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Abstract
We introduce structure theorems for the study of the unit conjecture for supersoluble group
rings and apply our results to the (Passman) fours group
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We show that over any field K, the group algebra KT has no non-trivial units o of length
L(o) < 3, and find that the Promislow set can never be the support of a unit in KT'. We
conclude our work with an introduction to the theory of consistent chains toward a preliminary

analysis of units of higher length in KT'.

1 Introduction

The unit conjecture for group algebras asserts that if K is a field and if G is a torsion-free group,
then every unit! of the group algebra KG is trivial; that is, every unit is of the form A\g for some
A€ K\{0} and g € G [4] [5] [9] [10]. The best result to date is entirely group-theoretic, concerning
group algebras of unique-product groups [5] [6]. (A group G is said to be a unique-product group if,
given any two non-empty finite subsets X and Y of GG, there exists an element g € G having a unique
representation of the form g = zy with z € X and y € Y.) Unique-product groups typify ordered,
right-ordered, locally indicable groups and for some time it remained an open question whether
there exist torsion-free groups that are not unique-product groups. Using small cancellation theory,
Rips and Segev [8] gave the first example of a torsion-free group that is not a unique-product group.

For the unit conjecture beyond unique-product groups, it is clear that one should consider

finitely generated, torsion-free, abelian-by-finite groups; that is, groups with a short exact sequence
1-A—-G—-G/A—=1

with A abelian and G/A finite. If G/A is cyclic then G is right-orderable, and therefore a unique-
product group, so nothing new occurs. The simplest example where G/A is non-cyclic is

D= (z,y|o ye =y 2 y laly=a22),

1 Unit here means two-sided unit. If K is a field of characteristic 0, then Kaplansky’s theorem [4, p. 38] states that
every unit in KG is two-sided. If K has characteristic p and G is polycyclic-by-finite, then Farkas—Marciniak obtain
a similar result using a Witt ring construction [2]. The general result for group algebras over fields of characteristic

p remains open.



which satisfies the short exact sequence
1723 =T = Z/2Z x 727 — 1.

Called the ‘fours group’, I' was introduced by Passman [5, p. 606] and shown to be torsion-free
and non-right orderable. Promislow [7], using a random search algorithm, exhibited a 14-element
subset & C I' such that - 2 has no unique product?. Since then, very little progress on the unit
conjecture has been made, and it has been an open question whether the Promislow set & could
be the support of a unit over some field K.

In this paper we show that the answer is ‘no’. To obtain our result we first derive a splitting
theorem for units in KT'. This is implicit in earlier work of Cohn [1] and Lewin [3], and is a direct
consequence of Passman’s work [5, Theorem 13.3.7]. The group I' is supersoluble and contains a
normal subgroup N such that I'/N is infinite dihedral. This leads to a length function L : KT —
N U {—oc} and we show, via the splitting theorem, that if u € KT is a unit then L(u) = L(u™1).
On the other hand, the group I being abelian-by-finite, with A = Z3 in the notation above, induces
a faithful representation 7 : KT' < My(KA), and we find, for « € KT, that « is a unit of KT if
and only if det(n(a)) is a non-zero element of the field®>. Our main result then shows that there are
no non-trivial units in KT of length at most 3. Applying a specific automorphism of KT allows us
to show that the Promislow set &7 can never be the support of a unit in KT for any field K.

We conclude with a discussion of how our techniques apply to the higher-length situation, which
is the subject of the sequel to this paper. To this end we introduce the theory of consistent chains

toward a preliminary analysis of units of higher length in KT'.

2 A Splitting Theorem for Supersoluble Groups

Let G be a group, and assume that N is a normal subgroup of G such that G/N is the infinite
dihedral group, generated by involutions Nz and Ny. Write X = (N,z) and Y = (N,y). Let W
be the set of all alternating words in x and y. For example, xyxy is an element of W, and we say
that it starts in X and ends in Y. Since G/N = (X/N)x (Y/N), it follows from [5, Theorem 9.2.9]
that W is a transversal for N in G. If g € Nw, then we let the starting and ending properties of
w carry over to g.

We now define a length function on KG. The length of a word w € W, denoted by L(w), is the
number of factors that occur in it; the empty word, w = 1, has length 0, and the example zyzy has
length 4. We extend the length function L in two ways: firstly, if ¢ € G then there exists a unique
w € W with g € Nw, and we define L(g) = L(w); and secondly, if & € KG with a non-zero, then
we set L(a) to be the maximum of L(g), where g € Supp a. Finally, set L(0) to be —oo. From
W C G C KG, we see that the definition of L is consistent.

2Tt is an open question as to whether every unique-product group is right orderable.
3This result is known more generally for crystallographic groups (though to the best of our knowledge unpublished).

We thank Dan Farkas for conveying this fact to us; out proof is elementary and we include it for completeness.



