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are related through a property (U) and the induced length func-
tion L.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The unit conjecture for group algebras states that if K is a field and G is a torsion-free group,
then all units' of the group algebra KG are trivial; that is, all units are of the form ig for some
A€ K\ {0} and g € G [11,13,18,19]. The best result to date is entirely group-theoretic, concerning
group algebras of unique-product groups [13,14,20]. (A group G is a unique-product group if, given
any two non-empty finite subsets X and Y of G, there exists an element g € G having a unique
representation of the form g = xy with x € X and y € Y.) Unique-product groups typify ordered,
locally indicable, and right-ordered groups, and for some time it remained an open question whether
there exist torsion-free groups that are not unique-product groups. Using small cancellation theory,
Rips and Segev [17] gave the first example of a torsion-free group that is not a unique-product group.

For the unit conjecture beyond unique-product groups, it is natural to consider finitely generated,
torsion-free, virtually abelian groups; that is, groups with a short exact sequence

1-H—>G—G/H—>1

with H abelian and G/H finite. If G/H is cyclic then G is right-orderable, and therefore a unique-
product group, so nothing new occurs. The simplest example where G/H is finite non-cyclic is

r=(xy ‘ xy?x = y2, yly! :sz)’

which satisfies the short exact sequence

15723 > T > Z)RLx 727 — 1.

Called the ‘fours group’, I" was shown by Passman [13, p. 606] to be torsion-free and non-right
orderable. Promislow [16], using a random search algorithm, exhibited a 14-element subset & C I
such that & - & has no unique product.” Since then, very little progress on the unit conjecture has
been made, and, in particular, it has been a long-standing question whether the Promislow set &2
could be the support of a unit over some field K.

In this paper we show that the answer is ‘no’, and in fact prove something slightly stronger, namely
that no subset of the Promislow set & is the support of a non-trivial unit in KI" over any field K. It is
of interest to note that our techniques are not simply group-theoretic. Motivated by work of Cohn [3]
we introduce the class of (X, Y, N)-group algebras KG, and following Passman [13, Theorem 13.3.7]
we define an induced length function L : KG — N U {—o0} using the fact that G has the infinite
dihedral group as a homomorphic image. We develop splitting theorems for (X, Y, N)-group algebras,
and as an application show that if o € KG is a unit then L(o') = L(c~!). We then extend our analysis
of splittings to obtain a canonical reduced split-form for all units in (X, Y, N)-group algebras. This leads
to the study of group algebras of virtually abelian groups and their representations as subalgebras of
suitable matrix rings. This viewpoint allows us to develop a determinant condition for units in such
group algebras. We apply our results to the fours group

r=xy |xy2x_l —y2 iy = X—2>

1 Unit here means two-sided unit. If K is a field of characteristic 0, then Kaplansky's theorem [8], [13, p. 38] states that every
unit in KG is two-sided. The general result for group algebras over fields of characteristic p remains open [2,4,5].
2 It is an open question as to whether every unique-product group is right orderable.
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noting that over any field K, the group algebra KI" is a virtually abelian (X, Y, N)-group algebra.
With respect to the induced length function L : KI" — NU {—o0} it follows via the splitting theorems,
that if o € KI" is a unit then L(c) = L(c~"). On the other hand, the group I" being abelian-by-finite,
with H = Z3 in the notation above, induces a K-algebra embedding 6 : KI" < M4(KH), and we
find via our determinant condition, that for 0 € KI", ¢ is a unit of KI" if and only if det(6(0)) is
a non-zero element of the field. Applying these results we then prove that there is no non-trivial unit
o € KI" with L(o) < 3. From this, and the fact that L is equivariant under all KI"-automorphisms
obtained K-linearly from I"-automorphisms, we obtain our result on the Promislow set 4. We then
give an introduction to the theory of consistent chains toward a preliminary analysis of units of higher
L-length in KI'. Our analysis shows that there is a significant jump in complexity from units of
L-length 3 to units of L-length >4 in KI'. Nevertheless in our final section we show that units in
torsion-free-supersoluble group algebras are bounded, in that the supports of units and their inverses
are related through a bounding property (U) and the induced length function L.

