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We introduce structure theorems for the study of the unit con-
jecture for group algebras of torsion-free supersoluble groups.
Motivated by work of P.M. Cohn we introduce the class of
(X, Y , N)-group algebras K G , and following D.S. Passman we de-
fine an induced length function L : K G → N∪ {−∞} using the fact
that G has the infinite dihedral group as a homomorphic image.
We develop splitting theorems for (X, Y , N)-group algebras, and as
an application show that if σ ∈ K G is a unit, then L(σ ) = L(σ−1).
We extend our analysis of splittings to obtain a canonical reduced
split-form for all units in (X, Y , N)-group algebras. This leads to
the study of group algebras of virtually abelian groups and their
representations as subalgebras of suitable matrix rings, where we
develop a determinant condition for units in such group algebras.
We apply our results to the fours group

Γ = 〈
x, y

∣∣ xy2x−1 = y−2, yx2 y−1 = x−2〉

and show that over any field K , the group algebra KΓ has no
non-trivial unit of small L-length. Using this, and the fact that L is
equivariant under all KΓ -automorphisms obtained K -linearly from
Γ -automorphisms, we prove that no subset of the Promislow set
P ⊂ Γ is the support of a non-trivial unit in KΓ for any field K . In
particular this settles a long-standing question and shows that the
Promislow set is itself not the support of a unit in KΓ . We then
give an introduction to the theory of consistent chains toward a pre-
liminary analysis of units of higher L-length in KΓ . We conclude
our work showing that units in torsion-free-supersoluble group al-
gebras are bounded, in that the supports of units and their inverses
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are related through a property (U) and the induced length func-
tion L.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The unit conjecture for group algebras states that if K is a field and G is a torsion-free group,
then all units1 of the group algebra K G are trivial; that is, all units are of the form λg for some
λ ∈ K \ {0} and g ∈ G [11,13,18,19]. The best result to date is entirely group-theoretic, concerning
group algebras of unique-product groups [13,14,20]. (A group G is a unique-product group if, given
any two non-empty finite subsets X and Y of G , there exists an element g ∈ G having a unique
representation of the form g = xy with x ∈ X and y ∈ Y .) Unique-product groups typify ordered,
locally indicable, and right-ordered groups, and for some time it remained an open question whether
there exist torsion-free groups that are not unique-product groups. Using small cancellation theory,
Rips and Segev [17] gave the first example of a torsion-free group that is not a unique-product group.

For the unit conjecture beyond unique-product groups, it is natural to consider finitely generated,
torsion-free, virtually abelian groups; that is, groups with a short exact sequence

1 → H → G → G/H → 1

with H abelian and G/H finite. If G/H is cyclic then G is right-orderable, and therefore a unique-
product group, so nothing new occurs. The simplest example where G/H is finite non-cyclic is

Γ = 〈
x, y

∣∣ xy2x−1 = y−2, yx2 y−1 = x−2〉,
which satisfies the short exact sequence

1 → Z3 → Γ → Z/2Z×Z/2Z→ 1.

Called the ‘fours group’, Γ was shown by Passman [13, p. 606] to be torsion-free and non-right
orderable. Promislow [16], using a random search algorithm, exhibited a 14-element subset P ⊂ Γ

such that P · P has no unique product.2 Since then, very little progress on the unit conjecture has
been made, and, in particular, it has been a long-standing question whether the Promislow set P
could be the support of a unit over some field K .

In this paper we show that the answer is ‘no’, and in fact prove something slightly stronger, namely
that no subset of the Promislow set P is the support of a non-trivial unit in KΓ over any field K . It is
of interest to note that our techniques are not simply group-theoretic. Motivated by work of Cohn [3]
we introduce the class of (X, Y , N)-group algebras K G , and following Passman [13, Theorem 13.3.7]
we define an induced length function L : K G → N ∪ {−∞} using the fact that G has the infinite
dihedral group as a homomorphic image. We develop splitting theorems for (X, Y , N)-group algebras,
and as an application show that if σ ∈ K G is a unit then L(σ ) = L(σ−1). We then extend our analysis
of splittings to obtain a canonical reduced split-form for all units in (X, Y , N)-group algebras. This leads
to the study of group algebras of virtually abelian groups and their representations as subalgebras of
suitable matrix rings. This viewpoint allows us to develop a determinant condition for units in such
group algebras. We apply our results to the fours group

Γ = 〈
x, y

∣∣ xy2x−1 = y−2, yx2 y−1 = x−2〉

1 Unit here means two-sided unit. If K is a field of characteristic 0, then Kaplansky’s theorem [8], [13, p. 38] states that every
unit in K G is two-sided. The general result for group algebras over fields of characteristic p remains open [2,4,5].

2 It is an open question as to whether every unique-product group is right orderable.
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noting that over any field K , the group algebra KΓ is a virtually abelian (X, Y , N)-group algebra.
With respect to the induced length function L : KΓ →N∪{−∞} it follows via the splitting theorems,
that if σ ∈ KΓ is a unit then L(σ ) = L(σ−1). On the other hand, the group Γ being abelian-by-finite,
with H = Z3 in the notation above, induces a K -algebra embedding θ : KΓ ↪→ M4(K H), and we
find via our determinant condition, that for σ ∈ KΓ , σ is a unit of KΓ if and only if det(θ(σ )) is
a non-zero element of the field. Applying these results we then prove that there is no non-trivial unit
σ ∈ KΓ with L(σ ) � 3. From this, and the fact that L is equivariant under all KΓ -automorphisms
obtained K -linearly from Γ -automorphisms, we obtain our result on the Promislow set P . We then
give an introduction to the theory of consistent chains toward a preliminary analysis of units of higher
L-length in KΓ . Our analysis shows that there is a significant jump in complexity from units of
L-length 3 to units of L-length � 4 in KΓ . Nevertheless in our final section we show that units in
torsion-free-supersoluble group algebras are bounded, in that the supports of units and their inverses
are related through a bounding property (U) and the induced length function L.

Finally a word or two on the presentation of this paper and the philosophy underlying it. To date
it has never been clear whether the unit conjecture is a ring-theoretic problem. We hope that this
paper suggests that it might be. The techniques found within can best be described as those arising
from classical ring theory and the theory of group rings. Our methods are varied, where in some
places they are technical or computational, while in others they are structural and somewhat subtle.
For these reasons we have written the paper in a rather self-contained way, in part to help guide the
reader through our development, but also with the hope of possibly drawing more individuals to this
wonderful conjecture and long-standing open problem.

2. Preliminaries and notation

Throughout this paper we let K G denote a group algebra over a field K . Conjugation by g ∈ G
shall be denoted by αg to mean gαg−1 for all α ∈ K G . If α = ∑

x∈G axx is an element of K G then
we define the support of α, denoted Suppα, to be the set of x ∈ G such that ax �= 0. A unit of K G is
an invertible element of K G with a two-sided inverse and we denote the group of units of K G by
U K G . A unit is said to be trivial if its support consists of a single element; that is if it has the form
λg for some non-zero λ ∈ K and g ∈ G . Otherwise we say that a unit is non-trivial if it is not trivial.

We say that G is an (X, Y , N)-group if there exist subgroups X, Y � G , containing a common
subgroup N , normal in G , with X/N = Y /N = Z/2Z, and such that G/N = X/N ∗ Y /N , the infinite
dihedral group. If in addition K X and K Y have no proper divisors of zero and if K N is an Ore domain
then we say that K G is an (X, Y , N)-group algebra. Assume that X/N and Y /N are generated by
involutions Nx and N y and write X = 〈N, x〉 and Y = 〈N, y〉. Let W be the set of all alternating words
in x and y. We call W the corresponding set of words in x and y. Since G/N = (X/N)∗ (Y /N), it follows
from [13, Theorem 9.2.9] that W is a (right-left) transversal for N in G so that by [13, Lemma 1.1.3]
K G forms a faithfully free (left-right) K N-module with basis W .

Following [13] we now define a length function LW = L : K G → N∪ {−∞}. The L-length, or simply
length, of a word w ∈ W , denoted by L(w), is the number of factors that occur in it; the empty word,
w = 1, has length 0, and for example xyxy has length 4. We extend the length function L in two
ways: first, if g ∈ G then there exists a unique w ∈ W with g ∈ N w , and we define L(g) = L(w); and
secondly, if α ∈ K G with α non-zero, then we set L(α) to be the maximum of L(g), where g ∈ Suppα.
Finally, set L(0) to be −∞. From W ⊂ G ⊂ K G , we see that the definition of L is consistent. For
w1, w2 ∈ W we say that the product w1 w2 is non-overlapping if no cancellation occurs. In this case,

L(w1 w2) = L(w1) + L(w2).

On the other hand, if the product w1 w2 overlaps, then L(w1 w2) is strictly less than L(w1) + L(w2).
In this case, if w1 ends in X (and hence w2 starts in X) then we say that the overlap is in X , and
similarly for overlapping in Y . We define the length function L = LW to be the length function on K G
induced from W or simply the induced length function.

Since K G is a free left-right K N-module with basis W , we may express any σ ∈ K G as σ =∑
λw w = ∑

wλ′
w , for unique λw , λ′

w ∈ K N with w ∈ W . The context in which we do so will be
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clear. Since N � G it follows that λw �= 0 if and only if λ′
w �= 0. We define a word w ∈ W to be in σ

whenever λw �= 0 (equivalently λ′
w �= 0), and define w ∈ W to be a maximal-length element in σ if w

in σ and L(w) = L(σ ). In addition, since K N is a domain, it follows that L(σν) = L(νσ ) = L(σ ) for
every σ ∈ K G and ν ∈ K N \ {0}.

We say that a group G is a virtually abelian (X, Y , N)-group if G is an (X, Y , N)-group containing
a normal abelian subgroup H of finite index such that N ⊂ H . We define K G to be a virtually abelian
(X, Y , N)-group algebra if K G is an (X, Y , N)-group algebra of a virtually abelian (X, Y , N)-group G .
In this case we refer to H as the corresponding abelian subgroup.

Finally we make the following convention. Throughout this paper we develop our theory on the
left. All one-sided results have obvious right-analogues whose statements and proofs we safely leave
to the reader. In those instances where we do require a right-analogue, we shall use the phrase by
symmetry.

3. Splittings

The results of this section exist in greater generality and will be the subject of a more compre-
hensive study in a subsequent paper. We present here a special case that is necessary for our work,
easier to describe, and is motivated by earlier work of Cohn [3] and Passman in [13, Theorem 13.3.7].

We assume throughout that K G is an (X, Y , N)-group algebra with corresponding set of words W gen-
erated by x and y.

We define a W -linear term in K G , to be an expression of the form Λ = α +βu for some α,β ∈ K N
and u ∈ {x, y}. For convenience we shall simply say linear term, keeping in mind the dependence
of a linear term on W and K N . We say that Λ is a non-zero linear term if as an element of K G
it is non-zero. Since W is a basis for K G as a free left K N-module, it follows that Λ = α + βu is
a non-zero linear term if and only if α �= 0 or β �= 0. We say that u belongs to, or that Λ contains u, if
β �= 0. Two linear terms in K G are said to be equal if as elements of K G they are equal.

We define a W -splitting in K G to be a non-empty finite sequence

Λ1, . . . ,Λs

of non-zero linear terms Λi ∈ K G . For convenience we shall simply say splitting, keeping in mind
the dependence of a splitting on W and K N . We identify a splitting Λ1, . . . ,Λs in K G with its
corresponding product

Σ = Λ1 . . .Λs.

Thus the expression

Λ1 . . .Λs = (α1 + β1u1) . . . (αs + βsus)

implies that

Λi = (αi + βiui)

for all i = 1, . . . , s.
If Σ = Λ1 . . .Λs is a splitting, then we call Λi a term of this splitting and say that the splitting

has s � 1 terms. Two terms of a splitting are said to be adjacent terms if they are consecutive terms of
the sequence. If adjacent terms Λ and Λ′ contain u and u′ respectively, then we say that Λ and Λ′
overlap in the same group if u = u′ . We remark that our definition of splitting allows for the possibility
that adjacent terms overlap in the same group.

We define two splittings in K G to be the same if as sequences they are the same. Otherwise we
say that they are different. We say that two splittings are equal if their corresponding products are
equal. We note that different splittings can define equal splittings in K G . Note also that not every
element of K G has a splitting, for example 1 + xy does not.
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We define the L-length, or simply length, of a splitting Λ1, . . . ,Λs to be the L-length of its corre-
sponding product, that is,

L(Λ1 . . .Λs).

Proposition 3.1. Let Λ1 . . .Λs = (α1 + β1u1) . . . (αs + βsus) be a splitting. Then

Λ1 . . .Λs = β1
w1 . . . βs

ws u1 . . . us +
∑

w

λw w

for some λw ∈ K N and w1, . . . , ws, w ∈ W with L(w) < s. In particular,

L(Λ1 . . .Λs) � s.

Proof. We proceed by induction on s � 1. For s = 1 our splitting is Λ1 = α1 + β1u1 = β1u1 + α1.
Assume s > 1 and that the result holds for all splittings with fewer than s terms. Then Λ2 . . .Λs is
a splitting with s − 1 terms and therefore the inductive hypothesis implies

Λ2 . . .Λs = β2
w2 . . . βs

ws u2 . . . us +
∑

w

λw w

for some λw ∈ K N and w2, . . . , ws , w ∈ W with L(w) < s − 1. Thus

Λ1[Λ2 . . .Λs] = (α1 + β1u1)

[
β2

w2 . . . βs
ws u2 . . . us +

∑
w

λw w

]

for some λw ∈ K N and w2, . . . , ws , w ∈ W with L(w) < s − 1. The result follows immediately by
expanding the right side of the foregoing equation. �

Thus the L-length of a splitting is bounded above by the number of its terms. The L-length of
any splitting is also bounded below by zero (in other words every splitting is non-zero in K G), but
this fact requires additional work and is shown in Proposition 3.4. To this end we give two important
results, the first of which is an immediate consequence of Proposition 3.1, and whose proof we safely
leave to the reader.

Proposition 3.2. Let Λ1 . . .Λs = (α1 + β1u1) . . . (αs + βsus) be a splitting. The following are equivalent:

(i) L(Λ1 . . .Λs) = s;
(ii) β1 . . . βs �= 0 and L(u1 . . . us) = s;

(iii) This splitting contains a unique maximal-length element of L-length s.

We observe that the definition of a splitting

(α1 + β1u1) . . . (αs + βsus)

allows for the possibility that some βi = 0 and as we noted earlier that consecutive u j , u j+1 may
be equal. This leads to the following. We define a splitting to be L-reduced, or simply reduced, if its
L-length is either 0 or s. In other words, a splitting is reduced if either its corresponding product of
terms collapses to define an element of K N \ {0} or if the L-length of the splitting agrees with the
number of terms of the splitting. We say that a splitting can be brought into reduced form if it equals
a splitting in reduced form.
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Proposition 3.3. Every splitting can be brought into reduced form.

Proof. We proceed by induction on s � 1 to show that if

Λ1 . . .Λs = (α1 + β1u1) . . . (αs + βsus)

is a splitting, then this splitting can be brought into reduced form. For s = 1 this splitting is Λ1 = α1 +
β1u1. If β1 = 0 then Λ1 = α1 �= 0, so that L(Λ1) = 0. If β1 �= 0 then L(Λ1) = 1. In either instance Λ1
is reduced and this establishes the case s = 1. Assume s > 1 and that the result holds for all splittings
with fewer than s terms. If some β j = 0 then the term Λ j = α j �= 0 can be absorbed into an adjacent
term to produce a linear term Λ. Since K G is a free left K N-module with basis W , and K N has no
proper divisors of zero, it follows that Λ �= 0, and therefore we obtain an equal splitting with one less
term. Hence the inductive hypothesis implies that the original splitting can be brought into reduced
form. We may therefore assume that all βi �= 0. If any two consecutive u j , u j+1 are equal, then
both Λ j , Λ j+1 lie in K X or both lie in K Y . By hypothesis, K X and K Y have no proper divisors of zero.
Thus with u = u j , we have Λ jΛ j+1 = α+βu �= 0, thereby yielding an equal splitting with fewer than s
terms, and again the original splitting can be brought into reduced form. Thus we may assume that
the original splitting satisfies β1 . . . βs �= 0 and L(u1 . . . us) = s. By Proposition 3.2, L(Λ1 . . .Λs) = s,
and the result follows. �
Proposition 3.4. Every splitting defines a non-zero element of K G. In particular, the L-length of a splitting is
bounded below by zero.