For wi,wy € W we say that the product wiws is non-overlapping if no cancellation occurs. In
this case,
L(WﬂUQ) = L(wl) + L(wg).

On the other hand, if the product wiws overlaps, then L(wjws) is strictly less than L(wi)+ L(w2).
In this case, if w; ends in X (and hence wy starts in X) then we say that the overlap is in X, and
similarly for overlapping in Y.

With these assumptions and notation, we can now state our first result, which is a direct
consequence of the work of Cohn [1] and Lewin [3]. The proof that we give follows that given in
[5, Theorem 13.3.7].

Theorem 2.1 Let K be a field and let G be a group with a normal subgroup NV as above. Assume
that K'G has no proper divisors of zero and that KN is an Ore domain. Suppose that for some o,
7 € KG\ {0} we have that o7 € KN. There exist a,...,as, f1,...,08s € KN, y1,...,7s € {z,y}
with L(y1...7s) = s, such that

o(ar + B171) ... (as + Bs7ys) € KN\ {0}.

Proof: Assume that o and 7 are non-zero elements of KG with o7 € KN. Then L(o), L(1) > 0
and, moreover, o7 is non-zero. We prove the theorem by induction on L(o).

If L(c) = 0 then 0 € KN, so that 0(1+0-2) € KN\ {0} yields the desired result; therefore, we
may assume that L(o) > 0, and by induction the result holds for all such ¢ and 7 with L(¢) < L(0o).
Since L(o) > 0, we see that o is not in KN, and so therefore neither is 7: hence L(7) > 0. Let
L(o) = m and L(7) = n. We proceed in a series of three steps, the first two of which are exactly
those given in the proof of [5, Theorem 13.3.7]. Because of this, we will suppress the proofs of the

first two steps, and invite the interested reader to consult [5].
Step 1: The products of mazximal-length elements overlap in the same group.

We assume, by symmetry, that the products of maximal-length elements overlap in X. Write
o =o' 4+ ¢”, where Supp ¢’ is given by all those elements g € Supp o with either L(g) = L(c) =m
or with L(g) = m —1 and with g ending in Y. All elements of length m in Supp o end in X so that
o' =" a;e;, where the elements a; of W have length m —1 and end in Y, and where ¢; € KX\ {0}.
Similarly, write 7 = 7/ + 7", where Supp 7’ consists of all those elements g € Supp 7 with either
L(g) = L(7) = n, or with L(g) = n—1 and with g starting in Y. It follows that 7 = >" §,b;, where
the elements b; come from W all have length n — 1 and start in Y, and where §; € KX \ {0}.

Step 2: The products €;0; all belong to KN. See Step 2 of [5, Theorem 13.3.7].

Step 3: The inductive step.

Since N < G, [5, Lemma 13.3.5(ii)] implies that the set T = KN \ {0} of regular elements of
KN is a right divisor set of regular elements of KG. Now €161 € T and ¢,7 € KG, so there exist
elements n € T and p € KG with

(e101)p = (e17)7.



Thus, because €1 and 7 are regular elements of KG and 7 is non-zero, we conclude that p # 0 and
01p = 7. This yields
(001)p = (o7)n € KN,

so that (od1)p € KN.
We now compute the length of (0d1)p. We observe that 0d; # 0 since o # 0, and 6; # 0 implies
that 01 is not a zero divisor in KG. Thus L(cd;) > 0. Moreover

0’6 = Z%(Eifsl),

and since L(z;) = m — 1 and ¢;6; € KN, by Step 2, we conclude that L(o’6;) < m — 1. Since
L(c"”) <m—1and §; € KX, we have

L(d"61) < L(6")+ L(61) < (m— 1)+ 1=m.

If equality occurs then there exist elements g € Suppo”, h € Supp o’ with L(g) =m—1, L(h) =1,
and with gh non-overlapping. However, L(g) = m — 1, and g € Suppo” implies that g ends in
X and h starts in X. Therefore, the product does overlap, and this case cannot occur. Hence

L(0"61) <m —1, and from 0d; = o'§ + 0”61, it follows that
0< L(od1)) <m—1< L(o).

By induction, there exist aq,...,as, f1,...,08s € KN, v1,...,7s € {z,y} with L(y1...7s) = s,
such that
O'(Oq + /Bl’Yl) ce (as + 68'78) € KN \ {O}

The result now follows, noting that d; = o + Sa # 0 for some o, 5 € KN. 0

This means that if o7 = 1 then we may write 7 as a product ¢ of linear terms (i.e., o; + 3;7; with
a;, Bi € KN and v; € {z,y}) times the inverse of some element ¢ € KN. Either we get ot = ¢ or,
by formally inverting the elements of KN, ote™! = 1. We will refer to this product as a splitting
for 7. Note that this splitting is not unique in general; we will discuss this problem later. We will
tend to write o = n~!s for a splitting of o and 7 = te~! for a splitting of 7. Of course, since all
units of KG are two-sided, o7 = 1 implies 70 = 1, so we may get a splitting 0 = sn~! for some

(potentially different) s and 7, and similarly for 7.

