p〉 and 〈i, i + 1〉 for
2 ≤ i ≤ p − 1 – yield the partitions (2p) and (i2, 2p−i )).

We now describe sequences of Scopes moves that prove that each of these can be ᾱ; each of the
sequence of Scopes moves described here results in a p-core that has runners with either zero or one
bead on them. A symbol or partition λ of B0(KS2p) is called replaced if there is a series of Scopes
and Morita moves, ending with a Scopes move, for which the image of λ under the previous moves
is the symbol or partition ᾱ in the final Scopes move.

From the empty p-core we may only perform a wrap Scopes move, for which the symbol 〈1〉 is ᾱ.
At this stage, if one performs the standard Scopes moves with runner swaps the transpositions (2, 3),
(3, 4), (4, 5), …, (i, i + 1), then the last move has as ᾱ the symbol 〈i〉 of B0(KS2p). This is easy to
see, as the wrap move sends 〈i〉 to 〈i + 1〉, and all swaps leave 〈i + 1〉 fixed until the final one, for
which it is ᾱ. This proves that the symbols 〈i〉 for 1 ≤ i ≤ p − 1 label replaced partitions.

Alternatively, one may repeatedly perform wrap Scopes moves, and after i wrap Scopes moves
(i ≥ 2), the partition 〈1, p − i + 2〉 has been replaced: to see this, a wrap Scopes move replaces 〈1〉,
sends 〈1, p〉 to 〈1〉 and maps 〈1, p − i + 2〉 to 〈1, p − i + 3〉, which by induction proves the claim.
Hence, the symbols 〈1, i〉 for 3 ≤ i ≤ p are replaced symbols.

In general, let λ = 〈i, j〉 be a symbol with 2 ≤ i < j ≤ p and j − i > 1. There is a four-step
process to produce a series of Scopes moves, whose last one replaces λ.

Step 1: perform p − j + 1 wrap Scopes moves. Letting φ1 denote the bijection of the symbols
obtained from these moves, we have φ1(λ) = 〈2, x〉, where x = p + 1 − (j − i). (As j − i > 1,
x < p.)

− × × · · · · · · × − · · · · · · − · · · · · · −

2 x︸ ︷︷ ︸
p−j+1

Step 2: move all but one of the beads to the last but one runner, so that the core looks as follows.

− × − · · · · · · − · · · · · · − × · · · · · · × −

2 i + 1 ︸ ︷︷ ︸
p−j

Let φ2 denote the bijection of the symbols obtained from these moves.As we have passed p − j beads
through the runner labelled x, we get φ2(φ1(λ)) = φ2(〈2, x〉) = 〈2, i + 1〉, as each bead reduces x

by 1.
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Step 3: move the bead on the 2nd runner as far to the right as it may go. Let φ3 denote the bijection
of the symbols obtained from these moves. This final bead has the property that as it moves from
the 2nd to the ath runner, the symbol 〈2, i + 1〉 becomes 〈a, i + 1〉 until a = i, when it becomes
〈i, i + 1〉. At this point, the bead is on the ith runner, and so the next move changes 〈i, i + 1〉 into 〈i〉
(as it is β̄ for this move), and subsequent moves do not affect this symbol. Hence, φ3(〈2, i + 1〉) = 〈i〉.

To see that this is possible, as j − i > 1, the (i + 1)th runner on the abacus at the end of Step 2 is
empty, and so the bead on the 2nd runner may be passed through it. At this stage, the core looks as
follows.

− · · · · · · − · · · · · · − × · · · · · · × −

i ︸ ︷︷ ︸
p−j+1

Step 4: perform one wrap move then move the new bead on the 2nd runner to the (i + 1)th runner.
Performing a wrap move alters the symbol 〈i〉 to 〈i + 1〉, and makes the core look as follows.

− × − · · · · · · − · · · · · · − × · · · · · · ×

i ︸ ︷︷ ︸
p−j+1

Moving the bead on the 2nd runner to the ith runner does not alter the symbol 〈i + 1〉, but swapping
the ith and (i + 1)th runners has the effect of replacing 〈i + 1〉, as it is the symbol ᾱ for this move.
Hence, λ is replaced, as claimed.

We have shown that, of the p-regular partitions of 2p, all but p − 1 of them are replaced, so those
remaining (〈p〉 and 〈i, i + 1〉 for 2 ≤ i ≤ p − 1, which label (2p) and (i2, 2p−1) for 3 ≤ i ≤ p)

form the p − 1 partitions that are not replaced. This proves that, along any series of Morita or Scopes
moves, repeated block induction yields a semisimple module; Proposition 5.3, again specialized to
the case w = 2, completes the proof.

Acknowledgements

I would like to thank Susanne Danz, Karin Erdmann and Raphaël Rouquier for some discussions
which led to believe that Theorem 1.1, and whence the other results, is true. I also thank Matt Fayers
for pointing out the proof given here of Proposition 1.2 which replaces that of an earlier version of
the manuscript. I would like to thank the referee, whose comments and suggestions have significantly
improved the readability and exposition of the paper.

References

1. D. Benson, Representations and Cohomology, I. Basic Representation Theory of Finite Groups and
Associative Algebras, Cambridge Studies in Advanced Mathematics 30, Cambridge University
Press, Cambridge, 1998.

2. J. Chuang, The derived categories of some blocks of symmetric groups and a conjecture of Broué,
J. Algebra 217 (1999), 114–155.

3. D. A. Craven, On tensor products of simple modules for simple groups, Algebr. Represent. Theory
(in press).



Page 12 of 12 D. A. CRAVEN

4. K. Erdmann and S. Martin, Quiver and relations for the principal p-block of 
2p, J. London Math.
Soc. 49 (1994), 442–462.

5. G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of
Mathematics and Its Applications, Addison-Wesley Publishing Co., Reading, MA, 1981.

6. A. Kleshchev, Completely splittable representations of symmetric groups, J. Algebra 181 (1996),
584–592.

7. R. Knörr, On the vertices of irreducible modules, Ann. Math. 110 (1979), 487–499.
8. L. Puig, On Joanna Scopes’ criterion of equivalence for blocks of symmetric groups, Algebra

Colloq. 1 (1994), 25–55.
9. M. Richards, Some decomposition numbers for Hecke algebras of general linear groups, Math.

Proc. Camb. Phil. Soc. 119 (1996), 383–402.
10. J. Scopes, Cartan matrices and Morita equivalence for blocks of the symmetric groups, J. Algebra

142 (1991), 441–455.
11. J. Scopes, Symmetric group blocks of defect two, Quart. J. Math. Oxford 46 (1995), 201–234.