Proof. By Proposition 3.3, every splitting can be brought into reduced form, so by definition, has
L-length at least 0, hence lies in K G \ {0}, and the result follows. �
Proposition 3.5. Let Σ , Σ ′ be reduced splittings with L(Σ) � 1. If ΣΣ ′ ∈ K N, then L(Σ) = L(Σ ′).

Proof. We begin with some preliminary remarks. Let Σ = Λ1 . . .Λs with Λi = (αi + βiui), and let
Σ ′ = Λ′

1 . . .Λ′
t , with Λ′

j = (α′
j +β ′

ju
′
j). Then L(Σ) = s and L(Σ ′) = t . We recall that αi, βi,α

′
j, β

′
j ∈ K N

and that K N has no proper divisors of zero. By Proposition 3.2 we have β1 . . . βs �= 0, L(u1 . . . us) = s
and if t � 1 then β ′

1 . . . β ′
t �= 0, L(u′

1 . . . u′
t) = t . Furthermore L(Λ1 . . .Λs) � 1 implies L(Λ′

1 . . .Λ′
t) � 1.

Indeed if not, then by Proposition 3.4 the splitting Λ′
1 . . .Λ′

t would define a non-zero element β ∈ K N
which can be absorbed into the first splitting to yield a splitting

(α1 + β1u1) . . .
(
αsβ + βsβ

us us
)

with β1 . . . βsβ
us �= 0 and L(u1 . . . us) = s. Hence by Proposition 3.2,

L
(
(α1 + β1u1) . . .

(
αsβ + βsβ

us us
)) = s � 1,

an impossibility.
We now consider three possible cases. If us �= u′

1, then L(usu′
1 . . . u′

t) = t + 1 > 1. Moreover
βsβ

′
1 . . . β ′

t �= 0 and thus by Proposition 3.2 L(ΛsΛ
′
1 . . .Λ′

t) = t + 1 > 1. If us = u′
1 and the product

ΛsΛ
′
1 does not lie in K N then as above L(ΛsΛ

′
1 . . .Λ′

t) = t � 1. If us = u′
1 and ΛsΛ

′
1 ∈ K N \ {0}, then

L(ΛsΛ
′
1 . . .Λ′

t) = t − 1.
Assume s = 1. Then Λ1Λ

′
1 . . .Λ′

t = ΣΣ ′ ∈ K N and by the three cases above the only possibility is
0 = L(ΣΣ ′) = t − 1, so that t = 1.

Assume by way of contradiction that ΣΣ ′ ∈ K N but that s �= t . Assume Σ , Σ ′ are chosen so that s
is minimal. Then s > 1. Apply the map ∗ : K G → K G defined by
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(∑
axx

)∗ =
∑

axx−1.

This defines a K -linear anti-automorphism of K G whose restriction to G is an anti-automorphism
of G , so that L(α∗) = L(α) for all α ∈ K G , sending linear terms to linear terms and reduced splittings
to reduced splittings. Hence ΣΣ ′ ∈ K N implies Σ ′ ∗Σ∗ ∈ K N with Σ ′ ∗ , Σ∗ reduced and such that

L
(
Σ ′ ∗) = t �= s = L

(
Σ∗).

The minimality of s therefore implies that 1 < s � t . Consider ΛsΛ
′
1 . . .Λ′

t and let Σ ′′ be a re-
duced form for this splitting. Then by the three cases above we have L(Σ ′′) = t + 1, t, or t − 1.
But Λ1 . . .Λs−1 is reduced and

(Λ1 . . .Λs−1)Σ
′′ ∈ K N.

The minimality of s implies s − 1 = L(Σ ′′) = t + 1, t, or t − 1. The first two instances imply t < s,
an impossibility, and therefore s − 1 = t − 1, so that s = t , a contradiction, and the result follows. �
4. Splitting theorems

We assume throughout that linear term means W -linear term and that splitting means W -splitting.
We begin with the following result, motivated from the work of Cohn [3] and by Passman

[13, Theorem 13.3.7] on the zero-divisor problem. The proof we give is due to Passman for [13, Theo-
rem 13.3.7], and for completeness we include those key ingredients of his proof, modified to suit our
needs.

Theorem 4.1. (See Cohn [3], Passman [13].) Let K G be an (X, Y , N)-group algebra with corresponding set of
words W . Assume that σ ,τ ∈ K G \ {0} such that στ = ζ ∈ K N. If L(τ ) � 1 then there exists a linear term
Λ ∈ K G \ {0} such that

ρ(Λτ) = ηζ

for some ρ ∈ K G \ {0} and η ∈ K N \ {0}. Moreover 0 � L(Λτ) < L(τ ).

Proof. Assume that W is a set of words in x and y. We begin with some preliminary remarks. We
recall that since K G is a free left-right K N-module with basis W , we may express any α ∈ K G as
α = ∑

λw w = ∑
wλ′

w , for unique λw , λ′
w ∈ K N with w ∈ W . The context in which we do so will be

clear. Since N � G it follows that λw �= 0 if and only if λ′
w �= 0. Thus we recall that maximal-length

elements in α = ∑
λw w are those w ∈ W such that L(w) = L(α) with λw �= 0 (equivalently λ′

w �= 0).
Assume now that σ and τ are non-zero elements of K G with στ = ζ ∈ K N . Assume further that

L(σ ) = m and L(τ ) = n � 1. We begin with two preliminary steps as given by Steps 1 and 2 in the
proof of [13, Theorem 13.3.7], adapted to our situation. We stay with the same exposition where
possible.

Step 1. The products of maximal-length elements overlap in the same group.
Let σ = ∑

v∈W vσv , τ = ∑
w∈W τw w with σv , τw ∈ K N \ {0}, v ∈ W distinct, and w ∈ W distinct.

Then

στ =
∑
v,w

vσvτw w
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such that Supp vσvτw w ⊂ N v w . Moreover vσvτw w �= 0 since K N has no proper divisors of zero.
We now consider those terms corresponding to maximal-length elements v, w ∈ W in σ , τ respec-
tively. Assume L(v0) = L(σ ) = m and L(w0) = L(τ ) = n. If the product v0 w0 is non-overlapping, then
L(v0 w0) = m + n, and it is easy to see, then, that N v w = N v0 w0 if and only if v = v0 and w = w0.
This implies that the non-zero summand v0σv0τw0 w0 cannot be cancelled by any other terms and
this contradicts the fact that στ ∈ K N . It therefore follows that all such pairs overlap in the same
group, and without loss of generality we may assume they overlap in X . Thus because any maximal-
length element v in σ ends in x and any maximal-length element w in τ begins with x, we conclude
that v0 and w0 are unique maximal-length elements in σ , τ respectively.

Write σ = σ ′ + σ ′′ , where Suppσ ′ is given by all those elements g ∈ Suppσ with either L(g) =
L(σ ) = m or with L(g) = m − 1 and with g ending in Y . All elements of length m in Suppσ end
in X so that σ ′ = v ′ε1, with v ′ ∈ W of length m − 1, ending in y, and where ε1 = α + βx, α,β ∈ K N ,
β �= 0. Similarly, write τ = τ ′ + τ ′′ , where Suppτ ′ consists of all those elements g ∈ Suppτ with
either L(g) = L(τ ) = n, or with L(g) = n − 1 and with g starting in Y . It follows that τ ′ = δ1 w ′ , with
w ′ ∈ W of length n − 1, starting with y, and where δ1 = α′ + β ′x, α′, β ′ ∈ K N , β ′ �= 0.

Step 2. The product ε1δ1 belongs to K N \ {0}.
We first claim that the products σ ′τ ′′ , σ ′′τ ′ , and σ ′′τ ′′ all have length at most m + n − 2. This is

immediate for σ ′′τ ′′ since L(σ ′′) � m − 1 and L(τ ′′) � n − 1. We now consider σ ′τ ′′ . Since L(σ ′) = m
and L(τ ′′) � n − 1 it follows that L(σ ′τ ′′) � n + m − 1. Moreover the only way equality can hold
is if there exist elements g ∈ Suppσ ′ , h ∈ Suppτ ′′ with L(g) = m, L(h) = n − 1, and with gh non-
overlapping. But g ends in X and h starts in X , because those elements of Suppτ of length n − 1
starting in Y are contained in Suppτ ′ . Thus gh overlaps in X and such elements do not exist.
Therefore L(σ ′τ ′′) � m + n − 2 and similarly L(σ ′′τ ′) � m + n − 2. Finally στ = ζ ∈ K N implies
σ ′τ ′ = ζ − (σ ′τ ′′ + σ ′′τ ′ + σ ′′τ ′), so that L(σ ′τ ′) � m + n − 2. This establishes the claim.

Now σ ′τ ′ = v ′ε1δ1 w ′ . Since K X has no proper divisors of zero, we have ε1δ1 �= 0. Suppose that
ε1δ1 did not lie in K N . Then it would have a summand of the form λx, for some λ ∈ K N \{0}. Now the
product v ′xw ′ is non-overlapping and yields a word in W whose L-length is (m − 1) + 1 + (n − 1) =
m + n − 1. Moreover the term v ′λxw ′ is the unique summand of σ ′τ ′ with the support in N v ′xw ′ , so
that this term cannot possibly be cancelled by any other summands in σ ′τ ′ . But this contradicts the
fact that L(σ ′τ ′) � m + n − 2. Thus ε1δ1 ∈ K N \ {0}.

We are now ready for the remainder of the proof, which follows along similar lines as the proof of
Step 3 in [13, Theorem 13.3.7]. Since N � G , [13, Lemma 13.3.5(ii)] implies that the set T = K N \ {0}
of regular elements of K N is a left divisor set of regular elements of K G . Now ε1δ1 ∈ T and σδ1 ∈ K G ,
so there exist elements η ∈ T and ρ ∈ K G with

ρ(ε1δ1) = η(σδ1).

Thus, because δ1 and η are regular elements of K G and σ is non-zero, we conclude that ρ �= 0 and
ρε1 = ησ . This yields

(ρε1)τ = (ησ )τ

= η(στ )

= ηζ ∈ K N.

We now compute the length of ε1τ . We observe that ε1τ �= 0 since τ �= 0, and ε1 �= 0 lies in K X
implies that ε1 is not a proper divisor of zero in K G . Thus L(ε1τ ) � 0. Moreover

ε1τ
′ = ε1δ1 w ′,
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and since L(w ′) = n − 1 and ε1δ1 ∈ K N \ {0}, by Step 2, we conclude that L(ε1τ
′) � n − 1. Since

L(τ ′′) � n − 1 and ε1 ∈ K X , we have

L
(
ε1τ

′′) � L
(
τ ′′) + L(ε1) � (n − 1) + 1 = n.

If equality occurs then there exist elements g ∈ Suppτ ′′ , h ∈ Suppτ ′ with L(g) = n − 1, L(h) = 1, and
with hg non-overlapping. However, L(g) = n − 1, and g ∈ Suppτ ′′ implies that g starts in X and h
ends in X . Therefore, the product does overlap, and this case cannot occur. Hence L(ε1τ

′′) � n − 1,
and from ε1τ = ε1τ

′ + ε1τ
′′ , it follows that

0 � L(ε1τ ) � n − 1 < L(τ ).

The result now follows with Λ = ε1. �
Theorem 4.2. Let K G be an (X, Y , N)-group algebra with corresponding set of words W , and with induced
length function L. Assume that σ , τ are non-zero elements of K G with στ = ζ ∈ K N. Then L(σ ) = 0 if and
only if L(τ ) = 0. Equivalently, σ ∈ K N \ {0} if and only if τ ∈ K N \ {0}.

Proof. We recall that K G is a free left-right K N-module with basis W , so we may express any γ ∈
K G as γ = ∑

λw w = ∑
wλ′

w , for unique λw , λ′
w ∈ K N with w ∈ W . Since N � G it follows that

λw �= 0 if and only if λ′
w �= 0. Furthermore, K N is a domain, and therefore L(γ ν) = L(νγ ) = L(γ ) for

every γ ∈ K G and ν ∈ K N \ {0}. If L(σ ) = 0 then σ ∈ K N \ {0}. Thus if τ ∈ K G \ {0} and στ = ζ ∈ K N ,
then ζ �= 0 so that L(στ ) = L(ζ ) = 0, and hence

L(τ ) = L(στ ) = 0

as desired. The result now follows, reversing the roles of σ and τ . �
Theorem 4.3 (Left-splitting: weak form). Let K G be an (X, Y , N)-group algebra with corresponding set of
words W . Assume that σ , τ are non-zero elements of K G with στ = ζ ∈ K N. There exists a splitting Λ1 . . .Λs

such that

(Λ1 . . .Λs)τ = ηζ

for some η ∈ K N \ {0}.

Proof. Assume that W is a set of words in x and y. Since σ , τ are non-zero elements of K G with
στ ∈ K N , it follows that L(σ ) � 0 and L(τ ) � 0. We now proceed by induction on L(τ ). If L(τ ) = 0
then by Theorem 4.2 σ ∈ K N \ {0}, so that

(σ + 0 · x)τ = (Λ1)τ = 1 · ζ
yields the desired result with η = 1 ∈ K N \ {0}. Therefore, we may assume that L(τ ) > 0, and that
the result holds for all such σ ′ and τ ′ with L(τ ′) < L(τ ). By Theorem 4.1 there exists a linear term
Λ ∈ K G \ {0} and ρ ∈ K G \ {0} such that ρ(Λτ) = η1ζ for some η1 ∈ K N \ {0} and such that 0 �
L(Λτ) < L(τ ).

By induction there exists a splitting Λ1 . . .Λs−1 such that

(Λ1 . . .Λs−1)(Λτ) = η2η1ζ

for some η2 ∈ K N \ {0}. The result now follows noting that η = η2η1 ∈ K N \ {0} and that
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(Λ1 . . .Λs−1)Λ

is a splitting. �
We can now establish an alternate proof of the zero-divisor conjecture for such group algebras

first established by Cohn [3] and Lewin [10]:

Theorem 4.4. (See Cohn [3], Lewin [10].) Let K G be an (X, Y , N)-group algebra with corresponding set of
words W . Then K G contains no proper divisors of zero.

Proof. Assume σ , τ are non-zero elements of K G such that στ = 0. By Theorem 4.3 there exists
a splitting Λ1 . . .Λs such that

(Λ1 . . .Λs)τ = η · 0.

By symmetry there exists a splitting Λ′
1 . . .Λ′

t such that

(Λ1 . . .Λs)
(
Λ′

1 . . .Λ′
t

) = 0 · η′ = 0.

This contradicts Proposition 3.4. �
Corollary 4.5. Let K G be an (X, Y , N)-group algebra. Then G is torsion-free.

Proof. If G is not torsion-free then K G has proper divisors of zero by [13, Lemma 13.1.1]. �
Corollary 4.6. Let K G be an (X, Y , N)-group algebra. Then K G is von Neumann finite; that is for σ ,τ ∈ K G,
στ = 1 implies τσ = 1.