Finally a word or two on the presentation of this paper and the philosophy underlying it. To date
it has never been clear whether the unit conjecture is a ring-theoretic problem. We hope that this
paper suggests that it might be. The techniques found within can best be described as those arising
from classical ring theory and the theory of group rings. Our methods are varied, where in some
places they are technical or computational, while in others they are structural and somewhat subtle.
For these reasons we have written the paper in a rather self-contained way, in part to help guide the
reader through our development, but also with the hope of possibly drawing more individuals to this
wonderful conjecture and long-standing open problem.

2. Preliminaries and notation

Throughout this paper we let KG denote a group algebra over a field K. Conjugation by g € G
shall be denoted by o8 to mean gag~! for all @ € KG. If o = Y vec xX is an element of KG then
we define the support of «, denoted Suppc, to be the set of x € G such that ay # 0. A unit of KG is
an invertible element of KG with a two-sided inverse and we denote the group of units of KG by
UKG. A unit is said to be trivial if its support consists of a single element; that is if it has the form
Ag for some non-zero A € K and g € G. Otherwise we say that a unit is non-trivial if it is not trivial.

We say that G is an (X, Y, N)-group if there exist subgroups X,Y < G, containing a common
subgroup N, normal in G, with X/N =Y /N =7Z/27Z, and such that G/N = X/N % Y/N, the infinite
dihedral group. If in addition KX and KY have no proper divisors of zero and if KN is an Ore domain
then we say that KG is an (X, Y, N)-group algebra. Assume that X/N and Y/N are generated by
involutions Nx and Ny and write X = (N, x) and Y = (N, y). Let W be the set of all alternating words
in x and y. We call W the corresponding set of words in x and y. Since G/N = (X/N) % (Y /N), it follows
from [13, Theorem 9.2.9] that W is a (right-left) transversal for N in G so that by [13, Lemma 1.1.3]
KG forms a faithfully free (left-right) K N-module with basis W.

Following [13] we now define a length function Ly =L : KG — N U {—o0}. The L-length, or simply
length, of a word w € W, denoted by L(w), is the number of factors that occur in it; the empty word,
w =1, has length 0, and for example xyxy has length 4. We extend the length function L in two
ways: first, if g € G then there exists a unique w € W with g € Nw, and we define L(g) = L(w); and
secondly, if @ € KG with « non-zero, then we set L(c) to be the maximum of L(g), where g € Suppa.
Finally, set L(0) to be —oco. From W C G C KG, we see that the definition of L is consistent. For
w1, wy € W we say that the product wiw, is non-overlapping if no cancellation occurs. In this case,

L(wqwy) = L(wy) + L(w3).

On the other hand, if the product wiw, overlaps, then L(wqw,) is strictly less than L(wq) + L(w>).
In this case, if w1 ends in X (and hence w; starts in X) then we say that the overlap is in X, and
similarly for overlapping in Y. We define the length function L = Ly to be the length function on KG
induced from W or simply the induced length function.

Since KG is a free left-right KN-module with basis W, we may express any o € KG as 0 =
> iww =Y wi,, for unique Ay, 2}, € KN with w € W. The context in which we do so will be
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clear. Since N < G it follows that A, # 0 if and only if 1}, # 0. We define a word w € W to be in o
whenever A, # 0 (equivalently 1}, # 0), and define w € W to be a maximal-length element in o if w
in 0 and L(w) = L(o). In addition, since KN is a domain, it follows that L(cv) = L(vo) = L(o) for
every 0 € KG and v € KN\ {0}.

We say that a group G is a virtually abelian (X, Y, N)-group if G is an (X, Y, N)-group containing
a normal abelian subgroup H of finite index such that N C H. We define KG to be a virtually abelian
(X, Y, N)-group algebra if KG is an (X, Y, N)-group algebra of a virtually abelian (X, Y, N)-group G.
In this case we refer to H as the corresponding abelian subgroup.

Finally we make the following convention. Throughout this paper we develop our theory on the
left. All one-sided results have obvious right-analogues whose statements and proofs we safely leave
to the reader. In those instances where we do require a right-analogue, we shall use the phrase by
symmetry.

3. Splittings

The results of this section exist in greater generality and will be the subject of a more compre-
hensive study in a subsequent paper. We present here a special case that is necessary for our work,
easier to describe, and is motivated by earlier work of Cohn [3] and Passman in [13, Theorem 13.3.7].

We assume throughout that KG is an (X, Y, N)-group algebra with corresponding set of words W gen-
erated by x and y.