3 Using the Splitting Theorem

The splitting theorem of the previous section is a powerful tool for analyzing units in supersoluble
groups. If we analyze a ‘minimal’ counterexample G to the unit conjecture, we may assume that
all subgroups of G of smaller Hirsch length satisfy the unit conjecture over a given field K; we call
such a group a UC-proper group. Our first theorem gives information on the inverse of a unit, and

the second gives information on the structure of words of maximal length in o.



Theorem 3.1 If 0,7 € KG \ {0} such that o7 € KN, then L(c) = L(7).

Proof: In the notation of Step 3, we have d1p = 77, and by Theorem 2.1,

d1p = (a1 + Bim) ... (a5 + Bss)

with L(d1p) = s. But L(61p) = L(mn), so that s = L(d1p) = L(7). Observe that the argument in
Theorem 2.1 is left-right symmetric. Let 7/ = 61p; we have o7/ € KN \ {0}.

Proceeding as in Steps 1 and 2, and using T'= KN \ {0} as a left divisor set of regular elements
of KG, we get 101 € T and 061 € KG, so that there exist elements ' € T and p/ € KG with
p'e161 = n'ody, and as before we conclude that p'e; = n'o. Thus L(p'e1) = L(o) = t. An inductive

argument yields
/

o' =pler = () + B1m) - - (o + Bivy)

with af, 8; € KN and L(v] ...v;) = t. Hence,

[(a1 +B171) - (e + B)] [(a1 + Bima) -+ (s + Bss)] € KN \ {0}

Observe that v} ...v; and 7 ...7s are the unique words in ¢’ and 7’ of maximal length. By
our remarks in Theorem 2.1, the elements 7, and ~; belong to the same group, say X. If (o} +
Bia)(ay + B1a) does not lie in KN, then this contains some term of the form vx. Arguing as in
Step 2 shows that

VW1 T2 s

would occur only once in the product ¢’7/, which is impossible, since this must be cancelled off.

Thus (o + Bjz)(a1 + 1) € KN, so by induction t — 1 = s — 1. Thus s =t as desired. O

Corollary 3.2 Suppose that o7 = 1. Then there is only one word of maximal length in o. If

o = o*, then L(0) is odd; i.e., the word of maximal length in o starts and ends in the same group.

Proof: By Step 1, the products of maximal-length words in ¢ and 7 all overlap in the same group;
thus ¢ has only one maximal-length word. If o = ¢*, this must begin and end in the same group,

and so has odd length. O

We now want to analyze the element 1 of KN that we invert to go from the split form of o to o
itself. As in the previous section, write W for the set of all words in x and y, creating a transversal
to N in G. For a given element ¢ € KG, let I denote the subset of all words in W in the support

of 0.
Proposition 3.3 Let G be a UC-proper, supersoluble group and let ¢ be a non-trivial unit. Write
o= auw,

where a,, € KN. The left-gcd of the a,, is 1. In other words, if ¢ = 0’ with e € KN then € = \g
for A\e K and g € N.



Proof: If 0 = c0’ is a unit, then o7 = €0’/ = 1, so that ¢ is a unit. Since G is UC-proper, ¢ is a

trivial unit, as claimed. O

1

If o is a unit and we write 0 = n~"s, where s is a split, by the previous proposition we must

have that the n~! must cancel off the entire gcd of the coefficients in front of the words in I.

Corollary 3.4 Let G be a UC-proper, supersoluble group, and let ¢ be a non-trivial unit, with

1

inverse 7. Let 0 = s be a splitting for o and let (¢*)~1¢* be a splitting for 7*. We have st = ne.

1

Proof: Since o7 = 1, we must have 7 !ste~! = 1, and hence st = 7e, as claimed. O

Using the splitting theorem, we can also start our induction.

Proposition 3.5 Let G be a UC-proper, supersoluble group. If ¢ is a unit of length 1, then o is

trivial.

Proof: Since GG is UC-proper, let N be a normal subgroup whose quotient is infinite dihedral,
generated by Nz and Ny. Since o has length 1, it lives either in (N, x) or (N, y), both of which are
subgroups of infinite index in G, and hence support no non-trivial units. This proves the result.

O

As a corollary, we get an important piece of information.

Corollary 3.6 Let G be a torsion-free supersoluble group, and let ¢ be a unit of KG, of length n

beginning in x. Let
n

o = [](ci+ Bryvin™"

=1

be a splitting for o. If n is a unit then o is a trivial unit.

Proof: Since 7 = 1, this implies that [[_; (e + Bivi)T = 1, where 7 = 0~ 1; then oy, + Bnyn is a

unit, and since there are no non-trivial length-1 units, we have a contradiction. O

In turn, this gives us the result for length 2.