Proof. If σ ,τ ∈ K G with στ = 1 then τσ is a non-zero trivial idempotent by Theorem 4.4. �
Theorem 4.7 (Left-splitting: strong form). Let K G be an (X, Y , N)-group algebra with corresponding set of
words W . Assume that σ , τ are non-zero elements of K G with στ = ζ ∈ K N. Then there exists a splitting
Λ1 . . .Λs such that

(Λ1 . . .Λs)τ = ηζ

for some η ∈ K N \ {0}. For any such splitting we have

L(σ ) = L(Λ1 . . .Λs).

If L(σ ) � 1 then we may choose the above splitting to satisfy

L(σ ) = s = L(Λ1 . . .Λs).

Proof. By Theorem 4.3 there exists a splitting Λ1 . . .Λs such that

(Λ1 . . .Λs)τ = ηζ

for some η ∈ K N \ {0}. As (ησ )τ = ηζ , and K G has no proper divisors of zero by Theorem 4.4, it
follows that
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ησ = Λ1 . . .Λs.

Furthermore since K G is a free left K N-module with basis W , we have

L(σ ) = L(ησ ) = L(Λ1 . . .Λs).

Since L(σ ) � 1, Proposition 3.3 implies that we can bring any splitting into reduced form and there-
fore for such a reduced splitting Λ1 . . .Λs we have

L(σ ) = L(Λ1 . . .Λs) = s

and the result follows. �
The next result is a special case of Theorem 4.7 and is of independent interest. Within a virtually

abelian (X, Y , N)-group algebra K G , the term η ∈ K N \ {0} can be chosen to be central in K G .

Theorem 4.8 (Left-splitting: virtually abelian). Let K G be a virtually abelian (X, Y , N)-group algebra with
corresponding set of words W , and with corresponding abelian subgroup H containing N. Suppose for some
σ , τ ∈ K G \ {0} we have στ = ζ ∈ K N. Then there exists a splitting Λ1 . . .Λs such that

(Λ1 . . .Λs)τ = ηζ

for some η ∈ K N \ {0}, central in K G, and u1, . . . , us ∈ {x, y}. For any such splitting we have

L(σ ) = L(Λ1 . . .Λs).

If L(τ ) � 1 then we may choose the above splitting to satisfy

L(σ ) = s = L(Λ1 . . .Λs).

Proof. Assume that σ and τ are non-zero elements of K G with στ = ζ ∈ K N . If L(τ ) = 0 then by
Theorem 4.2 L(σ ) = 0 and

(σ + 0 · x)τ = (Λ1)τ = 1 · ζ,

so the result holds with η = 1. Suppose that L(τ ) � 1, and by Theorem 4.7 there exists a splitting
(α1 + β1u1) . . . (αs + βsus) such that

(α1 + β1u1) . . . (αs + βsus)τ = νζ

for some ν ∈ K N \ {0}. Fix a transversal {1,a2, . . . ,ak} for H in G , and let ν ′ = ∏k
i=2 νai . Then

Λ1 . . .Λs = (
ν ′α1 + ν ′β1u1

)
. . . (αs + βsus)

is a splitting such that

(Λ1 . . .Λs)τ = ν ′νζ

and with η = ν ′ν central in K G as desired. �



D.A. Craven, P. Pappas / Journal of Algebra 394 (2013) 310–356 321
The splitting theorems are powerful tools for analysing units in (X, Y , N)-group algebras. The fol-
lowing results give information on the inverse of a unit σ .

Theorem 4.9. Let K G be an (X, Y , N)-group algebra with corresponding set of words W . Let σ ,τ ∈ K G \ {0}.
If στ ∈ K N, then L(σ ) = L(τ ).

Proof. Assume that σ and τ are non-zero elements of K G with στ = ζ ∈ K N . Then L(σ ) � 0 and
L(τ ) � 0. If L(σ ) = 0 then by Theorem 4.2 L(τ ) = 0. Therefore we may assume that L(σ ) � 1. By
symmetry we have L(τ ) � 1. By Theorem 4.7 there exists a reduced splitting Λ1 . . .Λs such that

(Λ1 . . .Λs)τ ∈ K N

and satisfying

L(σ ) = s = L(Λ1 . . .Λs).

By symmetry there exists a reduced splitting Λ′
1 . . .Λ′

t such that

(Λ1 . . .Λs)
(
Λ′

1 . . .Λ′
t

) ∈ K N

and satisfying

L(τ ) = t = L
(
Λ′

1 . . .Λ′
t

)
.

Since each splitting is reduced and L(σ ) � 1, Proposition 3.5 applies to yield s = t as desired. �
Theorem 4.10. Let K G be an (X, Y , N)-group algebra with corresponding set of words W . Let σ ,τ ∈ K G. If
στ = 1, then L(σ ) = L(τ ).

5. Localisations and split-forms for units

The results of this section form the key ingredients to the paper.
If K G is an (X, Y , N)-group algebra with corresponding set of words W , then in particular N � G

and K N is an Ore domain. Therefore by [13, Lemma 13.3.5(ii)] the set of non-zero elements of K N
forms both a left and right divisor (or denominator) set T = K N \ {0} of K G . Thus we may localise and
by [15, Lemma 25.4] conclude that

K G ⊂ T −1 K G = K GT −1.

It is convenient therefore to note that if στ = 1 then by Theorem 4.7 there exists a reduced
splitting Λ1 . . .Λs such that

(Λ1 . . .Λs)τ = η · 1

for some non-zero element η of K N . Observing (ησ )τ = η and using that K G has no proper divisors
of zero, by Theorem 4.4, we have

ησ = Λ1 . . .Λs.

Thus up to a factor in K N , any unit of K G is a reduced splitting.
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We define a left split-form for σ , or simply split-form, to be an ordered pair (η,Λ1 . . .Λs) such that

ησ = Λ1 . . .Λs

for some η ∈ K N \ {0} and splitting Λ1 . . .Λs in K G . To stress the dependence of the splitting on the
unit σ we shall write the split-form as (η, σ̄ ).

Of course the foregoing gives an alternate perspective on the structure of any unit in K G . By
definition, any split-form (η, σ̄ ) satisfies ησ = σ̄ , and therefore in the localisation T −1 K G we have
σ = η−1σ̄ , which, in some sense, expresses a uniqueness result derived from all split-forms for σ .

It is convenient at this point to introduce the following concept. If K G is an (X, Y , N)-group alge-
bra with corresponding set of words W , then we may express any σ ∈ K G as

σ =
∑

w∈W

μw w

for unique μw ∈ K N . We define the W -support of σ to be

SuppW σ = {w ∈ W | μw �= 0}.

Proposition 5.1. Let K G be an (X, Y , N)-group algebra with corresponding set of words W . Let σ ∈ K G and
η ∈ K N \ {0}. Then SuppW σ = SuppW ησ .

Proof. Since K G is a free left K N-module with basis W , we can write

σ =
∑

w∈W

μw w

for uniquely determined μw ∈ K N . Hence

ησ =
∑

w∈W

(ημw)w.

Since K N has no proper divisors of zero we have ημw �= 0 if and only if μw �= 0, and the result
follows. �

This leads to the next result, which is also a consequence of Step 1 of the proof of Theorem 4.1.

Theorem 5.2. Let K G be an (X, Y , N)-group algebra with corresponding set of words W . If σ is a unit of K G,
then σ contains a unique word of maximal L-length.

Proof. If L(σ ) = 0 then σ ∈ K N , and σ = σ · 1 implies that the identity w = 1 is the unique word
of maximal L-length in σ . Assume L(σ ) = s � 1 and let (η, σ̄ ) be a split-form for σ such that σ̄ is
reduced. Then σ̄ has s terms, and by Proposition 3.2 has a unique word of maximal L-length s = L(σ ).
By Proposition 5.1 we have SuppW σ = SuppW σ̄ , and the result follows. �

In the following, we let gcd(α,β) denote the greatest common divisor of α and β .

Proposition 5.3. If K G is an (X, Y , N)-group algebra with N finitely generated abelian, then every splitting
in K G is expressible as

ν(α1 + β1u1) . . . (αs + βsus)

for some ν ∈ K N \ {0}, (α1 + β1u1) . . . (αs + βsus) reduced and such that gcd(αi, βi) = 1 for all i = 1, . . . , s.
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Proof. Let W be a corresponding set of words in x and y. Since N is finitely generated abelian,
K N is a Laurent polynomial ring, and so is a unique-factorisation domain. Thus the gcd of any two
elements of K N , with at least one of them non-zero, is well-defined. By Proposition 3.3 a splitting
can be brought into reduced form and by Proposition 3.4 it defines a non-zero element of K G . If
a reduced splitting defines a non-zero element ν of K N then this reduced splitting equals ν(1 + 0 · x),
an expression satisfying the conclusion of the theorem. If a reduced splitting has length s � 1, then
by Proposition 3.2 it is expressible as

(
α′

1 + β ′
1u1

)
. . .

(
α′

s + β ′
sus

)

with β ′
1 . . . β ′

s �= 0 and L(u1 . . . us) = s � 1. If s = 1 then we can pull out νs = gcd(α′
s, β

′
s) to the left to

obtain an expression

ν(αs + βsus)

with ν = νs ∈ K N \{0}, αs = α′
s/νs , βs = β ′

s/νs �= 0 in K N , and with gcd(αs, βs) = 1. By Proposition 3.2,
the single-term splitting (αs + βsus) is reduced, and therefore the expression ν(αs + βsus) satisfies
the conclusion of the theorem. If s � 2, then we can pull out νs = gcd(α′

s, β
′
s) to the left and absorb

it into the previous term to obtain a splitting

(
α′

1 + β ′
1u1

)
. . .

(
α′

s−2 + β ′
s−2us−2

)(
α′′

s−1 + β ′′
s−1us−1

)
(αs + βsus)

with α′′
s−1 = (α′

s−1)(νs), β ′′
s−1 = (β ′

s−1)(ν
us−1
s ), αs = α′

s/νs , and βs = β ′
s/νs in K N . Since K N is a do-

main and ν
us−1
s �= 0, it follows that β ′

1 . . . β ′
s−2β

′′
s−1βs �= 0. Moreover L(u1 . . . us) = s. Thus by Proposi-

tion 3.2 this splitting is reduced, with gcd(αs, βs) = 1. Proceeding inductively, we can pull out gcd’s
to the left as outlined above to arrive at the desired expression. �

We now come to the main result of this section.

Theorem 5.4. Assume K G is an (X, Y , N)-group algebra with N finitely generated abelian. Assume σ is a unit
of L-length s � 1 in K G. Then

εσ = (α1 + β1u1) . . . (αs + βsus)

for some ε ∈ K N \ {0}, (α1 + β1u1) . . . (αs + βsus) reduced and such that gcd(αi, βi) = 1 for all i = 1, . . . , s.

Proof. By Theorem 4.7 we can write

(Λ1 . . .Λs)τ = η · 1

for some η ∈ K N \ {0} and reduced splitting Λ1 . . .Λs . By the previous Proposition 5.3 we can write
our reduced splitting as

ν(α1 + β1u1) . . . (αs + βsus)

for some ν ∈ K N \ {0}, (α1 + β1u1) . . . (αs + βsus) reduced and such that gcd(αi, βi) = 1 for all i =
1, . . . , s. By our remarks above we conclude

ησ = ν(α1 + β1u1) . . . (αs + βsus).
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Now let W be the corresponding set of words for this algebra and view K G as a free left K N-module
with basis W . Then

ν(α1 + β1u1) . . . (αs + βsus) =
∑

w∈W

(νλw)w

for some uniquely determined λw ∈ K N . It follows that η divides νλw in K N for each w ∈ W . We
claim that this forces ν to divide η in K N . Suppose by way of contradiction that ν does not divide η.
Then there exists a prime divisor p of ν that does not divide η so that η divides (ν/p)λw for every
w ∈ W . It then follows that

σ = p ·
∑

w∈W

η−1(ν/p)λw w

with

∑
w∈W

η−1(ν/p)λw w ∈ K G.

But this implies that the prime p ∈ K N is a unit of K G hence a unit of K N by [13, Lemma 1.1.4],
so that K N contains a non-trivial unit, an impossibility by [11, Theorem 8.5.3] as N is torsion-free
abelian. Hence ε = ν−1η ∈ K N and it follows that

εσ = (α1 + β1u1) . . . (αs + βsus)

with ε ∈ K N \ {0}, (α1 + β1u1) . . . (αs + βsus) reduced and such that gcd(αi, βi) = 1 for all i = 1, . . . , s
as desired. �

If σ is a unit of L-length � 1, then we will say that (ε, σ̄ ) is a left-reduced split-form for σ or
simply a reduced split-form, if ε and σ̄ satisfy the conclusion of the previous Theorem 5.4.

6. Representation theorems

In this section group means arbitrary group and not necessarily an (X, Y , N)-group.
For the convenience of the reader we begin with a brief review necessary for our work and refer

the reader to [13, Chapters 1.1 and 5.1] for a more thorough account. We follow closely the exposition
found there.

Let G be a group and H a subgroup. Then K G defines a free left-right K H-module with basis any
right-left transversal for H in G . The map πH : K G → K H given by

∑
x∈G

axx �→
∑
x∈H

axx

is a K H-bimodule map with πH (1) = 1. Moreover for any g ∈ G , σ ∈ K G we have

πH
(

gσ g−1) = gπH (σ )g−1.

Let X = {x j} be a right transversal for H in G , and let V = K G be the free left K H-module with
basis X . Then for any σ ∈ K G there exist σ j ∈ K G with Suppσ j ⊂ Hx j such that

σ =
∑

σ j
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with all but finitely many σ j = 0. Observing that

Suppσ j x
−1
j ⊂ H,

allows us to rewrite the foregoing expression for σ as

σ =
∑(

σ j x
−1
j

)
x j .

Using properties of the map πH , we have πH (σ x−1
j ) = σ j x

−1
j so that

σ =
∑

πH
(
σ x−1

j

)
x j,

thereby giving us a convenient expression for σ as a (left) K H-linear combination of the right
transversal X = {x j}, noting that the πH (σ x−1

j ) are uniquely determined.
Assume H has finite index n in G and write X = {x1, . . . , xn}. The free left K H-module, V = K G ,

with basis X is also a right K G-module that is faithful. Right and left multiplications commute as
operators on V and therefore K G ⊂ Mn(K H), the ring of all n × n matrices over K H ; that is, K G
embeds as K H-linear maps on the n-dimensional free K H-module V . This embedding is obtained by
computing the right action of K G on any basis. With respect to X we have

xiσ =
∑

j

πH
(
(xiσ)x−1

j

)
x j

so that the desired embedding with respect to this basis X is

ρX : K G → Mn(K H)

with

σ �→ [
πH

(
xiσ x−1

j

)]
.

We shall refer to the map ρX as the (right) regular embedding of K G in Mn(K H) (with respect to the
right transversal X). By a regular embedding ρ : K G → Mn(K H) we shall mean an embedding such
that ρ = ρX for some right transversal X . We summarise all of this in the following theorem as given
in [13, Lemma 5.1.1].

Theorem 6.1. Let H be a subgroup of finite index n in a group G and let X = {x1, . . . , xn} be a right transversal
for H in G. Then there exists a regular embedding

ρX : K G → Mn(K H)

given by

σ �→ [
πH

(
xiσ x−1

j

)]
.

We are now ready for the results of this section. We begin with three straightforward, but neces-
sary, propositions.
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Proposition 6.2. Let H be a normal subgroup of finite index n in G. Then G acts by conjugation on Mn(K H),
and this action does not depend on any particular embedding of G in Mn(K H).

Proof. Since H � G , G acts by conjugation on K H and hence G acts on Mn(K H). More precisely if
[αi j] ∈ Mn(K H) and g ∈ G then we define

[αi j]g = [
α

g
i j

]
,

and this yields an action of G by conjugation on Mn(K H) that does not depend on any specific
embedding of G in Mn(K H). �
Proposition 6.3. Let H be a subgroup of finite index n in G and let ρX and ρY be regular embeddings of K G
in Mn(K H). Then for any σ ∈ K G the matrices ρX (σ ) and ρY (σ ) are conjugate by an invertible matrix in
Mn(K H).