We define a W-linear termin KG, to be an expression of the form A =« + Su for some «, 8 € KN
and u € {x, y}. For convenience we shall simply say linear term, keeping in mind the dependence
of a linear term on W and KN. We say that A is a non-zero linear term if as an element of KG
it is non-zero. Since W is a basis for KG as a free left KN-module, it follows that A =« + Su is
a non-zero linear term if and only if o # 0 or B8 # 0. We say that u belongs to, or that A contains u, if
B #0. Two linear terms in KG are said to be equal if as elements of KG they are equal.

We define a W-splittingin KG to be a non-empty finite sequence

A1, ..., A

of non-zero linear terms A; € KG. For convenience we shall simply say splitting, keeping in mind
the dependence of a splitting on W and KN. We identify a splitting A1,..., As in KG with its
corresponding product

Y =A1... 4.
Thus the expression
A1...As = (a1 + Brur) ... (o5 + Bsus)
implies that
Aj = (o + Biui)

foralli=1,...,s.

If ¥ = Aq...As is a splitting, then we call A; a term of this splitting and say that the splitting
has s > 1 terms. Two terms of a splitting are said to be adjacent terms if they are consecutive terms of
the sequence. If adjacent terms A and A’ contain u and u’ respectively, then we say that A and A’
overlap in the same group if u = u’. We remark that our definition of splitting allows for the possibility
that adjacent terms overlap in the same group.

We define two splittings in KG to be the same if as sequences they are the same. Otherwise we
say that they are different. We say that two splittings are equal if their corresponding products are
equal. We note that different splittings can define equal splittings in KG. Note also that not every
element of KG has a splitting, for example 1+ xy does not.
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We define the L-length, or simply length, of a splitting A1, ..., As to be the L-length of its corre-
sponding product, that is,

L(Aq... As).

Proposition 3.1. Let A1... As = (1 + B1u1) ... (o5 + Bsus) be a splitting. Then

A1...A5=ﬂ1wl...,BSWSLl]...us-f-Z)»WW
w

for some Ay € KN and wq, ..., ws, w € W with L(w) < s. In particular,

L(Ay...As) <.

Proof. We proceed by induction on s > 1. For s =1 our splitting is A1 = o1 + B1uq = Brug + a1.
Assume s > 1 and that the result holds for all splittings with fewer than s terms. Then Aj... A is
a splitting with s — 1 terms and therefore the inductive hypothesis implies

Az...A5=ﬂ2W2 ...ﬁSWSuz...us+ZAWW
w
for some Ay, € KN and wy, ..., ws, w € W with L(w) <s — 1. Thus
Aq[Az ... Al = (a1 +ﬂlu1)[ﬁ2‘”2...ﬂSWSuz...uS +waw]
w

for some Ay € KN and wy,...,ws, w € W with L(w) <s — 1. The result follows immediately by
expanding the right side of the foregoing equation. O

Thus the L-length of a splitting is bounded above by the number of its terms. The L-length of
any splitting is also bounded below by zero (in other words every splitting is non-zero in KG), but
this fact requires additional work and is shown in Proposition 3.4. To this end we give two important
results, the first of which is an immediate consequence of Proposition 3.1, and whose proof we safely
leave to the reader.

Proposition 3.2. Let A1... As = (a1 + B1uq) ... (s + Bsus) be a splitting. The following are equivalent:

(i) L(Aq...A5) =Ss;
(ii) p1...Bs #0and L(ug ...us) =s;
(iii) This splitting contains a unique maximal-length element of L-length s.

We observe that the definition of a splitting

(o1 + But) ... (as + Bsus)

allows for the possibility that some g; =0 and as we noted earlier that consecutive uj, uj;1 may
be equal. This leads to the following. We define a splitting to be L-reduced, or simply reduced, if its
L-length is either 0 or s. In other words, a splitting is reduced if either its corresponding product of
terms collapses to define an element of KN \ {0} or if the L-length of the splitting agrees with the
number of terms of the splitting. We say that a splitting can be brought into reduced form if it equals
a splitting in reduced form.
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Proposition 3.3. Every splitting can be brought into reduced form.