Corollary 3.7 Let G be a UC-proper, supersoluble group. If ¢ is a unit of length 2 then o is

trivial.

1

Proof: Let 0 = n~'s be a splitting for 0. Expanding out (ay + S22)(c1 + B1y) (with «; and S;

left-coprime, which we may assume by pulling out their left-geds), we get

azay + azfry + feaiw + Bo ST Ty,

where o = zax~1.

If p is a prime dividing asaq, then it either divides ag or ag; in the former
case, it divides both S2af and (247, and since o and 7 are coprime, we get a contradiction to as

and P2 being coprime. Similarly, we get a contradiction if p | ;. Hence, in any splitting of length



2, the left-ged of all coefficients of words in I is 1. Now write ¢ = n~'s, and note that the left-gcd

1

of the coefficients of the words in I is 1. In order for n7 s to lie in KG, we therefore have that n

is a unit, contradicting Corollary 3.6; hence there are no length-2 units, as claimed. O

It might be thought that this trend will continue; that is, there can never be a non-trivial
dividing all of the coefficients in front of the words in I, assuming that the splitting is reduced.

This is false, as Example 5.4 demonstrates.

4 The (Passman) Fours Group

The ‘simplest’ example of a torsion-free group that is not right-orderable was given by Passman,
and is the group

D= (z,y:y2?y=2"2 o lyle =y 2.
For our work we define z = 2y, a = 22, b = y? and ¢ = 22. Then H = (a, b, c) is a normal subgroup
of I' isomorphic with Z x Z x Z, and whose quotient is a Klein four group. Also, N = (a,b) is a
normal subgroup of I' isomorphic with Z x Z, and whose quotient is infinite dihedral. Let K be a

field; then any element « of the group algebra KT' may be written as a sum
a=Ax+ By+ C+ Dz,

where A, B, C and D are elements of K H. The group algebra K H may be thought of as a Laurent
polynomial ring in three variables, with coefficients in K, and we will use this approach. The set
{1,z,y, 2} forms a transversal to H in I', and we will use this as a basis of an embedding of KT

into a matrix ring over K H. More precisely, let
r1=1, xo=z, 3=y, T4=2Y.
Then there is a K-algebra embedding

n: KT'— My(KH), ou—>7rH(xiaa:;1),

where 7 is the restriction map from KT to K H. If « is written as above, then

C A B D
A%a c* D*qa B*
BYy DYa~lc! cY AYa=lbc™!
D*c B* ! A% lc C*

n(a) =

(Here, A® indicates the conjugate of A by x, and so on.) We observe that this representation
extends naturally to n: (KT)(KN)™' < M, (KH)(KN)™).

Proposition 4.1 There are exactly three normal subgroups, Ny = N, Ny = (a, ¢), and N3 = (b, ¢),
such that if ¢ : I' = D is a surjective homomorphism then ker ¢ = N; for some i. Furthermore,

there is an automorphism % of I' such that Niw = Nit1 (where the indices are taken modulo 3).

7



Proof: Notice that (22)% = (zyry)® = yryx, and

(zyzy) (yryz) = wya(y®)eyz
= zy(y *)atyz
= xy_lyx_Qaz
=1,

2

so that x conjugates 22 to z72. 2

Similarly, it is easy to see that y also conjugates z? to z2.
Therefore any ordered pair from {z,y,z} satisfies the relations of the group, and so there are
(outer) automorphisms interchanging (x,y) with (u,v), where u,v € {x,y, z}. In particular, all of
the N; are Aut(T")-conjugate.

Firstly, let G = Dy, be generated by elements « and . Since every element of G is either of
order 2 or lies inside the cyclic subgroup of index 2, it cannot be that both o and § have infinite
order. Also, if one has infinite order, then their product (either af or Sa) has order 2 as well. This
will be important in what follows.

Let M be a normal subgroup of I" such that I'/M is infinite dihedral. Then I'/M = (Mz, My),
and so by the previous paragraph exactly two of Mx, My, and Mxy, must have order 2 in the
quotient. Hence M contains one of the N;, say Nj. (Since they are all Aut(I')-conjugate, we may
assume that Ny < M.) Since any quotient of D, is finite, and we know that I'/N is infinite
dihedral, we see that M = N, as claimed. O

We can see that (| V; = 1, and so for a group element g € G, its images modulo each of the
quotients I'/N; is enough to determine it uniquely. Also, since each of the three normal subgroups
N; are Aut(I')-conjugate, any result proved using one of the length functions is automatically
applicable for the other two length functions got in this way.

There are other length functions on the group, obtained by taking two other generators for I'
that satisfy the group relations: for example, consider the pair (z,zyx), which together generate
I'. Then (22, (zyz)?) = (22,572) = N, but here the elements x and zyz are considered to have

length 1, and the element y = x(zyx)x has length 3.