Proof. The regular embeddings ρX and ρY are defined in terms of right transversals X and Y respec-
tively. Replacing X by Y is a change of basis for the module V = K G and therefore for any σ ∈ K G
the matrices ρX and ρY are conjugate by an invertible matrix in Mn(K H). �
Proposition 6.4. Let H be a normal subgroup of finite index n in G, and assume that ρ : K G → Mn(K H)

is a regular embedding. Then for any σ ∈ K G and g ∈ G the matrices ρ(σ ) and ρ(σ )g are conjugate by
an invertible matrix in Mn(K H).

Proof. Let X = {x1, . . . , xn} be a right transversal for H in G such that ρ = ρX . For any σ ∈ K G and
g ∈ G we have:

ρX (σ )g = [
gπH

(
xiσ x−1

j

)
g−1]

= [
πH

(
gxiσ x−1

j g−1)]
= [

πH
(
(gxi)σ (gx j)

−1)]
= ρg X (σ ).

Since g X is another right transversal for H in G , Proposition 6.3 applies and therefore the matrices
ρX (σ ) and ρg X (σ ) = ρX (σ )g are conjugate by an invertible matrix in Mn(K H). �

We now give the main results of this section. We thank the referee for suggesting them to us as
generalisations to our original theorems.

Theorem 6.5. Let H be a normal abelian subgroup of finite index n in G and assume K G ⊂ Mn(K H) via
a regular embedding. Let Z K G denote the centre of K G. Then the determinant map sends K G into K H ∩ Z K G
and is independent of the choice of regular embedding.

Proof. Since H is abelian, K H is a commutative ring so the determinant map

det : Mn(K H) → K H

certainly exists. Let σ ∈ K G , g ∈ G and assume

ρ : K G → Mn(K H)
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is a regular embedding. By Proposition 6.4 the matrices ρ(σ ) and ρ(σ )g are conjugate by an invert-
ible matrix in Mn(K H) and therefore

detρ(σ ) = det
(
ρ(σ )g).

Moreover

det
(
ρ(σ )g) = (

detρ(σ )
)g

.

Thus

detρ(σ ) = (
detρ(σ )

)g

for all g ∈ G and therefore

detρ(σ ) ∈ K H ∩ Z K G.

If X and Y are right transversals for H in G then by Proposition 6.3 the matrices ρX (σ ) and ρY (σ )

are conjugate by an invertible matrix in Mn(K H). Hence

detρX (σ ) = detρY (σ )

and this shows that the determinant map sends K G into K H ∩ Z K G and is independent of the choice
of regular embedding. �
Theorem 6.6. Let H be a normal abelian subgroup of finite index n in G and let ρ : K G → Mn(K H) be
a regular embedding. If σ ∈ K G is invertible then

detρ(σ ) ∈ U K H ∩ Z K G

where U K H denotes the units of K H and is independent of the regular embedding.

Proof. Immediate by properties of determinants and the previous theorem. �
The converse is the following. Some of our work is implicit in [13, Lemma 5.1.15] and follows along

similar lines.

Theorem 6.7. Let H be a normal abelian subgroup of finite index n in G and ρ : K G → Mn(K H) be a regular
embedding. Let σ ∈ K G. If

detρ(σ ) ∈ U K H ∩ Z K G

then σ ∈ U K G.

Proof. Let p(T ) = T n + αn−1T n−1 + · · · + α0 be the characteristic polynomial of ρ(σ ), with αi ∈ K H .
For any g ∈ G the characteristic polynomial of ρ(σ )g is

pg(T ) = T n + α
g
n−1T n−1 + · · · + α

g
0 .
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By Proposition 6.4, the matrices ρ(σ ) and ρ(σ )g are conjugate by an invertible matrix in Mn(K H)

and therefore have the same characteristic polynomial. Thus

p(T ) = pg(T ).

Therefore for all i, g we have α
g
i = αi and hence αi ∈ K H ∩ Z K G . By the Cayley–Hamilton theorem

the matrix ρ(σ ) satisfies its characteristic polynomial, where the coefficients αi are viewed as scalar
matrices αi I , and where I is the identity matrix. Thus

ρ(σ )n + (αn−1 I)ρ(σ )n−1 + · · · + (α0 I) = 0

and therefore

detρ(σ ) = (−1)nα0 = α ∈ U K H ∩ Z K G.

Thus

α−1 ∈ U K H ∩ Z K G.

We can therefore write

ρ(σ )
(
ρ(σ )n−1 + (αn−1 I)ρ(σ )n−2 + · · · + (α1 I)

)(−α−1 I
) = I.

Moreover for any δ ∈ K H ∩ Z K G we have ρ(δ) = diag[δ, . . . , δ]; that is, the matrix with δ in each
position along the main diagonal and 0 off the main diagonal. Hence

(
ρ(σ )n−1 + (αn−1 I)ρ(σ )n−2 + · · · + (α1 I)

)(−α−1 I
)

lies in the image of ρ and is the inverse of ρ(σ ). Thus σ ∈ U K G . �
As a consequence we have the following special case that is important for our work in the next

sections.

Theorem 6.8. Let H be a torsion-free normal abelian subgroup of finite index in G, and assume Z(G) = {1}.
Let ρ : K G → Mn(K H) be any regular embedding. Then σ is a unit in K G if and only if detρ(σ ) ∈ K \ {0}.

Proof. Let σ be a unit in K G and let ρ : K G → Mn(K H) be any regular embedding. Then by Theo-
rem 6.5 we have

detρ(σ ) ∈ U K H ∩ Z(K G).

Since H is torsion-free abelian it follows from [11, Theorem 8.5.3] that detρ(σ ) is a trivial unit of
K H and therefore detρ(σ ) = λh for some λ ∈ K \ {0} and h ∈ H . Thus detρ(σ ) = λh is central in K G ,
and it follows that h = 1, as Z(G) = {1}, so that detρ(σ ) ∈ K \ {0}. The converse follows immediately
from Theorem 6.7. �

We conclude this section with the following useful result on localisations and their representations.
The proof we give extends our comments on localisations given at the beginning of the previous
section.
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Theorem 6.9. Let K G be an (X, Y , N)-group algebra with subgroup H of finite index n in G such that N ⊂ H.
Let T = K N \ {0}. Then any regular embedding

ρ : K G → Mn(K H)

extends to an embedding

ρ : T −1 K G → Mn
(
T −1 K H

)

such that

ρ
(
T −1) = [

ρ(T )
]−1

.

Proof. Let K G be an (X, Y , N)-group algebra with subgroup H of finite index n in G such that N ⊂ H .
Let T = K N \ {0}. Then by Theorem 6.1 we have a regular embedding

ρ : K G → Mn(K H).

Since N � G and K N is an Ore domain, it follows from [13, Lemma 13.3.5(ii)] that T = K N \ {0}
is both a left and right divisor (or denominator) set in K G . Hence we may localise at T . The same
argument also shows that we may localise the subalgebra K H at T to get T −1 K H ⊂ T −1 K G . Thus we
may view our map ρ as an embedding

ρ : K G → Mn
(
T −1 K H

)
.

Inside Mn(T −1 K H) all elements of ρ(T ) are invertible. Thus by the universal property of T -inverting
morphisms [9, Corollary 10.11] and by [15, Lemma 25.2] it follows that our map ρ extends to an em-
bedding

ρ : T −1 K G → Mn
(
T −1 K H

)

such that

ρ
(
T −1) = [

ρ(T )
]−1

.

7. The fours group

In this section we study properties of Γ = 〈x, y | xy2x−1 = y−2, yx2 y−1 = x−2〉 that we will use
in subsequent sections. We fix the following notation. Let z = xy, a = x2, b = y2 and c = xyxy = z2.
We recall our convention that for any group G conjugation by g ∈ G shall be denoted by αg to mean
gαg−1 for all α ∈ K G .

We have the following straightforward, but important, result. The statements are presented in the
logical order in which they would be proved.

Proposition 7.1. For any g ∈ Γ , α ∈ KΓ we have αxy = α yx and αg2 = α. Moreover we have

(i) ax = a, ay = a−1 , az = a−1;
(ii) bx = b−1 , by = b, bz = b−1;

(iii) c−1 = yxyx;
(iv) cx = c−1 , c y = c−1 , cz = c.
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Proof. We will establish (iii). To this end we see that c(yxyx) = xyxyyxyx = xyxy2xyx = y2xyxxyx =
y2x−2xyyx = y2x−2 y−2x2 = 1 by (iii). �

With significantly more work one can then show the following.

Theorem 7.2. Let X = 〈x, y2〉 and Y = 〈x2, y〉 be subgroups of Γ . Then

(i) N = 〈a,b〉 is a normal free abelian subgroup of Γ of rank 2;
(ii) Γ/N = X/N ∗ Y /N is infinite dihedral;

(iii) A right transversal for N in G is given by W , the set of all words in x and y;
(iv) There exists a length function L : Γ → N induced from W ;
(v) H = 〈a,b, c〉 is a normal free abelian subgroup of Γ of rank 3 with Γ/H a fours group;

(vi) A right transversal for H in Γ is given by {1, x, y, xy}.

Proof. Most of the details can be found in [13, Lemma 13.3.3 and Theorem 13.3.7], with the remain-
der safely left to the reader. �
Theorem 7.3. The group Γ is supersoluble.

Proof. The normal series

〈1〉 ⊂ 〈
x2〉 ⊂ 〈

x2, y2〉 ⊂ 〈
x2, y2, xy

〉 ⊂ Γ

shows that Γ is supersoluble. �
There are other length functions on Γ . To better see this, we give the following result.

Proposition 7.4. There are exactly three normal subgroups, N1 = N, N2 = 〈a, c〉, and N3 = 〈b, c〉, such that
if φ : Γ → D∞ is a surjective homomorphism then kerφ = Ni for some i. Furthermore, there is an automor-
phism ψ of Γ such that Nψ

i = Ni+1 (where the indices are taken modulo 3).

Proof. We use the calculus from Proposition 7.1. Notice that (z2)x = cx = c−1 = z−2. Similarly
(z2)y = z−2, (x2)z = x−2, and (y2)z = y−2. Therefore any ordered pair from {x, y, z} satisfies the re-
lations of the group, and so there are (outer) automorphisms interchanging (x, y) with (u, v), where
u, v ∈ {x, y, z}. In particular, all of the Ni are Aut(Γ )-conjugate.

We now prove that if M � Γ and Γ/M ∼= D∞ , then M = Ni . Firstly, let G ∼= D∞ be generated by
elements g and h. Since every element of G is either of order 2 or lies inside the cyclic subgroup of
index 2, it cannot be that both g and h have infinite order. Also, if one has infinite order, then their
product (either gh or hg) has order 2 as well. This will be important in what follows.

Let M be a normal subgroup of Γ such that Γ/M is infinite dihedral. Then Γ/M = 〈Mx, M y〉, and
so by the previous paragraph exactly two of Mx, M y, and Mxy, must have order 2 in the quotient.
Hence M contains one of the Ni , say N1. (Since they are all Aut(Γ )-conjugate, we may assume that
N1 � M .) Since any proper quotient of D∞ is finite, and we know that Γ/N1 is infinite dihedral, we
see that M = N1, as claimed. �

We can see that
⋂

Ni = 1, and so for a group element g ∈ G , its images modulo each of the
quotients Γ/Ni is enough to determine it uniquely. Also, since each of the three normal subgroups Ni
are Aut(Γ )-conjugate, any result proved using one of the length functions is automatically applicable
for the other two length functions obtained in this way.

Thus we see how to form other length functions on the group, simply by taking two other gen-
erators for Γ that satisfy the group relations: for example, consider the pair (x, xyx), which together
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generate Γ . Then 〈x2, (xyx)2〉 = 〈x2, y−2〉 = N , but here the elements x and xyx are considered to
have length 1, and the element y = x(xyx)x has length 3.

A useful method for determining the length of an element under an automorphism of K G , using
a new length function, is given by the next result.

Proposition 7.5. Let K G be an (X, Y , N)-group algebra with W the corresponding set of words in {x, y} and
L : K G → N ∪ {−∞} the induced length function. Let φ : G → G be an isomorphism extending K -linearly to
an isomorphism φ : K G → K G. Then K G is a (φ(X), φ(Y ), φ(N))-group algebra with φ(W ) the correspond-
ing set of words in {φ(x), φ(y)} and with φL : K G → N ∪ {−∞} the induced length function. Moreover for
any α ∈ K G we have (φL)(α) = L(φ(α)).

This leads us to the following result which we will use in analysing the Promislow set.

Proposition 7.6. The map sending x �→ xy and y �→ y extends to an automorphism

φ : Γ → Γ

and yields a length function

φL : Γ →N∪ {−∞},
induced from φ(W ), the set of all words in φ(x) = xy and φ(y) = y.

Proof. This follows immediately from the fact that Γ = 〈xy, y〉, with xy, y satisfying the defining
relations, and noting that N = 〈x2, y2〉 = 〈(xy)2, y2〉. �
8. Structure theorems in KΓ

In this section we summarise results of the previous sections applied to KΓ .

Theorem 8.1. Let N = 〈a,b〉 and H = 〈a,b, c〉. Then KΓ is a virtually abelian (X, Y , N)-group algebra, with
corresponding abelian subgroup H containing N and with corresponding set of words W in x and y.

Proof. By Theorem 7.2, Γ is an (X, Y , N)-group with X = 〈x, y2〉 and Y = 〈x2, y〉. The groups X and Y
are poly-infinite cyclic, and therefore right-orderable by [13, Lemma 13.1.6]. Thus K X and K Y are
domains by [13, Lemma 13.1.11], and it remains to show that K N is an Ore domain. To this end
we note that K N is a domain since N ⊂ X ∩ Y , and that K N is an Ore ring by Theorem 7.3 and
[13, Lemma 13.3.6(iii)]. �
Theorem 8.2. The group algebra KΓ is a domain (and hence all invertible elements have two-sided inverses).

Proof. This follows from Theorem 4.4. �
Theorem 8.3 (Left-splitting: strong form). Let N = 〈a,b〉, and let σ , τ be non-zero elements of KΓ with
στ = ζ ∈ K N. Then there exists a splitting Λ1 . . .Λs such that

(Λ1 . . .Λs)τ = ηζ

for some η ∈ K N \ {0}. For any such splitting we have

L(σ ) = L(Λ1 . . .Λs).
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If L(σ ) � 1 then we may choose the above splitting to satisfy

L(σ ) = s = L(Λ1 . . .Λs).

Proof. This follows immediately from Theorem 4.7. �
Theorem 8.4 (Left-reduced split-form). Assume σ is a unit of L-length s � 1 in KΓ . Then σ has a left-reduced
split-form

εσ = (α1 + β1u1) . . . (αs + βsus)

with ε ∈ K N \ {0}, (α1 + β1u1) . . . (αs + βsus) reduced and such that gcd(αi, βi) = 1 for all i = 1, . . . , s.

Proof. The subgroup N is finitely generated abelian. The result now follows by Theorem 5.4. �
Theorem 8.5 (Determinant condition). Let H = 〈a,b, c〉 be the rank-3 free abelian subgroup of index 4 in Γ .
Let X be any right transversal for H in Γ and let

ρX : KΓ → M4(K H)

be the induced regular embedding. Let σ ∈ KΓ . Then σ is a unit of KΓ if and only if detρX (σ ) ∈ K \ {0}.

Proof. This follows immediately from Theorem 6.8, noting that the centre Z(Γ ) = {1}. �
By Theorem 7.2, H = 〈a,b, c〉 is a rank-3 free abelian subgroup of Γ of index 4 with {1, x, y, xy}

a right transversal for H in Γ . We can therefore write any element σ of the group algebra KΓ as
a sum

σ = A + Bx + C y + Dz,

where A, B , C and D are elements of the subalgebra K H .