Proof. We proceed by induction on s > 1 to show that if

Ar.. As= (01 + Bur) ... (a5 + Bsus)

is a splitting, then this splitting can be brought into reduced form. For s =1 this splitting is A1 = a1+
Bruq. If B1 =0 then Ay =g #0, so that L(Aq) =0. If 81 #0 then L(A1) = 1. In either instance A;
is reduced and this establishes the case s = 1. Assume s > 1 and that the result holds for all splittings
with fewer than s terms. If some 8; =0 then the term A = o # 0 can be absorbed into an adjacent
term to produce a linear term A. Since KG is a free left KN-module with basis W, and KN has no
proper divisors of zero, it follows that A # 0, and therefore we obtain an equal splitting with one less
term. Hence the inductive hypothesis implies that the original splitting can be brought into reduced
form. We may therefore assume that all g; # 0. If any two consecutive uj, uj;q are equal, then
both Aj, Ajyq lie in KX or both lie in KY. By hypothesis, KX and K'Y have no proper divisors of zero.
Thus with u =uj, we have AjA ;1 =a+ pu # 0, thereby yielding an equal splitting with fewer than s
terms, and again the original splitting can be brought into reduced form. Thus we may assume that
the original splitting satisfies 81...8s # 0 and L(up...us) =s. By Proposition 3.2, L(Aq... As) =S5,
and the result follows. O

Proposition 3.4. Every splitting defines a non-zero element of KG. In particular, the L-length of a splitting is
bounded below by zero.

Proof. By Proposition 3.3, every splitting can be brought into reduced form, so by definition, has
L-length at least 0, hence lies in KG \ {0}, and the result follows. O

Proposition 3.5. Let X, X’ be reduced splittings with L(X) > 1.If ¥ X’ € KN, then L(X) = L(X").

Proof. We begin with some preliminary remarks. Let ¥ = Aq...As with A; = (o; + Biu;), and let
¥ = A} ... A}, with A;. = (ot;.—i—ﬂ;.u;.). Then L(X) =s and L(X') =t. We recall that «;, ﬂi,a;, ﬂ} € KN
and that KN has no proper divisors of zero. By Proposition 3.2 we have B1...8: #0, L(u1...us) =5
and if t >1 then B{... 8/ #0, L(u]...u;) =t. Furthermore L(A;...As) >1 implies L(A] ... Ap) > 1.
Indeed if not, then by Proposition 3.4 the splitting A ... A; would define a non-zero element g € KN
which can be absorbed into the first splitting to yield a splitting

(1 + pru1) ... (asﬂ + ,Bs,Busus)

with B1...Bs8Y #0 and L(uq...us) =s. Hence by Proposition 3.2,

L((a1 + Brur) ... (asB + BsB™us)) =s > 1,

an impossibility.

We now consider three possible cases. If us # u), then L(usu/l ...up) =t + 1> 1. Moreover
BsBy ... B # 0 and thus by Proposition 3.2 L(AsA...Ap) =t 41> 1. If u; =u} and the product
As A does not lie in KN then as above L(AsA)... A =t>1.1f us =u} and A;A] € KN\ {0}, then
L(AsA, .. A =t —1.

Assume s =1. Then A1 A} ... A; =X %" € KN and by the three cases above the only possibility is
0=L(¥X')=t—1,sothat t=1.

Assume by way of contradiction that ¥ ¥’ € KN but that s # t. Assume X, X’ are chosen so that s
is minimal. Then s > 1. Apply the map * : KG — KG defined by
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(Z axx>* = Zaxx’l.

This defines a K-linear anti-automorphism of KG whose restriction to G is an anti-automorphism
of G, so that L(a*) = L(«) for all @ € KG, sending linear terms to linear terms and reduced splittings
to reduced splittings. Hence X' X’ € KN implies X'*X* € KN with X'*, X¥* reduced and such that

L(Z™)=t#s=L(Z¥).

The minimality of s therefore implies that 1 <s < t. Consider As;A]...A; and let X" be a re-
duced form for this splitting. Then by the three cases above we have L(X”) =t -+ 1,t, or t — 1.
But A7...As_1 is reduced and

(A1... A1) X" € KN.

The minimality of s implies s — 1= L(X”) =t +1,t, or t — 1. The first two instances imply t < s,
an impossibility, and therefore s — 1=t — 1, so that s =t, a contradiction, and the result follows. O

4. Splitting theorems

We assume throughout that linear term means W -linear term and that splitting means W -splitting.