Since we are interested in finding units, we would like a condition for a group ring element to
be a unit.
Theorem 4.2 (Determinant Condition) Let K be a field and let « be an element of KT'. Then
n(a) € K\ {0} if and only if « is a unit.
Proof: We will use the fact that I' is supersoluble. Assume that o € KT is a unit. Then there

exist ay,...,an, B1,...,Bn, v € K[a™ '] such that

o = (a1 + 6171) s (an + Bn’}/n)yilﬂ



for some v; € {z,y} with L(v1...v,) = n. It is easy to see that for 7; = =, we have
detn(a; + af;) = (o] — BiBfa)(afai — B B7a™");

similarly,
det (i +yBi) = (iaf — BiBb)(afaf — BFBFLTY).
Finally,
detn(v™!) = ()T (T

Since det n(a) = [Jdetn(a; + viB;) det n(r—1), we get that detn(a) is invariant under conju-
gation by z, y, and z. If « is a unit of KT, then detn(«a) is a unit of K H, which is of the form
Aa'bi ¥ for some A € K \ {0}. Therefore, we see that detn(a) = A € K \ {0}.

Conversely, if « € KT has a determinant in K \ {0}, then n(a)~! € My(K H); expressing n(a) !
via the matrix of co-factors of n(a) of n(a) shows directly that 7(a)~! lies in the image of 1, so
that o' € KT. O

The next result shows that, in the splitting theorem given in Section 2, the difference between

o7 and the split form o [[(a; + 5ii) is a central element.

Theorem 4.3 Let o and 7 be elements of KT', and assume that o7 =n € KN \ {0}. Then there
exist a1,..., 5, B1,...,8s € KN, v1,...,7s € {x,y} such that

olar+Bim) .- (as + Bsvs) = s
for some ' € KN \ {0}, central in KT.

Proof: Since I' is supersoluble, KT' has no non-trivial zero divisors. Moreover, Steps 1 to 3 of
Theorem 2.1 hold, so that (in the notation of that theorem) £,0; € KN with L(0d1) < L(o). For
v € KN, let [Jv denote the element vv®v¥v?, and let [[ v denote the element v*1Yv*. Observe
that if v is non-zero, then [] v is a non-zero element of KN central in KT'. With v = £141, we then

have
!/
6151 H (8151)817’ = &17T H(&lél).
Since e1 is non-zero, we conclude that

51 H/(61(51)61T = TH(€1(51),

so that
051 |:H,(€151)€17'] =0T H(alél) = T]H(Elfsl).

The result now follows by induction. O



5 Length-3 Units in KT
This section is devoted to a proof of the following theorem.

Theorem 5.1 There are no non-trivial units of length 3 in KT

Assume that o, 7 are non-trivial units in KT such that o7 = 70 = 1 with L(o) = L(7) = 3,
which without loss of generality we assume to have longest word zyx. Let I denote the subset of

W lying in the support of . The splitting of o gives

Aaz + B3z) (o + Boy) (a1 + fra)T =1,

where € KN is central in KG, and A € KN is chosen so that (a; and §; are coprime for i = 1,2, 3.
Writing the split part as s, we have AsT = 7, and so (in the localization of KG at KN) ' \s = 0.
We claim that A is a factor of 7: if not, then write A = A/(n, A), and note that ¢ must therefore
have the form Ao’ for some ¢ € KG. The left-geds of the coefficients of the words in I all have A
as a common factor, so by Proposition 3.3, A is a unit. Hence A | n, as claimed.

Write 7 =n/A, so that

o =17 '(az+ B37) (a2 + Bay) (a1 + Bix).

Define Dy = ayaf — B1{a, Dy = asa — B285b and D3 = agad — B3B5a. By direct computation,

of B \(oz B \(od BN
D3 D3 Dy D2y Dy Dy 7

is an inverse for o in (KN)™}(KG)(KN)~!, and hence by uniqueness of inverses this element is 7.

the element

The following table records the coefficients in front of the words when one expands out the

product s of the linear terms in o.

Word | Coefficient
zyxr | B3P5 61"
yr | asfefy
zy | B3fsay”
agfoad
agagf + Bsagaf
1 gy + B3al B’

Since this expanded form is a unit in KT, 77 must be a factor of each of the coefficients in this table.

This allows us to prove the following proposition.

Proposition 5.2 Let p be a prime that divides each of the coefficients of the words in I. We have
that p | B2, 85, and pt g, ad, ag, B3. In particular, 77 | B2 and 77 | 55.

10



Proof: We proceed in stages, reducing the problem one step at a time.