Theorem 8.6. For any σ ∈ KΓ , the map given by

σ �→
⎛
⎜⎝

A B C D
Bxa Ax Dxa C x

C yb D ya−1c−1 A y B ya−1bc−1

Dzc C zb−1 Bzb−1c Az

⎞
⎟⎠

is the regular embedding

θ : KΓ → M4(K H)

in the basis X = {1, x, y, xy}.

Proof. We fix an ordering of the basis as x1 = 1, x2 = x, x3 = y, x4 = xy. By Theorem 6.1,

θ(σ ) = [
πH (xiσ x j)

]
,
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and in particular for any α ∈ K N

θ(α) =
⎛
⎜⎝

α 0 0 0
0 αx 0 0
0 0 α y 0
0 0 0 αxy

⎞
⎟⎠ .

Since

θ(A + Bx + C y + Dxy) = θ(A + Bx) + θ(C + Dx)θ(y),

it is enough to find θ(x) and θ(y).
Since θ(x) = [πH (xi xx−1

j )], we have:

(i) 1xx−1
j ∈ H if and only if x j = x, so πH (1xx−1) = 1;

(ii) xxx−1
j ∈ H if and only if x j = 1, so πH (xx1−1) = a;

(iii) yxx−1
j ∈ H if and only if x j = xy, since yxy−1x−1 = yxyy−2xx−2 = yxyxx−2 y2 = c−1a−1b, so

πH (yx(xy)−1) = a−1bc−1;
(iv) xyxx−1

j ∈ H if and only if x j = y, since xyxy−1 = xyxyy−2 = cb−1, so πH (xyxy−1) = b−1c.

From θ(y) = [πH (xi yx−1
j )], we have:

(i) 1yx−1
j ∈ H if and only if x j = y, so πH (1yy−1) = 1;

(ii) xyx−1
j ∈ H if and only if x j = xy, so πH (xy(xy)−1) = 1;

(iii) yyx−1
j ∈ H if and only if x j = 1, so πH (yy1−1) = b;

(iv) xyyx−1
j ∈ H if and only if x j = x, since xyyx−1 = b−1, so π(xyyx−1) = b−1.

Thus we have

θ(x) =
⎛
⎜⎝

0 1 0 0
a 0 0 0
0 0 0 a−1bc−1

0 0 b−1c 0

⎞
⎟⎠ and θ(y) =

⎛
⎜⎝

0 0 1 0
0 0 0 1
b 0 0 0
0 b−1 0 0

⎞
⎟⎠ .

Hence

θ(A + Bx) = θ(A) + θ(B)θ(x) =
⎛
⎜⎝

A B 0 0
Bxa Ax 0 0
0 0 A y B ya−1bc−1

0 0 Bzb−1c Az

⎞
⎟⎠ ,

so

θ(C + Dx)θ(y) =
⎛
⎜⎝

C D 0 0
Dxa C x 0 0

0 0 C y D ya−1bc−1

0 0 Dzb−1c C z

⎞
⎟⎠

⎛
⎜⎝

0 0 1 0
0 0 0 1
b 0 0 0
0 b−1 0 0

⎞
⎟⎠

=
⎛
⎜⎝

0 0 C D
0 0 Dxa C x

C yb D ya−1c−1 0 0
Dzc C zb−1 0 0

⎞
⎟⎠ ,

and the result follows. �
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This embedding extends naturally to T −1 KΓ .

Theorem 8.7. Let N = 〈a,b〉, and let T = K N \ {0}. Let H = 〈a,b, c〉 be the rank-3 free abelian subgroup of
index 4 in Γ , and let X = {1, x, y, xy} be the right transversal for H in Γ . Then for any η ∈ K N \ {0} and
σ = A + Bx + C y + Dxy, the map

θ
(
η−1σ

) =
⎛
⎜⎝

η−1 0 0 0
0 (ηx)−1 0 0
0 0 (ηy)−1 0
0 0 0 (ηz)−1

⎞
⎟⎠

⎛
⎜⎝

A B C D
Bxa Ax Dxa C x

C yb D ya−1c−1 A y B ya−1bc−1

Dzc C zb−1 Bzb−1c Az

⎞
⎟⎠

is the extension of the regular embedding

θ : KΓ → M4(K H)

to an embedding

θ : T −1 KΓ → Mn
(
T −1 K H

)

such that

θ
(
T −1) = (

θ(T )
)−1

.

Proof. By Theorem 6.9 it is enough to evaluate θ(η). By Theorem 8.6 we have

⎛
⎜⎝

η 0 0 0
0 ηx 0 0
0 0 ηy 0
0 0 0 ηz

⎞
⎟⎠ ,

and the result follows. �
9. Special terms

We stay with the notation and conventions of Section 7. In particular we recall that N = 〈a,b〉
is a normal, free rank-2 abelian subgroup of Γ and that K N is a Laurent polynomial ring in the
commuting variables a and b. We begin with two results whose proofs are straightforward and safely
left to the reader.

Proposition 9.1. Let α + βx ∈ KΓ be a linear term, and let D = ααx − ββxa ∈ K N. Then

(i) Dx = D;
(ii) D y = Dz = α yαz − β yβ za−1;

(iii) D D y is central in KΓ .

Proposition 9.2. Let α + β y ∈ KΓ be a linear term, and let D = αα y − ββ yb ∈ K N. Then

(i) D = D y ;
(ii) Dx = Dz = αxαz − βxβ zb−1;

(iii) D Dx is central in KΓ .
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Let D1 = ααx − ββxa and D2 = αα y − ββ yb. These terms arise in an essential way.

Proposition 9.3. Let θ : KΓ → M4(K H) be the regular embedding. Then

(i) det θ(α + βx) = (ααx − ββxa)(α yαz − β yβ za−1) = D1 D y
1 ;

(ii) det θ(α + β y) = (αα y − ββ yb)(αxαz − βxβ zb−1) = D2 Dx
2 .

Proof. Applying Theorem 8.6 we have

det θ(α + βx) = det

⎛
⎜⎝

α β 0 0
βxa αx 0 0

0 0 α y β ya−1bc−1

0 0 β zb−1c αz

⎞
⎟⎠ = D1 D y

1

and

det θ(α + β y) = det

⎛
⎜⎝

α 0 β 0
0 αx 0 βx

β yb 0 α y 0
0 β zb−1 0 αz

⎞
⎟⎠ = D2 Dx

2.

Of course the second determinant is simply det(ψ(ψ−1(α) + ψ−1(β)x)), where ψ is the automor-
phism on KΓ induced K -linearly by interchanging x with y. �

The following is of independent interest, and provides a description for the inverse of a unit σ of
KΓ in terms of any reduced split-form (ε, σ̄ ) for σ .

Theorem 9.4. Let T = K N \ {0} ⊂ KΓ . Assume σ is a unit of L-length s � 1 in KΓ and that

ησ = (α1 + β1u1) . . . (αs + βsus)

is a split-form for σ . Then in T −1 KΓ we have

σ−1 = (
αus

s − βsus
)

D−1
s . . .

(
α

u1
1 − β1u1

)
D−1

1 η

where

Di = (
αiα

ui
i − βiβ

ui
i u2

i

)

and ui ∈ {x, y} for all i = 1, . . . , s.

Proof. In T −1 KΓ = KΓ T −1 we write

σ = η−1(α1 + β1u1) . . . (αs + βsus).

For any ui ∈ {x, y} we have

(αi + βiui)
(
α

ui
i − βiui

) = Di,

and the result follows by induction. �
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The foregoing also shows directly that invertible elements in KΓ have two-sided inverses.
We conclude this section with an important result. Before doing so, however, we provide the

following elementary result concerning Laurent polynomials.

Proposition 9.5. Let K be an infinite field, and let f (X, Y ) ∈ K [X, X−1, Y , Y −1] be a Laurent polynomial in
two variables. If f (k, Y ) = 0 for infinitely many k ∈ K , then f (X, Y ) = 0.

Proof. Write

f (X, Y ) = p(X, Y )

Xi Y j

for some polynomial p(X, Y ) ∈ K [X, Y ]. Then

p(X, Y ) = pn(X)Y n + · · · + p1(X)Y 1 + p0(X)

for some polynomials pi(X) ∈ K [X]. If p(k, Y ) = 0, then

pn(k)Y n + · · · + p1(k)Y 1 + p0(k) = 0,

and therefore pi(k) = 0 for i = 1, . . . , s. Since no non-zero K -polynomial can have infinitely many
roots in K , it follows that each pi(X) = 0, and therefore f (X, Y ) = 0. �
Theorem 9.6. Let α and β be elements of K N, and suppose that αα y − ββ yb is a unit. Then either α = 0 or
β = 0.

Proof. We think of αα y − ββ yb as a Laurent polynomial in the commuting variables a and b. By
extending K if necessary, we assume that K is infinite. If αα y − ββ yb is a unit in K N , then we
may specialise a to be any element of K \ {0} and the specialisation of αα y − ββ yb remains a unit.
Hence specialising a = k ∈ K \ {0} yields a non-zero Laurent polynomial (ᾱ)2 − (β̄)2b = λbi for some
λ ∈ K \ {0}. Suppose by way of contradiction that both ᾱ and β̄ are non-zero. Then ᾱ2 and β̄2b are
non-zero. Notice that the highest and lowest powers of b in (ᾱ)2 are of even degree, and the highest
and lowest powers of b in (β̄)2b are of odd degree. Assume

max degb ᾱ2 = 2m < 2n + 1 = max degb β̄2b.

Then

ᾱ2 − β̄2b = λb2n+1

and therefore all powers of b appearing in ᾱ2 cancel off with powers of b appearing in β̄2b. Therefore
β̄2b has at least two terms in powers of b so that

min degb β̄2b < max degb β̄2b.

Thus

min degb β̄2b � min degb ᾱ2.

But min degb β̄2b is odd and min degb ᾱ2 is even so that
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min degb β̄2b < min degb ᾱ2.

But this implies that (ᾱ)2 − (β̄)2b contains at least two terms in powers of b, contradicting the fact
that (ᾱ)2 − (β̄)2b is a unit. Thus our assumption 2m < 2n + 1 is incorrect and therefore

max degb β̄2b = 2n + 1 < 2m = max degb ᾱ2.

A symmetric argument as above, reversing the roles of β̄2b and ᾱ2 under the assumption 2n+1 < 2m,
yields a similar contradiction. Thus for each specialisation a = k ∈ K \ {0}, either ᾱ = 0 or β̄ = 0.
Since K is infinite, Proposition 9.5 applies to yield either α = 0 or β = 0 as claimed. �
10. Units of L-length 0, 1 and 2 in KΓ

In this section, and the next, we analyse the structure of units in KΓ of small L-length. We fix
the notation and conventions of the previous sections. In particular we let X = 〈x, y2〉 and Y = 〈x2, y〉
be subgroups of Γ , each containing N = 〈a,b〉. We shall view KΓ as an (X, Y , N)-group algebra.
We fix W to be the set of all words in x and y, creating a transversal for N in Γ , and we write L
for the induced length function on Γ . All splittings are W -splittings with respect to the forego-
ing conventions. We recall that K N is a Laurent polynomial ring in two variables and is therefore
a unique-factorisation domain. For α,β ∈ K N we shall say that α divides β if α divides β in K N . In
this case we write α | β . If α does not divide β , then we write α � β . We write gcd to abbreviate
greatest common divisor, denoting the greatest common divisor of α,β ∈ K N , by gcd(α,β) or simply
by (α,β) when the context is clear.

Proposition 10.1. Assume

Σ = (α1 + β1u1) . . . (αs + βsus)

is a splitting. If Σ is a unit of KΓ , then Σ is trivial.

Proof. We proceed by induction on the number of terms of Σ . If s = 1 then Σ lies in the group
algebra of 〈N, u1〉, which is poly-Z, so satisfies the unit conjecture by [13, Theorem 13.1.11]. Assume
s > 1 and that the result holds for all splittings with fewer than s terms. Then α1 + β1u1 is a unit
and therefore trivial. The result now follows noting that the splitting

(α2 + β2u2) . . . (αs + βsus)

satisfies the inductive hypothesis and that the product of trivial units is a trivial unit. �
We shall refer to the following elementary result repeatedly.

Proposition 10.2. Let σ ∈ KΓ , η ∈ K N \ {0}, and assume

ησ =
∑

w∈W

λw w

for some λw ∈ K N. Then η divides λw in K N for every w ∈ W .

Proof. Since KΓ is a free left K N-module with basis W , we can write

σ =
∑

μw w

w∈W
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for some μw ∈ K N . Then

∑
w∈W

(ημw)w =
∑

w∈W

λw w,

and therefore ημw = λw for all w ∈ W as desired. �
Proposition 10.3. Assume σ is a unit of L-length � 1 in KΓ with reduced split-form εσ = σ̄ . Then ε is a unit
in K N if and only if σ is trivial.

Proof. If ε is a unit in K N , then ε is trivial by [11, Theorem 8.5.3] since N is torsion-free abelian. By
Proposition 10.1, σ̄ is a trivial unit, and therefore so is σ = ε−1σ̄ . Conversely assume σ is a trivial
unit of L-length � 1 in KΓ , and let (ε, σ̄ ) be a reduced split-form for σ . Then

εσ = λw w

for uniquely determined λw ∈ K N \ {0}. By Proposition 10.2, ε divides λw in K N , so that

σ = (λw/ε)w,

with λw/ε in K N . Since σ is a unit, λw/ε is a (trivial) unit of K N , and therefore we have
gcd(0, λ/ε) = 1. Hence the expression

εσ = σ̄ = ε
(
0 + (λw/ε)w

)

is a reduced split-form for σ , and it follows that ε is a unit in K N . �
We now proceed to analyse units.

Theorem 10.4. If σ is a unit of L-length 0 in KΓ , then σ is trivial.

Proof. Assume that σ is a unit in KΓ such that L(σ ) = 0. Then σ ∈ K N , and therefore is trivial by
[11, Theorem 8.5.3] since N is torsion-free abelian. �
Theorem 10.5. If σ is a unit of L-length 1 in KΓ , then σ is trivial.

Proof. Assume that σ is a unit in KΓ such that L(σ ) = 1. By Theorem 5.2 we may assume that σ has
unique maximal-length word of the form w = x. By Theorem 8.4, σ has a reduced split-form which
we may assume looks like

εσ = (α1 + β1x) = σ̄

with ε ∈ K N \ {0}, (α1 + β1x) reduced and such that gcd(α1, β1) = 1. By Proposition 10.2, ε | α1 and
ε | β1. Thus ε is a unit in K N , and the result follows by Proposition 10.3. �
Theorem 10.6. If σ is a unit of L-length 2 in KΓ , then σ is trivial.
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Proof. Assume that σ is a unit in KΓ such that L(σ ) = 2. By Theorem 5.2 we may assume that σ
has unique maximal-length word of the form w = xy. By Theorem 8.4, σ has a reduced split-form
which we may assume looks like

εσ = (α1 + β1x)(α2 + β2 y) = σ̄

with ε ∈ K N \ {0}, (α1 +β1x)(α2 +β2 y) reduced and such that gcd(αi, βi) = 1 for all i = 1,2. Expand-
ing out (α1 + β1x)(α2 + β2 y) we get

σ̄ = α1α2 + α1β2 y + β1α
x
2x + β1β

x
2xy.

By Proposition 10.2, ε divides

μ = gcd
(
α1α2,α1β2, β1α

x
2, β1β

x
2

)
.