We begin with the following result, motivated from the work of Cohn [3] and by Passman
[13, Theorem 13.3.7] on the zero-divisor problem. The proof we give is due to Passman for [13, Theo-
rem 13.3.7], and for completeness we include those key ingredients of his proof, modified to suit our
needs.

Theorem 4.1. (See Cohn [3], Passman [13].) Let KG be an (X, Y, N)-group algebra with corresponding set of
words W. Assume that o, T € KG \ {0} such that ot = ¢ € KN. If L(t) > 1 then there exists a linear term
A € KG \ {0} such that

pAT) =n¢
forsome p € KG \ {0} and n € KN \ {0}. Moreover 0 < L(At) < L(7).

Proof. Assume that W is a set of words in x and y. We begin with some preliminary remarks. We
recall that since KG is a free left-right KN-module with basis W, we may express any o € KG as
a=Y iww =) wi|,, for unique Ay, 2}, € KN with w € W. The context in which we do so will be
clear. Since N < G it follows that A, # 0 if and only if A}, # 0. Thus we recall that maximal-length
elementsin o =) Aww are those w € W such that L(w) = L(«) with A, # 0 (equivalently 1/, # 0).

Assume now that o and t are non-zero elements of KG with ot =¢ € KN. Assume further that
L(o) =m and L(t) =n > 1. We begin with two preliminary steps as given by Steps 1 and 2 in the
proof of [13, Theorem 13.3.7], adapted to our situation. We stay with the same exposition where
possible.

Step 1. The products of maximal-length elements overlap in the same group.
Let o =) ,cw VOv, T=2_ew TwW With oy, 7y € KN\ {0}, v € W distinct, and w € W distinct.
Then

oT = E VO Ty W
v,w
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such that Suppvo,Tww C Nvw. Moreover vo,t,w # 0 since KN has no proper divisors of zero.
We now consider those terms corresponding to maximal-length elements v, w € W in o, T respec-
tively. Assume L(vg) =L(o) =m and L(wp) = L(t) =n. If the product vowg is non-overlapping, then
L(vowp) =m +n, and it is easy to see, then, that Nvw = Nvowy if and only if v =vy and w = wy.
This implies that the non-zero summand vooy,Tw,Wo cannot be cancelled by any other terms and
this contradicts the fact that ot € KN. It therefore follows that all such pairs overlap in the same
group, and without loss of generality we may assume they overlap in X. Thus because any maximal-
length element v in o ends in x and any maximal-length element w in t begins with x, we conclude
that vg and wq are unique maximal-length elements in o, T respectively.

Write 0 =0’ + o”, where Suppo’ is given by all those elements g € Suppo with either L(g) =
L(oc) =m or with L(g) =m — 1 and with g ending in Y. All elements of length m in Suppo end
in X so that o’ = v'eq, with v/ € W of length m — 1, ending in y, and where &1 =« + Bx, a, B € KN,
B # 0. Similarly, write T =t/ + t”, where Suppt’ consists of all those elements g € Suppt with
either L(g) = L(t) =n, or with L(g) =n — 1 and with g starting in Y. It follows that v’ = §;w’, with
w’ € W of length n — 1, starting with y, and where §; =a’ + 8'%, &', 8/ € KN, B’ #0.

Step 2. The product €181 belongsto KN \ {0}.

We first claim that the products o’t”, 6”1/, and ¢”t” all have length at most m +n — 2. This is
immediate for o”’t” since L(c”) <m —1 and L(t”) <n — 1. We now consider o’t”. Since L(c') =m
and L(t”) <n —1 it follows that L(c't”) < n + m — 1. Moreover the only way equality can hold
is if there exist elements g € Suppo’, h € Suppt” with L(g) =m, L(h) =n — 1, and with gh non-
overlapping. But g ends in X and h starts in X, because those elements of Suppt of length n — 1
starting in Y are contained in Suppt’. Thus gh overlaps in X and such elements do not exist.
Therefore L(o’t”) < m+n — 2 and similarly L(c”t’) < m +n — 2. Finally 67 = ¢ € KN implies
o't'=¢— (o't +0"t'+0"1’), so that L(o’t’) <m+n — 2. This establishes the claim.