Step 1: Either p | ag or p | B2, and either p | B3 or p | B5. Considering the coefficients of yx and
y, we see that p divides both a3f23] and asf2ay. As p cannot divide both o and 3Y, we must
have that either p | a3 or p | 2. Similarly, considering the coefficients of zyx and xy, we see that
p divides both 8383 87" and B355a{", so divides either 85 or 8, proving the claim.

Notice that since p cannot divide both ag and fs, if p | a3 then p | 83, and similarly if p | 53
then p | fa.

Step 2: p{ as, and so p | B2. Suppose that p | as. Since this means that p | 55, we must have
that p 1 aj. Considering the coefficients of x and 1, we see that p divides the first expression in
both cases, and so p | Bzadaf, f3akBia. This yields a contradiction, since p 1 83 and p 1 . Hence

p+a37 S0 by Step 17 p | 162‘

Step 3: p{ B3, and so p| 55. Suppose that p | 53. Since this means that p | 2, we must have that
p 1 as. Considering the coefficients of x and 1, we see that p divides the second expression in both
cases, and so p | asaef1, azasa;. This yields a contradiction, since p t s and p t as. Hence p 1 (s,

so by Step 1, p | 85. This completes the proof, since p { a2, & now. O

Lemma 5.3 Let « and 3 be elements of KN, and suppose that aa — 55Yb is a unit. Then either
a=0or 8=0.

Proof: By extending K if necessary, we assume that K is infinite. If u is a unit in KN, then
we may specialize a to be any element of K and the specialization of u remains a unit. Hence
specializing a = k € K yields a polynomial (&)? — (3)?h = b°. Suppose that both a and 3 are
non-zero. Notice that the highest and lowest powers of b in (@)? are of even degree, and the highest
and lowest powers of b in ()b are of odd degree. Hence either all of the powers of b in (&)? are
lower than some power of (53)? or vice versa, and similarly either all of the powers of b in (&@)? are
larger than some power of (5)2 or vice versa. Thus there must be at least two different powers of b
present in (@)? — (3)%b, and hence it is not a unit. Thus either & or /3 is zero for the specialization
a = k. However, if K is infinite then there are infinitely many choices of specialization, but & and 3

can only be zero for finitely many choices of specialization. Thus either a = 0 or § = 0, as claimed.

O

We now embark on the proof of Theorem 5.1, and proceed in stages.

Step 1: (Da, 82) = (B2,03). Let Ay = (D2, 82) and Ay = (o, B2). Since Ay divides both Dy and
B2, it must divide asad; however, since 32 and ag are coprime, A; | o, so that Ay | Ay. Conversely,
Ay divides both By and ag, hence it divides Dsg; thus Ay | Ay, so that A; = A,.

The next two stages involve understanding the quotient D) = Ds/(a, 52).

Step 2: If p | D} then pY t D). Write
_ (a5 B3 of P af P\ -
T=l=-=2)|=-=y||=——- =27
D3 Ds Dy Do Dy D
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Let o, = aa/(az, BY) and By = B2/(al, B2), so that we have

(o5 B3 ay B of  B1 .
T=|l=—-=z||=-=vy||= =27
Ds D)\, " D,Y)\Dy Dy

Applying the regular representation and taking determinants, we get that the expression

! ! / ! /'
O‘Qy(%y)y - 5552% _ a/2a2y - ,BéBbe
I MY - I MY
D5 Dy D5 Dy

w =

is a factor of 7A%7Yi?. We next notice that (ag, 85)(ahay — B584b) = D}, so in fact
1 .
(062, 5%)Déy ’

w =

hence D;y | 1*7¥n?. Suppose that p is a prime dividing both D), and D/2y. Therefore p divides 77
for some ~, and clearly either p or p¥ divides either 7 or 77*. Hence, replacing p by pY if necessary,
either p | 77 or p | 7*. However, by Proposition 5.2, all primes dividing 77 divide both 82 and 33, so
p divides both Dy and 3. Hence p divides (D2, 32), so does not divide D), a contradiction.

Hence there cannot be a prime dividing both D) and D/Qy, as required.

Step 3: Db = (a}, B2)Y. Firstly, Dy = DY, so since D) | Dz, we see that D3 | Dy. By Step 2, D)
and D/ are coprime, so that, since both D} and Dy divide Dg, we must have D, DY’ | Dy. Finally,
by construction of D}, we must have that D} | (Dg/D}) = Da/(Da, B2), so that Db | (o, B2)Y. To
see the converse, notice that (o, 82)¥ = (g, 35), which must be prime to (a3, 82). Since Dy = DY,

(a, B2)Y | Dy, and it is prime to (aj, B2), hence divides D). Thus we get equality, as claimed.