Assume p is a prime of K N such that p | μ. Then p | α1α2, so either p | α1 or p | α2. Moreover p | μ
implies p | β1α

x
2 and p | β1β

x
2. As gcd(αx

2, β
x
2) = 1, we have p | β1. Thus p � α1 since gcd(α1, β1) = 1

and therefore p | α2. But p | μ implies p | α1β2 y, and therefore p | β2. This contradicts gcd(α2, β2) = 1.
Thus μ = 1 and therefore ε is a unit in K N . The result now follows by Proposition 10.3. �

We remark that the essential ingredient in the foregoing two proofs was to take the expression

(α1 + β1u1) . . . (αs + βsus) =
∑

λw w

with gcd(αi, βi) = 1 for all i = 1, . . . , s and show that this implied gcd{λw}w∈W = 1. Unfortunately
such expressions involving reduced splittings of higher L-length do not yield similar conclusions as
the following example illustrates. Thus a similar strategy in showing triviality of units will not work
in general.

Example 10.7. Choose

α1 = α2 = α3 = β1 = 1, β2 = 1 − a, β3 = −a.

We have

(1 + x)
(
1 + (1 − a)y

)
(1 − ax) = (a − 1)

(
a−1xyx + a−1 yx − xy − y − x + (1 + a)

)
.

11. Units of L-length 3 in KΓ

We stay with the notation and conventions of the previous section.
Assume σ is a unit in KΓ such that L(σ ) = 3. By Theorem 5.2 and Theorem 8.4, σ has a reduced

split-form which we may assume looks like

εσ = (α1 + β1x)(α2 + β2 y)(α3 + β3x) = σ̄

with ε ∈ K N \ {0}, (α1 + β1x)(α2 + β2 y)(α3 + β3x) reduced and such that gcd(αi, βi) = 1 for all
i = 1,2,3. Since KΓ forms a free left K N-module with basis W we can express σ̄ as

σ̄ =
∑

λw w

for uniquely determined λw ∈ K N .
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The following table records the coefficients λw in front of the words w when one expands out the
product σ̄ .

Word = w Coefficient = λw

xyx β1βx
2β

yx
3

yx α1β2β
y
3

xy β1βx
2α

yx
3

y α1β2α
y
3

x α1α2β3 + β1α
x
2α

x
3

1 α1α2α3 + β1α
x
2βx

3 x2

Proposition 11.1. Let p be a prime of K N that divides each of the coefficients λw in the expression for σ̄ . We
have that p | β2, β

x
2 , and p � α2,α

x
2,α1, β1 . In particular, if p | ε then p | β2 and p | βx

2 .

Proof. We first recall that gcd(αi, βi) = 1 for i = 1,2,3, and now proceed in stages, reducing the
problem one step at a time.

Step 1. Either p | α1 or p | β2, and either p | β1 or p | βx
2. Considering the coefficients of yx and y, we

see that p divides both α1β2β
y
3 and α1β2α

y
3 . As p cannot divide both α

y
3 and β

y
3 , we must have that

either p | α1 or p | β2. Similarly, considering the coefficients of xyx and xy, we see that p divides both
β1β

x
2β

yx
3 and β1β

x
2α

yx
3 , so divides either β1 or βx

2, proving the claim.
Notice that since p cannot divide both α1 and β1, if p | α1 then p | βx

2, and similarly if p | β1 then
p | β2.

Step 2. p � α1, and so p | β2. Suppose that p | α1. Since this means that p | βx
2, we must have that

p � αx
2. Considering the coefficients of x and 1, we see that p divides the first expression in both

cases, and so p | β1α
x
2α

x
3, β1α

x
2β

x
3a. This yields a contradiction, since p � β1 and p � αx

2. Hence p � α1, so
by Step 1, p | β2.

Step 3. p � β1, and so p | βx
2. Suppose that p | β1. Since this means that p | β2, we must have that

p � α2. Considering the coefficients of x and 1, we see that p divides the second expression in both
cases, and so p | α1α2β3,α1α2α3. This yields a contradiction, since p � α1 and p � α2. Hence p � β1, so
by Step 1, p | βx

2. This completes the proof, since p � α2,α
x
2 now. �

Theorem 11.2. If σ is a unit of L-length 3 in KΓ , then σ is trivial.

Proof. Assume that σ is a unit in KΓ such that L(σ ) = 3. By Theorem 5.2 we may assume that σ
has unique maximal-length word of the form w = xyx. By Theorem 8.4, σ has a reduced split-form
which we may assume looks like

εσ = (α1 + β1x)(α2 + β2 y)(α3 + β3x) = σ̄

with ε ∈ K N \ {0}, (α1 + β1x)(α2 + β2 y)(α3 + β3x) reduced and such that gcd(αi, βi) = 1 for all
i = 1,2,3. We will show that ε is a unit, and conclude by Proposition 10.3 that σ is trivial.

To this end we apply the regular embedding of Theorem 8.6

θ : KΓ → M4(K H)

to εσ = σ̄ and compute determinants. Since ε ∈ K N we have
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θ(ε) =
⎛
⎜⎝

ε 0 0 0
0 εx 0 0
0 0 εy 0
0 0 0 εz

⎞
⎟⎠

and therefore

det θ(ε) = εεxεyεz.

Since σ is a unit we have by Theorem 8.5

det θ(σ ) = λ

for some λ ∈ K \ {0}. Finally let D1 = α1α
x
1 − β1β

x
1a, D2 = α2α

y
2 − β2β

y
2 b and let D3 = α3α

x
3 − β3β

x
3a.

Then by Proposition 9.3 we have

det θ(σ̄ ) = D1 D y
1 D2 Dx

2 D3 D y
3 .

We therefore get

εεxεyεzλ = D1 D y
1 D2 Dx

2 D3 D y
3 .

Claim. D2 = (α2, β
y
2 )(α

y
2 , β2).

Proof. Suppose p ∈ K N is a prime divisor of D2. Since K N is a unique-factorisation domain we have
p | ε, p | εx , p | εy , or p | εz . We now use Proposition 11.1 in analysing the following four possibilities:

(i) If p | ε then p | β2 so p | α y
2 and therefore p | (α y

2 , β2).
(ii) If p | εx then px | ε, so px | βx

2. Thus p | β2, so p | α y
2 and p | (α y

2 , β2).
(iii) If p | εy then p y | D y

2 = D2 and p y | ε so p y | (α y
2 , β2) so p | (α2, β

y
2 ).

(iv) If p | εxy then p y | D y
2 = D2 and p y | εx so p y | (α y

2 , β2) so p | (α2, β
y
2 ).

Conversely if p | (α y
2 , β2) then p | D2 and if p | (α2, β

y
2 ) then p | D2. Finally we observe if p | (α y

2 , β2)

then p | β2 so p � α2 as (α2, β2) = 1, and therefore p � (α2, β
y
2 ) so that gcd((α

y
2 , β2), (α2, β

y
2 )) = 1.

Thus

D2 = (
α2, β

y
2

)(
α

y
2 , β2

)

as claimed. �
Now certainly

1 = α2α
y
2

D2
− β2β

y
2 b

D2

=
(

α2

(α2, β
y
2 )

)(
α

y
2

(α
y
2 , β2)

)
−

(
β2

(α
y
2 , β2)

)(
β

y
2

(α2, β
y
2 )

)
b.

Since (α2, β
y
2 )y = (α

y
2 , β2), we can write the foregoing as
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1 =
(

α2

(α2, β
y
2 )

)(
α2

(α2, β
y
2 )

)y

−
(

β2

(α
y
2 , β2)

)(
β2

(α
y
2 , β2)

)y

b

with each parenthetic term defining an element in K N . Thus by Theorem 9.6 we have either

α2

(α2, β
y
2 )

= 0

or

β2

(α
y
2 , β2)

= 0.

In the latter case, β2 = 0 implies L(σ ) < 3 an impossibility. Thus α2 = 0. But

1 = (α2, β2) = (0, β2)

implies β2 is a unit of K N .
But any prime divisor of ε divides β2 and therefore it follows that ε is a unit of K N , and the result

follows by Proposition 10.3. �
We remark that the foregoing proof does not require the full use of Theorem 8.5, namely that

det θ(σ ) = λ ∈ K \ {0}. Rather, det θ(σ ) ∈ U K H is only needed in order to conclude that any prime
divisor of D2 divides εεxεyεz . The specific use of det θ(σ ) ∈ K \ {0} is discussed in Section 15.

12. The Promislow set

In [16], Promislow found a fourteen-element subset P of the fours group Γ such that P · P has
no unique product. It has been a long-standing question whether this subset can be the support of
a non-trivial unit in KΓ for some field K . Using the techniques developed in this paper we have the
following.

Theorem 12.1. There is no non-trivial unit of KΓ whose support is a subset of P . In particular, there is no
unit in KΓ whose support is P .

Proof. We will use freely the results of Proposition 7.1 to make our calculations in Γ . By [14, p. 393]
we write the Promislow set explicitly as

P = A ∪ Bx ∪ C y,

such that

A = {
c, c−1}, B = {

1,a−1,a−1b,b,a−1c−1, c
}
, C = {

1,a,b−1,b−1c, c,ab−1c
}
.

Rewriting the elements in terms of x and y, expressing these terms using words in W yields

P = {xyxy, yxyx} ∪ {
x, x−2x, x−2 y2x, y2x, yxy, xyxyx

} ∪ {
y, x2 y, y−2 y, xyx, y2xyx, x2xyx

}
.

We observe that

max
{

L(g)
}

g∈P
= 5

with xyxyx ∈ P the unique element of P of L-length 5.
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We now seek an automorphism φ : Γ → Γ such that max{L(φ(g))}g∈P � 3 so that we may appeal
to Theorems 10.4, 10.5, 10.6 and 11.2. By Proposition 7.5 L is equivariant under any automorphism
φ : Γ → Γ ; that is (φL)(g) = L(φ(g)) for all g ∈ Γ . This property, together with an inspection of P ,
leads us to consider the outer automorphism φ : Γ → Γ of Proposition 7.6, sending x �→ xy and
y �→ y.

We now determine the image of P under the map φ, and do so via a direct calculation in order
to more clearly indicate the effect of the automorphism φ : Γ → Γ upon lengths of words from P .

We begin by observing that φ(x2) = xyxy, φ(x−2) = yxyx, φ(y2) = y2, and φ(y−2) = y−2. We then
have:

xyxy �→ (xy)y(xy)y = xy2xy2 = x2,

yxyx �→ y(xy)y(xy) = yxy2xy = x−2,

x �→ xy,

x−2x �→ (yxyx)(xy) = yxyx2 y = x2 y−2 yx,

x−2 y2x �→ (yxyx)y2(xy) = yxyxy2xy = x2 yx,

y2x �→ y2(xy) = y2xy,

yxy �→ y(xy)y = yxy2 = y−2 yx,

xyxyx �→ (xy)y(xy)y(xy) = xy2xy2xy = x2xy,

y �→ y,

x2 y �→ (xyxy)y = xyxy2 = y2xyx,

y−2 y �→ y−2 y,

xyx �→ (xy)y(xy) = xy2xy = x2 y−2 y,

y2xyx �→ y2(xy)y(xy) = y2xy2xy = x2 y,

x2xyx �→ (xyxy)(xy)y(xy) = xyxyxy2xy = x2xyx.

Thus the image of P under the automorphism φ becomes

φ(P) = {
x2, x−2, xy, x2 y−2 yx, x2 yx, y2xy, y−2 yx, x2xy, y, y2xyx, y−2 y, x2 y−2 y, x2 y, x2xyx

}
,

and by inspection we see that

max
{

L
(
φ(g)

)}
g∈P

= 3.

Extending φ : Γ → Γ K -linearly to an automorphism φ : KΓ → KΓ , we see that any element of KΓ

with support a subset of φ(P) has L-length � 3, so by Theorems 10.4, 10.5, 10.6 and 11.2 is not
a non-trivial unit of KΓ . The result now follows noting that φ−1 : KΓ → KΓ is an automorphism of
KΓ , such that φ−1(Suppα) = Suppφ−1(α) for every α ∈ KΓ . �
13. The higher-length case: consistent chains

We stay with the notation and conventions of the previous sections. Unless otherwise specified,
we assume that all splittings are W -splittings in x and y.
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Let σ be a non-trivial unit in KΓ , with reduced split-form

εσ = σ̄ =
∑

w∈W

λw w.

By Proposition 10.2, ε must divide the coefficients λw . If L(σ ) = 3, then by Proposition 11.1 all
K N-primes dividing ε must divide β2 and βx

2. If, however, the L-length of σ is greater than 3, then
there is no unique collection of conjugates of the αi , β j that a K N-prime dividing ε needs to divide.
This leads to the notion of consistent chains.

Let n � 1 be an integer, and let Σn,x denote a reduced splitting of L-length n starting with x. Then

Σn,x = (α1 + β1u1)(α2 + β2u2) . . . (αn + βnun),

with u1 = x, ui ∈ {x, y}, L(u1 . . . un) = n, and β1 . . . βn �= 0. Since KΓ is a free left K N-module with
basis W , we can write

Σn,x =
∑

w∈W

λw w,

the sum taken over distinct w ∈ W , with λw �= 0 uniquely determined. Let

SuppW (Σn,x) = {w ∈ W | λw �= 0}
and

Vn,x = {
(w, λw)

∣∣ w ∈ SuppW (Σ)
}
.

We identify (w, λw) with λw so that

Vn,x = {
λw

∣∣ w ∈ SuppW (Σ)
}

and observe that each λw is a k-fold sum, 1 � k � n, of monomials with each monomial being the
product of n conjugates αu

i , β v
j , for u, v ∈ {1, x, y, xy}, of various αi , β j arising from the expansion of

the splitting Σn,x above. We define a term of λw to be any such monomial, and we say that a term
contains a conjugate of αi or β j if that conjugate appears as one of the n factors of the monomial.
We let Sn,x be the set of all conjugates of the αi , β j appearing in terms of the λw . Similar definitions
for Σn,y , Vn,y , and Sn,y exist by interchanging x with y in the above definitions.

Example 13.1. With n = 3, let

Σ3,x = (α1 + β1x)(α2 + β2 y)(α3 + β3x) =
∑

λw w.

We then have the following chart:

Word = w Coefficient = λw

xyx β1βx
2β

xy
3

yx α1β2β
y
3

xy β1βx
2α

xy
3

y α1β2α
y
3

x α1α2β3 + β1α
x
2α

x
3

1 α1α2α3 + β1α
x
2βx

3 x2
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so that

S3,x = {
α1,α2,α

x
2,α3,α

y
3 ,α

xy
3 , β1, β2, β

x
2, βx

3, β
y
3 , β

xy
3

}

and

V 3,x = {λ1, λx, λy, λxy, λyx, λxyx}.

If w = xyx then λxyx has only one term, namely the monomial β1β
x
2β

xy
3 , and this term con-

tains β1, βx
2, and β

xy
3 . If w = x then λx has two terms, α1α2β3 and αx

2α
x
3β1, and these terms

contain α1, α2, β3 and αx
2, αx

3, β1 respectively. We observe that each monomial is the product of n = 3
conjugates of various αi , β j for i, j = 1,2,3 and that S3,x does not contain all conjugates αu

i , β v
j for

all u, v ∈ {1, x, y, xy}.

We now have the following.
A consistent chain for Σn,x , or simply a consistent chain, is defined to be a set C of conjugates

of αi , β j satisfying the following four conditions:

C1. C ⊂ Sn,x .
C2. If v ∈ Vn,x has only one term then v contains precisely one element of C .
C3. If v ∈ Vn,x has precisely s � 2 terms t1, . . . , ts and ti contains an element ci ∈ C , for i = 1, . . . ,

s − 1, then ts contains precisely one element cs ∈ C .
C4. For u ∈ {1, x, y, xy}, whenever αu

i lies in C , βu
i does not, and whenever βu

i lies in C , αu
i does not.

A similar definition of consistent chain for Σn,y follows by interchanging x with y in the preceding.
To illustrate, we look at consistent chains for Σn,x , n = 1,2,3.

Proposition 13.2. There are no consistent chains for Σ1,x.