Now o’'t’ = v'e181w’. Since KX has no proper divisors of zero, we have &18; # 0. Suppose that
£161 did not lie in KN. Then it would have a summand of the form Ax, for some A € KN\ {0}. Now the
product v'xw’ is non-overlapping and yields a word in W whose L-lengthis m—1)+1+n—1) =
m+n — 1. Moreover the term v'Axw’ is the unique summand of ¢’t’ with the support in Nv'xw’, so
that this term cannot possibly be cancelled by any other summands in o’7’. But this contradicts the
fact that L(c’t’) <m+n — 2. Thus &18; € KN\ {0}.

We are now ready for the remainder of the proof, which follows along similar lines as the proof of
Step 3 in [13, Theorem 13.3.7]. Since N < G, [13, Lemma 13.3.5(ii)] implies that the set T = KN \ {0}
of regular elements of KN is a left divisor set of regular elements of KG. Now €181 € T and 041 € KG,
so there exist elements 7 € T and p € KG with

p(e181) =n(oé1).
Thus, because §; and 7 are regular elements of KG and o is non-zero, we conclude that p # 0 and
p&1 = no. This yields
(pe)T =Mo)t
=1n(07)
=n¢ e KN.

We now compute the length of £17. We observe that 17 # 0 since 7 #0, and &1 # 0 lies in KX
implies that &1 is not a proper divisor of zero in KG. Thus L(g17) > 0. Moreover

81‘[/ =161 W/,
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and since L(w') =n —1 and &18; € KN \ {0}, by Step 2, we conclude that L(g17’) < n — 1. Since
L(t")y<n—1 and &1 € KX, we have

L(eit") <L(t")+ L < —1) +1=n.

If equality occurs then there exist elements g € Suppt”, h € Suppt’ with L(g)=n—1, L(h) =1, and
with hg non-overlapping. However, L(g) =n — 1, and g € Suppt” implies that g starts in X and h
ends in X. Therefore, the product does overlap, and this case cannot occur. Hence L(g1t”) <n—1,
and from g1t =¢&1t’ + &17”, it follows that

0<Ler)En—1<L(7).
The result now follows with A =g7. O

Theorem 4.2. Let KG be an (X, Y, N)-group algebra with corresponding set of words W, and with induced
length function L. Assume that o, T are non-zero elements of KG with 0t = ¢ € KN. Then L(o) =0 if and
only if L(t) = 0. Equivalently, c € KN \ {0} ifand only if T € KN \ {0}.

Proof. We recall that KG is a free left-right KN-module with basis W, so we may express any y €
KG as y =) iww =) wk),, for unique Ay, A}, € KN with w € W. Since N < G it follows that
Aw # 0 if and only if A, # 0. Furthermore, KN is a domain, and therefore L(yv) = L(vy) = L(y) for
every Yy € KG and v € KN\ {0}. If L(c) =0 then o € KN\ {0}. Thus if T € KG\ {0} and 07 =¢ € KN,
then ¢ #0 so that L(ot) = L(¢) =0, and hence

L(t)=L(ot)=0
as desired. The result now follows, reversing the roles of o and t. O

Theorem 4.3 (Left-splitting: weak form). Let KG be an (X, Y, N)-group algebra with corresponding set of
words W. Assume that o, T are non-zero elements of KG with ot = ¢ € KN. There exists a splitting A1 ... Ag
such that

(A1...A)T =1)¢
forsome n € KN \ {0}.

Proof. Assume that W is a set of words in x and y. Since o, T are non-zero elements of KG with
ot € KN, it follows that L(c) >0 and L(t) > 0. We now proceed by induction on L(7). If L(t) =0
then by Theorem 4.2 o € KN \ {0}, so that

(c+0-x)T=(ANT=1-¢

yields the desired result with n =1 € KN \ {0}. Therefore, we may assume that L(t) > 0, and that
the result holds for all such o’ and 7’ with L(t’) < L(t). By Theorem 4.1 there exists a linear term
A e KG\ {0} and p € KG \ {0} such that p(At) = n1¢ for some 17 € KN \ {0} and such that 0 <
L(AT) < L(7).

By induction there exists a splitting Aq... As—1 such that

(A1... As—1)(AT) = mamig

for some 77, € KN \ {0}. The result now follows noting that n =111 € KN \ {0} and that
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(A1...As_1)A
is a splitting. O

We can now establish an alternate proof of the zero-divisor conjecture for such group algebras
first established by Cohn [3] and Lewin [10]:

Theorem 4.4. (See Cohn [3], Lewin [10].) Let KG be an (X, Y, N)-group algebra with corresponding set of
words W. Then KG contains no proper divisors of zero.