We conclude that Dy = (o, 82)(va, 55). In particular, Dy = A1 AY, and so

(a2/A7) (/A1) — (B2/A1) (B3 /AT) b

is a unit, with o = ag/AY and 8 = (B2/A; elements of KN. Hence we have that aa? — YD is
a unit, so that either « or g is zero, by Lemma 5.3. Clearly So # 0, else this element does not
have length 3. However, if ag = 0 then (5 is a (trivial) unit of KN, as (g, f2) = 1. Therefore
7 is a trivial unit of KN, using 7 | B2, so that o = (a3 + fsx)(as + B2y)(aq + B12). Hence each
linear factor is a unit in KT, and therefore trivial by the length-one case. This implies that o is a
trivial unit of KT, contrary to assumption. This contradiction proves that ¢ is not a unit, and so

concludes the proof of Theorem 5.1.

Example 5.4 In Section 3 we proved that for a putative non-trivial unit o of length 2, the left-gcds
of all coefficients in I was 1, so that n = 1, and o cannot exist (Corollary 3.7). A similar strategy
will not work for length 3 units, since it is possible to find «; and 5; for ¢ = 1,2, 3 such that the
left-ged of the coefficients of all words in [ is not a unit.

Choose

ap=a=a3=F=1, pr=-a, [r=1-a.

12



We have
1+2)14+(1—-a)y)(l—ax)=(a—1) (a_la:yx +atyr —xy—y—x+(1+ a)) .

Of course, this is not a unit, either because of Theorem 5.1 or by direct computation.

6 The Promislow Set

In [7], Promislow constructed a fourteen-element subset & of the Passman fours group I' such that
& - Z has no unique product. We use the main theorem of the previous section to conclude that

it cannot be the support of a unit in KT, for any field K.

Theorem 6.1 Let K be any field, let T' = (z,y : y~!a?y = 272, 27 1y%x = y~2) be the Passman

fours group, and write a = 2%, b = y2, ¢ = (2y)?. Let & C I be the Promislow set
P =drxURByUTE,
where
o ={1,a" a7 b, ba et e}, B={l,a,b7 b7 c,c,ab e}, € = {c, ¢t}
There is no unit in KT' whose support is &2.

Proof: By Theorem 5.1, KT has no units of length 3. Applying the automorphism that fixes y

and swaps z and zy, (and hence swaps a and ¢, we note that the image of the Promislow set is
P =B yJE VD xy,
where
B ={l,c,b7 b a,a,cbta}, € ={a,a”t}, 2 ={l,c ¢ b,c a7t a).

It is clear all elements of this set not involving ¢ have length at most 2, since they are of the form
a, ay, and axy for some a € KN, where N = (a,b). The remaining elements are of the form acy
and ac™ 2y for some a € KN. In the former case, this has length 3 as it is of the form o/2yz, and

1

in the latter case it has length 2, since ¢ 'zy = y~'2~! = ab~'yz. Hence any element of KT with

support 2’ has length 3, so is not a non-trivial unit of KT, as required. O

7 The Higher-Length Case

Let o be a non-trivial unit, and let ¢ = 1~'s be a splitting for o. As we have mentioned, 1 must
divide the coefficients of the words in I. Proposition 5.2 proved that, if L(c) = 3, then all primes
dividing 7 divide 2 and 5. When the length of o is greater than 3, however, there is no unique

collection of the a; and ; that a prime dividing 1 need divide.
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Let n be a natural number, and expand the expression

(an + ﬁn'}’n)(an—l + 611—1771—1) ce (041 + /31’)/1)7

where v; € {z,y} and 7; # vi+1. The coefficients in front of the words in W will be denoted by
Vaz if v =2 and V,, y if 4, = y.

A collection M of conjugates of the o; and f; is called a consistent chain for V,, , (and similarly
for V,, ) if

(i) whenever v is an element of V,, , and all but one of the terms in v contain an element of M,

then all terms in v contain an element of M, and
(ii) whenever o lies in M, 3/ does not, and whenever 3, lies in M, « does not.

A consistent chain is a set R such that if p is a prime dividing all elements of V,, ;, then p can divide
all elements of R without dividing all but one of the terms in any element of V,, ,; if p divided all
but one of the terms in an element of V, ,, then p must divide the last, and so divides one of the
B

with an example.

or ;¢ (where X is one of z, y, z or nothing). We illustrate the concept of a consistent chain

Example 7.1 In Section 5 we described in a table the set V3,. A consistent chain for these is,
for example, the set {S2, 85}, or {82, 85, a1, 87 }. Proposition 5.2 proves that all consistent chains

contain {/2, 33} as a subset, and no consistent chain contains either as or fs.

In this section we give a recursive description of the ‘minimal’ consistent chains for V;, , and
Vi,y, minimal in the sense that any consistent chain for V,, , contains a minimal one as a subset.
Define U, ., to contain the elements 8,_1, 82 _,, 87_3, B%_4, Bn—5, and repeating this sequence until
the appropriate conjugate of 32, and U, to be the same sequence with y swapped with x.

In the proof of this theorem we will need to understand certain elements of V, ,, and so it will

help to have the following small-length examples as a guide.