Proof. By definition

Σ1,x = (α1 + β1x)

so that

S1,x = {α1, β1}

and

V 1,x = {λ1, λx} = {α1, β1}.

If C is a consistent chain for Σ1,x , then C must contain both α1 and β1 by C2, and this contra-
dicts C4. �
Proposition 13.3. There are no consistent chains for Σ2,x.

Proof. By definition

Σ2,x = (α1 + β1x)(α2 + β2 y)
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so that

Σ2,x = α1α2 + αx
2β1x + α1β2 y + β1β

x
2xy.

Thus

S2,x = {
α1,α2,α

x
2, β1, β2, β

x
2

}

and

V 2,x = {λ1, λx, λyλxy} = {
α1α2,α

x
2β1,α1β2, β1β

x
2

}
.

Let C be a consistent chain for Σ2,x . By C2, α1α2 ∈ V 2,x implies α1 ∈ C or α2 ∈ C . Assume α1 ∈ C .
By C2, αx

2β1 ∈ V 2,x yields αx
2 ∈ C or β1 ∈ C . By C4 it then follows that β1 is not in C and so αx

2 ∈ C .
But by C2, β1β

x
2 ∈ V 2,x implies β1 ∈ C or βx

2 ∈ C . Either case is impossible by C4, and therefore α1
does not lie in C , so that α2 ∈ C . By C2, α1β2 ∈ V 2,x implies β2 ∈ C , an impossibility by C4. Hence
there are no consistent chains for Σ2,x . �

We now make an important remark. For any n � 3 there are too many consistent chains with
which to reasonably work. To illustrate, we mention that there are 91 consistent chains for Σ3,x .
Fortunately, as the following result shows, we do not need to consider all consistent chains.

Proposition 13.4. Every consistent chain for Σ3,x contains {β2, β
x
2}.

Proof. By Example 13.1 we have:

Word = w Coefficient = λw

xyx β1βx
2β

xy
3

yx α1β2β
y
3

xy β1βx
2α

xy
3

y α1β2α
y
3

x α1α2β3 + β1α
x
2α

x
3

1 α1α2α3 + β1α
x
2βx

3 x2

Let C be a consistent chain for Σ3,x . We will show in a series of three steps that β2, β
x
2 ∈ C .

Step 1. Either α1 ∈ C or β2 ∈ C , and either β1 ∈ C or βx
2 ∈ C . Considering the coefficients α1β2β

y
3 of yx

and α1β2α
y
3 of y, and as both α

y
3 and β

y
3 cannot lie in C , we must have that either α1 ∈ C or β2 ∈ C .

Similarly, considering the coefficients α1β2β
y
3 of yx and β1β

x
2β

xy
3 of xyx, we see that either β1 ∈ C or

βx
2 ∈ C .

Notice that since α1 and β1 cannot lie in C , if α1 ∈ C then βx
2 ∈ C , and similarly if β1 ∈ C then

β2 ∈ C .

Step 2. α1 does not lie in C , and so β2 ∈ C . Suppose by way of contradiction that α1 ∈ C . Since this
means that βx

2 ∈ C , we must have that αx
2 does not lie in C . Considering the coefficients λx = α1α2β3 +

β1α
x
2α

x
3 and λ1 = α1α2α3 + β1α

x
2β

x
3x2, we see that the first terms in both cases contain an element

from C , and so the remaining terms, β1α
x
2α

x
3 and β1α

x
2β

x
3a of each, contain an element from C . This

yields a contradiction, since β1 and αx
2 do not lie in C . Hence α1 does not lie in C , so by Step 1,

β2 ∈ C .
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Step 3. β1 does not lie in C , and so βx
2 ∈ C . Suppose by way of contradiction that β1 ∈ C . Since this

means that β2 ∈ C , we must have that α2 does not lie in C . Considering the coefficients λx = α1α2β3 +
β1α

x
2α

x
3 and λ1 = α1α2α3 +β1α

x
2β

x
3x2, we see that the second terms in both cases contain an element

from C , and so the first terms, α1α2β3 and α1α2α3 of each, contain an element from C . This yields
a contradiction, since α1 and α2 do not lie in C . Hence β1 does not lie in C , so by Step 1, βx

2 ∈ C . �
The theory of consistent chains applies to the study of units in KΓ in the obvious way. Indeed

if C is a consistent chain for Σn,x , and if p is a K N-prime, we say that p divides C , denoted p | C , if p
divides each element of C in K N . We then have the following:

Theorem 13.5. Assume that σ is a unit of L-length n � 3 in KΓ with unique maximal word beginning with x.
If (ε, σ̄ ) is a left-reduced split-form for σ and p is a K N-prime, then p | ε implies p | C for some consistent
chain C for σ̄ .

Proof. By definition of left-reduced split-form we have

εσ̄ = (α1 + β1u1) + · · · + (αn + βnun) =
∑

w∈W

λw w

with u1 = x, σ̄ reduced of L-length n � 3, gcd(αi, βi) = 1, and for unique λw ∈ K N \ {0}. Assume p
is a K N-prime such that p | ε. By Proposition 10.2 we have p | λw for all w ∈ W . Define λw to be
p-admissible if p divides each of the terms of λw . Observe that if p divides a term tw in some λw ,
then by unique factorisation in K N , tw contains a p-divisible conjugate of the form αu

i or βu
j , for

some u ∈ {1, x, y, xy}.
Assume λw is p-admissible. For each term t of λw , select one p-divisible conjugate of αi or β j

contained in t and label it γt . Define C w to be the set of such γt , one for each term t of λw , and let

C =
⋃

C w

where the union is indexed by w ∈ W such that λw is p-admissible.
Then C is a consistent chain for the reduced splitting σ̄ . Indeed, we first observe that by construc-

tion, each member of C is divisible by p. Now certainly condition C1 holds since the elements of C
are conjugates αu

i or βu
j , u ∈ {1, x, y, xy}, contained in terms of various λw . If λw has precisely one

term tw then by construction there exists a conjugate αu
i or βu

j , divisible by p, contained in tw and
lying in C . Therefore C2 holds. Now assume that λw has precisely k � 2 terms, t1, . . . , tk . Suppose
t1, . . . , tk−1 contain some conjugate αu

i or βu
j (depending on the term) lying in C . Then because these

conjugates are p-divisible, there exists, by construction, a conjugate lying in C that is p-divisible and
contained in tk . Thus C3 holds. Finally if αu

i ∈ C then p | αu
i , so p � βu

i , as gcd(αu
i , βu

i ) = 1, and there-
fore βu

i does not lie in C , as all elements of C are p-divisible. Thus C4 holds, and C is a consistent
chain. �

The foregoing result, together with Proposition 13.4, explain the essential ingredient in the proof
of Theorem 11.2: If σ is a unit of L-length 3 in KΓ , with left-reduced split-form (ε, σ̄ ) such that

σ̄ = (α1 + β1x)(α2 + β2 y)(α3 + β3x),

then for any K N-prime p:

p | ε �⇒ p
∣∣ {

β2, β
x
2

}
.

For n > 3, one cannot expect a single set to lie in all consistent chains for Σn,x . Thus to generalise
the role played by {β2, β

x
2}, we seek a suitably nice collection of finite sets such that any consistent
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chain for Σn,x contains a member from the collection. This motivates the idea of minimal chains, which
we now develop, recursively.

Let n � 3, and let

Σn,x = (α1 + β1u1)(α2 + β2u2) . . . (αn + βnun).

Define Un,x to be the set consisting of elements β2, β
y
3 , β

xy
4 , βx

5, β6, repeating this sequence until
arriving at the appropriate conjugate of βn−1. Define Un,y to be the set obtained from Un,x , with x
interchanged by y. Let Mn,x be the collection of all sets, called minimal chains for Σn,x , defined recur-
sively by M3,x = {β2, β

x
2}, and for n > 3 as:

M1. Sets {β1} ∪ C for C ∈ Mn−1,y (with indices for αi and βi in C incremented by 1);
M2. Sets {α1} ∪ C x for C ∈ Mn−1,y (with indices for αi and βi in C incremented by 1);
M3. All pairs {λ,μx}, with λ and μ appearing in the list Un,x .

For n > 3, Mn−1,y is obtained from Mn−1,x by interchanging the roles of x and y.
A minimal chain for Σn,x shall also be referred to as a minimal chain from Mn,x . The key result is

the following:

Theorem 13.6. Let n � 3 and let

Σn,x = (α1 + β1u1)(α2 + β2u2) . . . (αn + βnun).

Then every consistent chain for Σn,x contains a minimal chain from Mn,x.

Proof. We proceed by induction on the L-length n � 3 of the reduced splitting Σn,x . The case n = 3
holds by Proposition 13.4. Assume n > 3. Let C be a consistent chain for Σn,x , and suppose first
that β1 ∈ C . We may remove all of the terms from Vn,x that start with β1 to get a set V ∗

n,x , and by
considering

Σn,x = (α1 + β1u1)(α2 + β2u2) . . . (αn + βnun), (1)

we clearly see that

V ∗
n,x = {

α1 w
∣∣ w ∈ V ′

n−1,y

}
,

where the prime denotes incrementing the indices of the αi and βi by 1. Since α1 /∈ C , we may
remove the α1 from the start of the words in V ∗

n,x , and so C \ {β1} must be a consistent chain for the
reduced splitting

Σn−1,y = (α2 + β2 y) . . . (αn + βnun)

(with indices shifted by 1), as C is a consistent chain for Σn,x . Since Σn−1,y is reduced, its L-length
is n − 1 < n and thus by induction (with x and y interchanged), this case is covered by M1 in the
theorem, so we may assume that β1 does not lie in C .

Similarly, suppose that α1 lies in C . In this case we may remove all of the terms from Vn,x that
start with α1 to get a set V ∗

n,x, and we see that

V ∗
n,x = {

β1 wx
∣∣ w ∈ V ′

n−1,y

}
,
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where the prime again denotes incrementing the indices of the αi and βi by 1. As above, the elements
C \ {α1} conjugated by x form a consistent chain for Σn−1,y (with indices shifted by 1), and by
induction this case is also covered by M2 in the theorem. Hence we may assume that neither α1
nor β1 lie in C .

We now note that, when expanding (1), there are four elements of Vn,x that are monomials,
namely the coefficients of the words of lengths n, n − 1, and the word of length n − 2 starting in y:
two of these words start with x, and two start with y. If a1 and a2 are the two monomial coefficients
of the words starting in x, then

a1 = β1β
x
2β

xy
3 . . . βu

n , a2 = β1β
x
2β

xy
3 . . . αu

n

(where u ∈ {1, x, y, xy}, and for the rest of the proof will also denote one of these four). Since a1
and a2 differ only in the last element, if C is a consistent chain then C must contain at least one of
the terms βu

i for 1 < i < n. Similarly, if b1 and b2 denote the two monomial coefficients of the words
starting in y, then

b1 = α1β2β
y
3 . . . βu

n , b2 = α1β2β
y
3 . . . αu

n .

Again, b1 and b2 differ only in the last element, so if C is a consistent chain then C must contain
at least one of the terms βu

i for 1 < i < n. It remains to note that the βu
i , for 1 < i < n, of the b j

constitute Un,x , and the βu
i , for 1 < i < n, of the a j are the elements of Un,x conjugated by x. Thus C

contains {λ,μx}, where λ,μ ∈ Un,x , as claimed by M3 the theorem, and the result follows. �
As an application, we derive the sets in M3,x and M4,x .

Proposition 13.7. The only set in M3,x is:

{
β2, β

x
2

}
.

Proof. Here U3,x = {β2}. Since M2,y is not defined, conditions M1 and M2 do not apply, and therefore
the only minimal chains are those given by M3. These are of the form {λ,μx} for λ,μ ∈ U3,x , and the
result follows. �
Proposition 13.8. The sets in M4,x are:

{
β2, β

x
2

}
,

{
β2, β

xy
3

}
,

{
βx

2, β
y
3

}
,

{
β

y
3 , β

xy
3

}
,

{
β1, β3, β

y
3

}
,

{
α1, β

x
3, β

xy
3

}
.

Proof. Here U4,x = {β2, β
y
3 } and M2,y = {β2, β

y
2 }.

The sets given by M1 are:

{
β1, β3, β

y
3

}
.

The sets given by M2 are:

{
α1, β

x
3, β

xy
3

}
.

The sets given by M3 are:

{
β2, β

x
2

}
,

{
β2, β

xy
3

}
,

{
β

y
3 , β

xy
3

}
,

{
β

y
3 , βx

2

}
.
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Several important remarks are now in order:
The minimal chain {β2, β

x
2} is in fact a consistent chain, meeting conditions C1–C4. A careful in-

spection shows, similarly, that every minimal chain from M4,x is also a consistent chain, meeting
conditions of C1–C4. However, for n = 5, the minimal chain {β2, β

x
2} lies in M5,x but is not a consis-

tent chain for Σ5,x , and therefore is only a proper subset of some consistent chain. Thus the name
minimal chain is derived from a slightly more subtle property. Loosely speaking a minimal chain is
a subset M of a chain, having the property that each coefficient λw consisting of a single monomial
contains only one member from M . The recursive procedure, given above, produces a suitable class
of subsets of consistent chains with this property. Moreover by Theorems 13.5 and 13.6, it follows
that if σ is a unit of L-length n � 3 in KΓ , with reduced split-form (ε, σ̄ ), then for any K N-prime
p | ε, there exists a minimal chain M ∈ Mn,x such that p | M . From this we can now retrieve the key
ingredient of the proof that there are no non-trivial units of L-length 3 in KΓ . Indeed we have the
following:

Theorem 13.9. Assume σ is a unit of L-length n � 3 in KΓ , with reduced split-form (ε, σ̄ ). Assume that each
minimal chain for σ̄ contains an element that is relatively prime to ε in K N. Then ε is a unit in K N, and
therefore σ is a trivial unit in KΓ .

Proof. Assume by way of contradiction that ε is not a unit of K N . Then ε has a K N-prime factor p.
By Theorems 13.5 and 13.6, there exists a minimal chain M such that p | M . By hypothesis M contains
a unit of K N , and this yields the desired contradiction. The result now follows by Proposition 10.3. �

Upon closer inspection, the actual proof showing that there are no non-trivial units of L-length 3
in KΓ , is a special case of the following:

Corollary 13.10. Assume σ is a unit of L-length n � 3 in KΓ , with reduced split-form (ε, σ̄ ). Assume that
each minimal chain for σ̄ contains a unit of K N. Then ε is a unit in K N, and therefore σ is a trivial unit in KΓ .

Proof. Immediate by Theorem 13.9. �
To apply Theorem 13.9 as a possible strategy in analysing units of L-length n � 4, it is convenient

to recall by Proposition 13.8 that the minimal chains from M4,x are:

{
β2, β

x
2

}
,

{
β2, β

xy
3

}
,

{
βx

2, β
y
3

}
,

{
β

y
3 , β

xy
3

}
,

{
β1, β3, β

y
3

}
,

{
α1, β

x
3, β

xy
3

}
.

If we assume that each minimal chain contains an element relatively prime to ε, then we see that
we can eliminate from consideration those minimal chains consisting of three elements and replace
them by certain subsets. This is because some minimal chains are related to subsets of other minimal
chains by applying automorphisms.

Indeed, to see this assume φ : Γ → Γ is an automorphism that is extended K -linearly to an auto-
morphism φ : KΓ → KΓ . Let σ be a unit in KΓ with left-reduced split-form (ε, σ̄ ). Then it is easy
to see that (εφ, σ̄ φ) is a left-reduced split-form for the unit σφ in KΓ , noting by Proposition 7.5 that
KΓ is a (φ(X), φ(Y ), φ(N))-group algebra with corresponding set of words φ(W ).