Proof. Assume o, T are non-zero elements of KG such that ot = 0. By Theorem 4.3 there exists
a splitting A7 ... As such that

(A1...A5)T=n-0.
By symmetry there exists a splitting A ... A; such that
(A1...A5)(A}...A)=0-7'=0.
This contradicts Proposition 3.4. O
Corollary 4.5. Let KG be an (X, Y, N)-group algebra. Then G is torsion-free.
Proof. If G is not torsion-free then KG has proper divisors of zero by [13, Lemma 13.1.1]. O

Corollary 4.6. Let KG be an (X, Y, N)-group algebra. Then KG is von Neumann finite; that is for o, T € KG,
ot =1impliesto =1.

Proof. If 0,7 € KG with ot =1 then to is a non-zero trivial idempotent by Theorem 4.4. O

Theorem 4.7 (Left-splitting: strong form). Let KG be an (X, Y, N)-group algebra with corresponding set of
words W. Assume that o, T are non-zero elements of KG with ot = ¢ € KN. Then there exists a splitting
Aq ... Ag such that

(A1...A)T =1t
for some n € KN \ {0}. For any such splitting we have
L(o)=L(Aq...Ay).
If L(0) > 1 then we may choose the above splitting to satisfy
Llo)=s=L(A1...As).
Proof. By Theorem 4.3 there exists a splitting A ... As such that

(Ar... AT =n¢

for some n € KN\ {0}. As (no)t =n¢, and KG has no proper divisors of zero by Theorem 4.4, it
follows that
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no =Aq...As.
Furthermore since KG is a free left K N-module with basis W, we have
Llo)=L(no)=L(A1...As).

Since L(o) > 1, Proposition 3.3 implies that we can bring any splitting into reduced form and there-
fore for such a reduced splitting A7 ... As we have

Llo)=L(A1...A5)=s
and the result follows. O

The next result is a special case of Theorem 4.7 and is of independent interest. Within a virtually
abelian (X, Y, N)-group algebra KG, the term n € KN \ {0} can be chosen to be central in KG.

Theorem 4.8 (Left-splitting: virtually abelian). Let KG be a virtually abelian (X, Y, N)-group algebra with
corresponding set of words W, and with corresponding abelian subgroup H containing N. Suppose for some
0,7 € KG\ {0} we have 6T = ¢ € KN. Then there exists a splitting Ay ... Ag such that

(A1... AT =n¢
forsome n € KN \ {0}, central in KG, and uy, ..., us € {x, y}. For any such splitting we have
L(o)=L(A1... As).
If L(t) > 1 then we may choose the above splitting to satisfy
Lio)=s=L(A1... Ag).

Proof. Assume that o and t are non-zero elements of KG with ot =¢ € KN. If L(r) =0 then by
Theorem 4.2 L(c) =0 and

c+0-x))T=(ADT=1"¢,

so the result holds with n = 1. Suppose that L(t) > 1, and by Theorem 4.7 there exists a splitting
(o1 + B1uq) ... (s + Bsus) such that

(a1 + Brur) ... (as + Bsus)T = v¢
for some v € KN\ {0}. Fix a transversal {1,az,...,q;} for H in G, and let V' = ]_[f:2 v%, Then
Ar...As= (Vg +V'Bru)... (a5 + Bsus)
is a splitting such that
(A1...A5)T =V'VC

and with 7 =v'v central in KG as desired. O
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The splitting theorems are powerful tools for analysing units in (X, Y, N)-group algebras. The fol-
lowing results give information on the inverse of a unit o.

Theorem 4.9. Let KG be an (X, Y, N)-group algebra with corresponding set of words W. Let o, T € KG \ {0}.
Ifot € KN, then L(o) = L(7).

Proof. Assume that o and T are non-zero elements of KG with 67 =¢ € KN. Then L(o) > 0 and
L(t) > 0. If L(c) =0 then by Theorem 4.2 L(t) = 0. Therefore we may assume that L(o) > 1. By
symmetry we have L(t) > 1. By Theorem 4.7 there exists a reduced splitting A; ... A such that

(A1...A5)T € KN

and satisfying

Lo)=s=L(A1...As).
By symmetry there exists a reduced splitting A} ... A; such that

(A1...A5)(A]...A}) KN

and satisfying

L(t) =t=L(A}... A}).
Since each splitting is reduced and L(o) > 1, Proposition 3.5 applies to yield s =t as desired. O

Theorem 4.10. Let KG be an (X, Y, N)-group algebra with corresponding set of words W. Let o, T € KG. If
ot =1,then L(c) = L(1).