Length | Word  Coefficient | Length | Word Coefficient
zyry  PaByBy BT zyzyr  BsPTB3 By BT
A yry  ouPsBBr” 5 yryr  asPaBy By AT
zyr  PaBiBy o™ zyzy  BsPEBy By ™
yr  aufsfial’ yry  asPaBy By’ ol

Theorem 7.2 Let n > 3 be an integer. The minimal consistent chains M,, , for V,, ;, are all pairs
{A\, p}, with A and p* appearing in the list U, 5, together with the minimal consistent chains for
Vo-1y (e, {RU{Bn} : R € My_1,4}) together with, and those for V;,_; , conjugated by = together
with o, (ie., {R* U{a,} : R € My_1,}). The minimal consistent chains M, , for V,, , are the

same, with = and y swapped.
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Proof: Without loss of generality, assume that v, = x. Let R denote a consistent chain, and
suppose firstly that 3, € R. We may remove all of the terms from V,, , that start with 3, to get a
set V¥

x> and by considering

(an + ﬁn'}’n)(an—l + 571—1771—1) ce. (041 + /8171)7 (1)

we clearly see that

Vie = {anw:w € Vi1 }.

and so R\ {5,} must be a

consistent chain for V;,_1 4, as R is a consistent chain for V,, .. This case is covered in the theorem,

Since v, ¢ R, we may remove the a,, from the start of the words in Voo
so we may assume that 3, does not lie in R.
Similarly, suppose that «, lies in R. In this case we may remove all of the terms from V;, , that

start with o, to get a set V', and we see that

Ve =A{Bnw” s w € Vi1 4}

As above, the elements R\ {a,} conjugated by z form a consistent chain for V;,_1 ,, and this case
is also covered in the theorem. Hence we may assume that neither a,, nor 3, lie in R.

We now note that, when expanding (1), there are four elements of V;, , that are monomials,
namely the coefficients of the words of lengths n, n — 1, and the word of length n — 2 starting
in y: two of these words start with x, and two start with y. If a; and as are the two monomial

coefficients of the words starting in z, then

ap = /Bnﬁﬁ715572 .- /81><7 az = Bn5ﬁ715572 . Oélx

(where X is one of x, y, z, or nothing, and for the rest of the proof will also denote one of these
four). Since a; and ag differ only in the last element, if R is a consistent chain then R must contain
at least one of the terms 3 for 1 < i < n. Similarly, if b; and by denote the two monomial

coefficients of the words starting in y, then

by = anﬁn—lﬁz_Q s 61><7 by = anﬁn—lﬁg_Q s O‘i(-

Again, by and by differ only in the last element, so if R is a consistent chain then R must contain at
least one of the terms 8 for 1 < i < n. It remains to note that the middle 8 of the b; are U, 4,
and the middle 8 of the a; are the elements of U, , conjugated by xz. Thus R contains {\, u},
where A, u* € Uy, 4, as claimed by the theorem. O

If o is a non-trivial unit of length n, starting in x, then the n obtained from the split form is
non-trivial, and any prime p dividing # must divide each of the elements of V;, ,. Hence p must be
a factor of every element of a minimal consistent chain R.

If n = 3 then there is only one minimal consistent chain for V3 ,, namely {52, 55}. For n =4

there are more minimal consistent chains for Vj ;, namely

{6376:936}7 {63765}7 {537/3%:}7 {/637/85}7 {547/8275%}7 {O‘47/B§7/85}7
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and the minimal consistent chains for Vj , are

{5&5??}: {/837/85}7 {ﬁEC?ﬁg}a {55755}7 {64752?6§}a {04475%755}'

However, some of these are related by applying automorphisms. Denote by ¢, conjugation by
x, ¢y conjugation by y, ¢ the automorphism interchanging = and y, and * for the usual anti-

automorphism. Applying the anti-automorphism * sends units to units, and applies the map

(04 + Paz)(as + Bsy) (o2 + Box)(an + Bry) — (o + BTy) (05 + B3z) (a5 + B5y)(af + Bix).

Applying these automorphisms of I" permutes the minimal consistent chains. For example, suppose
that p divides {3%,5}: conjugating by z yields a prime p dividing o® that divides {83, 35}. In

fact, using these automorphisms we can divide the minimal consistent chains into two collections.

{Bs, BEY —— {Ba, Y} —= {83, 85}

/| |

{Bs, BY} {B2, 85} —=— {By, 55}

(Note that not all arrows are on this diagram.) Suppose that one can prove that there is no unit
o of length 4 and prime p | n such that p divides {33, 85} or {fs,55}. By the diagram above,
applying automorphisms of I' proves that there are no consistent chains that 7 can divide, so 7 is
trivial. This allows us to drastically reduce the number of minimal consistent chains that need to

be considered when proving that no non-trivial units of length n exist.
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