Using automorphisms we can use suitably chosen subsets of minimal chains for Σn,x to arrive at
a chain diagram Cn , separated into components. We illustrate chain diagrams C2, C3 in the specific
cases n = 3 and n = 4, respectively.

For n = 3, the chain diagram C3 has only one component consisting of one vertex and no edges:

{
β2, β

x
2

}
.

To better understand the case n = 4, suppose
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Σ3,x = (α1 + β1x)(α2 + β2 y)(α3 + β3x)(α4 + β4 y).

Then by our remarks above, applying the automorphism interchanging x with y yields

Σ
ψ

3,x = (
α

ψ

1 + β
ψ

1 y
)(

α
ψ

2 + β
ψ

2 x
)(

α
ψ

3 + β
ψ

3 y
)(

α
ψ

4 + β
ψ

4 x
)
.

We think of this splitting expressed as

Σ3,y = (α1 + β1 y)(α2 + β2x)(α3 + β3 y)(α4 + β4x)

for possibly new αi , βi , i = 1,2,3,4. Therefore the automorphism ψ : KΓ → KΓ induces a map

M(ψ) : {β y
3 , β

xy
3

} → {
βx

3, β
xy
3

}
.

For n = 4, the chain diagram C4 has three components:

{β2, β
x
2} {β2, β

xy
3 } M(cx) {βx

2, β
y
3 }

{β y
3 , β

xy
3 }

M(ψ)
M(ψ◦c y)

{βx
3, β

xy
3 } M(cx) {β3, β

y
3 }.

(Note: Not every set appearing in this diagram is a minimal chain for Σ4,x . Moreover, the three-
element minimal chains are not included since they contain sets in this diagram.)

We now proceed to make the foregoing precise. Let φ : KΓ → KΓ be any of the four following
automorphisms on Γ : the identity map id; the map ψ , which interchanges x with y; conjugation
by x, denoted cx; conjugation by y, denoted c y . For any such automorphism, let φ : KΓ → KΓ also
denote its K -linear extension to an automorphism on KΓ . For any νu ∈ K N such that u ∈ {1, x, y, xy},
let

M(φ)
(
νu) = νφ(u).

Specifically, then, we have

M(id)
(
νu) = νu, M(ψ)

(
νu) = νψ(u), M(cx)

(
νu) = νxu, M(c y)

(
νu) = ν yu .

We note that for any φ1, φ2 ∈ {id,ψ, cx, c y} we have

M(φ1 ◦ φ2) = M(φ1) ◦ M(φ2).

Let Φ = 〈ψ, x, y〉 be the group of KΓ -automorphisms generated by ψ , x, y.
Define for any minimal chain C ∈ Mn,x:

M(φ)(C) = {
M(φ)(ν)

∣∣ ν ∈ C
}
.

Let Mn be the set of subsets D0 ⊂ D ∈ Mn,x such that

M(φ)(C) = D0

for some minimal chain C ∈ Mn,x and for some automorphism φ ∈ Φ .
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It is easy to see that the set Mn forms a lattice [1] under set-theoretic inclusion. An element
A ∈ Mn is said to be an atom, in the usual way, if for any B ∈ Mn ,

B ⊂ A �⇒ B = A.

The chain diagram Cn , n � 3, is the non-directed simple graph whose vertices are labelled by the
atoms of Mn , with an (unlabelled) edge between vertices A and B if

M(φ)(A) = B

for some φ ∈ Φ . (We leave out loops given by the identity id and as a matter of convenience we
sometimes label an edge by a connecting automorphism, though technically speaking the label is not
part of the graph.) A component of Cn is as a component of the non-directed simple graph.

Thus the chain diagram C4 is:

{β2, β
x
2} {β2, β

xy
3 } {βx

2, β
y
3 }

{β y
3 , β

xy
3 }

{βx
3, β

xy
3 } {β3, β

y
3 }

though we may view it as:

{β2, β
x
2} {β2, β

xy
3 } M(cx) {βx

2, β
y
3 }

{β y
3 , β

xy
3 }

M(ψ)
M(ψ◦c y)

{βx
3, β

xy
3 } M(cx) {β3, β

y
3 }

keeping in mind that there may be more than one way to label a particular edge (for example in C4,
the label M(ψ ◦ c y) can be replaced by the label M(c y ◦ ψ)).

The definition of a chain diagram Cn is purely formal and does not depend on any specific reduced
splitting Σn,x in the same way that the recursive definition of minimal chain is purely formal and
provides a formula for deriving minimal chains for Σn,x . Thus we may think of a chain diagram Cn
as the graph consisting of formal symbols involving conjugates of the symbols αi , β j . It is clear then
that two chain diagrams Cm and Cn are isomorphic as simple unlabelled graphs if and only if m = n.
To each vertex C of Cn and each reduced splitting Σn,x , we may associate a set CΣn,x ⊂ K N , simply
by replacing each formal element of C by its corresponding element in K N , labelled within Σn,x . We
refer to CΣn,x as the evaluation of C in Σn,x and denote it simply by C if the context is clear. It is
then easy to show that the evaluation of every vertex is a subset of a minimal chain for Σn,x , and
conversely that every minimal chain for Σn,x contains a subset that is the evaluation of some vertex
from the chain diagram Cn . Finally we remark that an automorphism φ : Γ → Γ , extending K -linearly
to an automorphism φ : KΓ → KΓ , sends a reduced splitting Σn,x to the reduced splitting φ(Σn,x),
and in so doing yields a chain diagram C φ

n for this splitting. It is then clear that the map φ induces
a natural graph-isomorphism

Cn ≈ C
φ

n .

The concept of a chain diagram reduces the number of minimal chains to be considered and
suggests that the action of automorphisms on reduced split-forms may prove useful in analysing the
structure of units in KΓ . For example one possible strategy is the following.
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If p is a K N-prime and C a subset of a minimal chain for some reduced splitting of L-length n,
then we say that p divides C , denoted p | C , if p divides each member of C in K N . We denote by Cφ

the image of C under φ. Given an automorphism φ ∈ Φ , and a vertex C within a chain diagram Cn ,
we say that a K N-prime p divides M(φ)(C), denoted p | M(φ)(C), if there exists a reduced splitting
with evaluation C such that p | Cφ .

Theorem 13.11. Suppose Cn, n � 3, is a chain diagram, and let C1, . . . , Cr be vertices, one from each compo-
nent of Cn. Then all units of L-length n � 3 in KΓ are trivial if and only if no prime divisor of ε divides the
evaluations C1, . . . , Cr in σ̄ , for any left-reduced split-form (ε, σ̄ ) of any unit σ of L-length n � 3 in KΓ .

Proof. If σ is a trivial unit of L-length n � 3 in KΓ , with left-reduced split-form (ε, σ̄ ), then ε is
a unit of K N by Proposition 10.3. Thus if all units of L-length n � 3 in KΓ are trivial then it is vac-
uously true that no prime divisor of ε divides the evaluations C1, . . . , Cr in σ̄ , for any left-reduced
split-form (ε, σ̄ ) of any unit σ of L-length n � 3 in KΓ . Conversely, suppose by way of contradiction
that there exists a non-trivial unit σ of L-length n � 3 in KΓ . Let (ε, σ̄ ) be a left-reduced split-
form for σ . By Proposition 10.3, ε is a non-unit of K N , and therefore has a K N-prime factor p.
By Theorem 13.5, there exists a minimal chain C for σ̄ such that p | C . The minimal chain C con-
tains a subset D0 which is the evaluation of a vertex (though possibly of a non-uniquely defined
vertex). Select one such vertex. Then this vertex, denoted D0, lies in the same component as some
vertex Ci . Thus M(φ)(D0) = Ci , for some automorphism φ ∈ Φ . By our remarks above, σφ is a unit
of L-length n in KΓ , with reduced split-form (εφ, σ̄ φ). The K N-prime pφ divides εφ , and, moreover,
pφ | Cφ so pφ | Dφ

0 . Hence, by definition, the K N-prime pφ divides the vertex M(φ)(D0) = Ci , and this
contradicts our assumption. Thus all units of L-length n in KΓ are trivial as desired. �

Along the same lines of reasoning we can use chain diagrams to reduce the number of minimal
chains to be considered in Theorem 13.9 and Corollary 13.10.

Theorem 13.12. Suppose Cn, n � 3, is a chain diagram, and let C1, . . . , Cr be vertices, one from each compo-
nent of Cn. Assume that σ is a unit of L-length n � 3 in KΓ , with left-reduced split-form (ε, σ̄ ). Assume that
each of the evaluations C1, . . . , Cr in σ̄ contains an element that is relatively prime to ε in K N. Then ε is a unit
in K N, and therefore σ is a trivial unit in KΓ .

Proof. We will show that ε is a unit of K N and therefore conclude by Proposition 10.3 that σ is
a trivial unit of KΓ . If p is a K N-prime dividing ε, then by Theorem 13.5, there exists a minimal
chain C for σ̄ such that p | C . The minimal chain C contains a subset D0 which is the evaluation of
a vertex (though possibly of a non-uniquely defined vertex). Select one such vertex. Then this vertex,
denoted D0, lies in the same component as some vertex Ci . Thus M(φ)(D0) = Ci , for some auto-
morphism φ ∈ Φ . By our remarks above, σφ is a unit of L-length n in KΓ , with reduced split-form
(εφ, σ̄ φ). The K N-prime pφ divides εφ , and, moreover, pφ | Cφ so pφ | Dφ

0 . Thus pφ divides the eval-

uation Cφ

i . Since the evaluation Ci contains an element that is relatively prime to ε in K N , it follows

that Cφ

i contains an element relatively prime to εφ in K N , and this yields the desired contradic-
tion. �
Corollary 13.13. Suppose Cn, n � 3, is a chain diagram, and let C1, . . . , Cr be vertices, one from each com-
ponent of Cn. Assume that σ is a unit of L-length n � 3 in KΓ , with left-reduced split-form (ε, σ̄ ). Assume
that each of the evaluations C1, . . . , Cr in σ̄ contains a unit in K N. Then ε is a unit in K N, and therefore σ is
a trivial unit in KΓ .

Proof. Immediate by Theorem 13.12. �
The foregoing result leads to a nice reduction.
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Theorem 13.14. Assume σ is a unit of L-length 4 in KΓ , with left-reduced split-form (ε, σ̄ ) such that

σ̄ = (α1 + β1x)(α2 + β2 y)(α3 + β3x)(α4 + β4 y).

If β2 and β3 are units in K N then σ is a trivial unit of KΓ .

Proof. For any γ ∈ K N and φ ∈ {x, y, xy}, we have γ is a unit in K N if and only if γ φ is a unit
in K N . Since the vertices in C4 only involve conjugates of β2 and β3, the result now follows by
Corollary 13.13. �

The theory of consistent chains therefore provides a strategy for analysing units of higher L-length
in KΓ , while also showing that there is a large jump in complexity from units of L-length 3 to
units of L-length � 4. Some minimal chains are related via automorphisms, as we have seen, and
this viewpoint may help reduce the number of minimal chains needed to be considered. Nevertheless
as we shall see in the next section, the supports of units and their inverses are very closely related
within torsion-free supersoluble group algebras, and in particular within KΓ .

14. Bounding units

Let K be a field and G a group. Roughly speaking, a group algebra K G has property (U) if the
support of a unit determines a finite bound on the support of its inverse. More precisely, K G has
property (U) if for each finite set X ⊂ G there is a finite set Y (X) ⊂ G such that for each unit σ ∈ K G:

Suppσ ⊂ X �⇒ Suppσ−1 ⊂ Y (X).

Let X be a non-empty finite subset of G . Then we say that X has property (U) in K G if there is a finite
subset Y (X) ⊂ G such that for each unit σ ∈ K G:

Suppσ ⊂ X �⇒ Suppσ−1 ⊂ Y (X).

Property (U) was introduced in [12] in connection with the semi-primitivity problem for group
algebras, and later studied in [7]. It is clear that K G has property (U) if G is finite. Furthermore
by [13, Lemma 1.1.4] Suppσ−1 ⊂ 〈Suppσ 〉, so that K G has property (U) if G is locally finite. With
a little more work one can then show K G has property (U) if G contains an abelian subgroup of
finite index [7]. Finally we remark that K G has property (U) if all units of K G are trivial. Thus if K G
satisfies the unit conjecture, then it has property (U).

On the other hand, Theorem 4.10 shows that if K G is an (X, Y , N)-group algebra with length
function L, then L(σ ) = L(σ−1) for every σ ∈ U K G . This leads us to the following general result.

Theorem 14.1. Let K be a field and G a torsion-free supersoluble group. If σ ∈ U K G, then there exists H � G
such that

σ = αg

for some α ∈ U K H, g ∈ G, satisfying either

(i) Suppα has property (U) in K H or
(ii) L(α) = L(α−1) for some length function L : K H →N∪ {−∞}, induced from a surjective homomorphism

of H onto the infinite dihedral group.
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Proof. We proceed by induction on the Hirsch number h(G). Assume σ ∈ U K G . If h(G) = 0 then G is
finite (hence trivial) so that K G has property (U). Thus

σ = σ · 1

satisfies condition (i) above. Assume h(G) > 0 and therefore that G is infinite. Then by [13,
Lemma 13.3.8] G has a normal subgroup N such that G/N is either infinite dihedral or infinite cyclic.
By [6], K G has no proper divisors of zero. Thus if G/N is infinite dihedral then by [13, Lemma
13.3.6(iii)] K N is an Ore domain so that K G is an (X, Y , N)-group algebra with corresponding length
function L. In this case, Theorem 4.10 yields L(σ ) = L(σ−1) so that

σ = σ · 1

satisfies (ii) above with H = N . If G/N is cyclic fix z ∈ G so that G/N = 〈zN〉. Then

σ = αzi

with α ∈ U K N . Since h(N) < h(G) it follows by induction that there exists N ′ � N with

α = α′n

with α′ ∈ K N ′ , n ∈ N satisfying either

(i) Suppα′ has property (U) in K N ′ or
(ii) L(α′) = L(α′ −1) for some length function L : K N ′ → N∪ {−∞}, induced from a surjective homo-

morphism of N ′ onto the infinite dihedral group.

Therefore

σ = αzi = (
α′n

)
zi .

If Suppα′ has property (U) in K N ′ then Suppα′n = Suppα has property (U) in K N , and therefore (i)
holds with H = N . If L(α′) = L(α′ −1) for some length function L : K N ′ → N ∪ {−∞}, induced from
a surjective homomorphism of N ′ onto the infinite dihedral group, then (ii) holds with H = N ′ and
g = nzi . �

In the case where K G is a virtually abelian (X, Y , N)-group algebra, we have the following stronger
version of the previous result.

Theorem 14.2. Let K G be a virtually abelian (X, Y , N)-group algebra with corresponding length function L.
If σ ∈ U K G then Suppσ has property (U) and L(σ ) = L(σ−1).

Proof. This follows from [7] and Theorem 4.10. �
Theorem 14.3. Let Γ be the fours group. If σ ∈ U KΓ then Suppσ has property (U) and L(σ ) = L(σ−1).

Proof. This follows from Theorem 8.1 and Theorem 14.2. �
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15. Concluding remarks

If the unit conjecture for group algebras of torsion-free supersoluble groups is false then the nat-
ural candidate in which to locate a counterexample is KΓ . In this case, a reasonable approach is to
work with small K and use the determinant condition afforded by Theorem 8.5 together with the spe-
cific regular embedding of Theorem 8.6. By studying minimal chains and reduced split-forms, along
the lines of the length-3 case, one might be able to gain a better understanding at which L-length
n � 4 a potential counterexample might exist. On the other hand, if no counterexample exists within
KΓ , then Theorem 13.12 or Corollary 13.13 may provide a possible strategy for establishing this fact.
Finally, in the previous section, we observed that KΓ satisfies property (U). The question remains
open for which group algebras property (U) holds, and whether K G satisfies property (U) if G is
torsion-free.
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