5. Localisations and split-forms for units

The results of this section form the key ingredients to the paper.

If KG is an (X, Y, N)-group algebra with corresponding set of words W, then in particular N < G
and KN is an Ore domain. Therefore by [13, Lemma 13.3.5(ii)] the set of non-zero elements of KN

forms both a left and right divisor (or denominator) set T = KN \ {0} of KG. Thus we may localise and
by [15, Lemma 25.4] conclude that

KGCT 'KG=KGT 1.

It is convenient therefore to note that if ot =1 then by Theorem 4.7 there exists a reduced
splitting Aq... As such that

(Ar...A)T=7-1

for some non-zero element n of KN. Observing (no )t =n and using that KG has no proper divisors
of zero, by Theorem 4.4, we have

no =Aq...As.

Thus up to a factor in KN, any unit of KG is a reduced splitting.
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We define a left split-form for o, or simply split-form, to be an ordered pair (1, Ay ... As) such that
no =Aq...Ag

for some n € KN\ {0} and splitting A ... As in KG. To stress the dependence of the splitting on the
unit o we shall write the split-form as (n,0).

Of course the foregoing gives an alternate perspective on the structure of any unit in KG. By
definition, any split-form (1, 5) satisfies no = &, and therefore in the localisation T~'KG we have
o =n~15, which, in some sense, expresses a uniqueness result derived from all split-forms for o.

It is convenient at this point to introduce the following concept. If KG is an (X, Y, N)-group alge-
bra with corresponding set of words W, then we may express any o € KG as

o= Z/,LWW

weW

for unique ©, € KN. We define the W-support of o to be

Suppy 0 ={w e W | uw # 0}.

Proposition 5.1. Let KG be an (X, Y, N)-group algebra with corresponding set of words W. Let o € KG and
n € KN\ {0}. Then Suppy, 0 = Suppy 1o.

Proof. Since KG is a free left KN-module with basis W, we can write

o= Z/,LWW

weW
for uniquely determined w,, € KN. Hence
no =Y (Muw)w.
weW

Since KN has no proper divisors of zero we have nu, # 0 if and only if @, # 0, and the result
follows. O

This leads to the next result, which is also a consequence of Step 1 of the proof of Theorem 4.1.

Theorem 5.2. Let KG be an (X, Y, N)-group algebra with corresponding set of words W. If o is a unit of KG,
then o contains a unique word of maximal L-length.

Proof. If L(0) =0 then 0 € KN, and 0 = o -1 implies that the identity w =1 is the unique word
of maximal L-length in o. Assume L(oc) =s>1 and let (n,5) be a split-form for o such that ¢ is
reduced. Then & has s terms, and by Proposition 3.2 has a unique word of maximal L-length s = L(o).
By Proposition 5.1 we have Suppy, 0 = Suppyy, 0, and the result follows. O

In the following, we let gcd(c, B) denote the greatest common divisor of o and .

Proposition 5.3. If KG is an (X, Y, N)-group algebra with N finitely generated abelian, then every splitting
in KG is expressible as

v(ag + Brur) ... (s + Bsus)

forsomev € KN\ {0}, (a1 + B1uq) ... (oes + Bsus) reduced and such that gcd(w;, Bi) =1 foralli=1,...,s.
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Proof. Let W be a corresponding set of words in x and y. Since N is finitely generated abelian,
KN is a Laurent polynomial ring, and so is a unique-factorisation domain. Thus the gcd of any two
elements of KN, with at least one of them non-zero, is well-defined. By Proposition 3.3 a splitting
can be brought into reduced form and by Proposition 3.4 it defines a non-zero element of KG. If
a reduced splitting defines a non-zero element v of KN then this reduced splitting equals v(1+0-x),
an expression satisfying the conclusion of the theorem. If a reduced splitting has length s > 1, then
by Proposition 3.2 it is expressible as

(of + Biui) ... (g + Bius)

with B]...8;#0 and L(uy...us) =s > 1. If s=1 then we can pull out vs = gcd(ey, ;) to the left to
obtain an 