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In an attempt to get some information on the multiplicative structure of the Green ring we study algebraic

modules for simple groups, and associated groups such as quasisimple and almost-simple groups. We prove

that, for almost all groups of Lie type in defining characteristic, the natural module is non-algebraic. For

alternating and symmetric groups, we prove that the simple modules in p-blocks with defect groups of order

p2 are algebraic, for p 6 5. Finally, we analyze nine sporadic groups, finding that all simple modules are

algebraic for various primes and sporadic groups.

1 Introduction

The tensor structure of the category of finite-dimensional kG-modules, where k is a field of characteristic p

and G is a finite group, is a structure that remains largely shrouded in mystery. As a first approximation

to understanding this structure, Alperin introduced the notion of algebraic modules [1]; a kG-module is

algebraic if it satisfies a polynomial with integer coefficients, where addition and multiplication are given by

the direct sum and tensor product. Trivial source modules are algebraic, as are simple modules for p-soluble

groups [17], simple modules in characteristic 2 for finite groups with abelian Sylow 2-subgroups [9], and

simple modules for 2-blocks with Klein-four defect groups in general [11].

Since simple modules for p-soluble groups are algebraic, it is natural to ask about simple modules for

simple groups, or groups that are close to simple, such as quasisimple and almost simple groups. In this

article, we consider the ‘natural module’ for groups of Lie type in defining characteristic, simple modules for

various low-rank Lie type groups in small, non-defining characteristics, alternating and symmetric groups,

and nine of the sporadic groups.

On natural modules, we have the following result.

Theorem A Let q be a power of a prime, and let G be a finite group of Lie type. If G is a classical group,

suppose that it is one of the groups SLn(q) or Sp2n(q) for n > 3, SUn(q) for n > 6, Ω+
2n(q) or Ω−2n(q) for

n > 4, or Ω2n+1(q) for n > 3. If G is of exceptional type, suppose that it is one of the groups 3D4(q), 2G2(q),
2F4(q), G2(q), F4(q), E6(q), 2E6(q), E7(q), and E8(q). Then the natural module for G is non-algebraic.

For the classical groups, the natural module is clear, and we will define what we mean by natural module

for the exceptional groups in Section 5, but it is generally the non-trivial simple module of smallest dimension.

For the Lie-type groups not mentioned in this theorem (SL2(q), Sp4(q), SUn(q) for n 6 5 and Suz(q)),

it is only known for SL2(q) that the natural module is actually algebraic: this is a result of Alperin [2] for q

even, and unpublished work of Kovács [27] for q odd. Since the q odd case remains unpublished, here we will

provide a short proof using the theory of tilting modules, from which it is possible to calculate any tensor

power of the natural module for SL2(q).
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Theorem B (Alperin, Kovács) Let p be a prime, let n > 1 be an integer, and let k be a field of charac-

teristic p. If G = SL2(pn), then all simple kG-modules are algebraic.

This theorem has the following obvious corollary, using the fact that the natural module for SL2(q), hence

for GL2(q), is algebraic, and restrictions of algebraic modules are algebraic.

Corollary C Let p be a prime, and let k be a finite field. If G is a finite group, and M is a 2-dimensional

kG-module, then M is algebraic.

Turning to non-defining characteristic, our results focus on the primes 2 and 3. If char k = 2, then we

analyze the groups PSL2(q), PSL3(q) (for q ≡ 3 mod 4) and PSU3(q) (for q ≡ 1 mod 4). In other words,

we analyze the cases where the Sylow 2-subgroups are either dihedral or semidihedral. (In the next two

theorems, we take an algebraically closed field, purely so that we are guaranteed the existence of all simple

modules that ‘should’ exist.)

Theorem D Let k be an algebraically closed field of characteristic 2.

(i) If G = PSL2(q), then all simple kG-modules are algebraic if and only if q 6≡ 7 mod 8. If q ≡ 7 mod 8,

then the two (q − 1)/2-dimensional simple modules are non-algebraic.

(ii) If G = PSL3(q), then all simple kG-modules are algebraic if q ≡ 3 mod 8. If q ≡ 7 mod 8, then the two

non-trivial simple modules in the principal 2-block are non-algebraic.

(iii) If G = PSU3(q), then all simple kG-modules are algebraic if q ≡ 1 mod 4.

Theorem E Let k be an algebraically closed field of characteristic 3, and let G be a finite simple group

such that C3 × C3 is a Sylow 3-subgroup of G.

(i) If G is a finite group of Lie type, an alternating group, or one of the sporadic groups M22 or HS, then

all simple kG-modules in the principal 3-block are algebraic.

(ii) If G is one of the groups M11 or M23, then there are non-algebraic simple modules in the principal

3-block.

Notice that, if G is a finite group of Lie type with elementary abelian Sylow 3-subgroups, and k is a

field of characteristic 3, then all simple kG-modules in the principal block are algebraic. In characteristic 5,

however, this does not occur, thanks to the following proposition.

Proposition F Let k be a field of characteristic p > 2, let G be a finite group with non-cyclic Sylow p-

subgroups, and let M be an indecomposable kG-module with p - dimM . If M lies on the second row of its

component of the Auslander–Reiten quiver, then M is non-algebraic.

For F4(2) in characteristic 5, the simple module M of dimension 875823 lies on the second row of its

component of the Auslander–Reiten quiver [22], and the Sylow 5-subgroups of F4(2) are non-cyclic, so M is

non-algebraic.

One can use Theorem E, together with a standard reduction, to determine exactly which finite groups

with Sylow 3-subgroups C3 × C3 have algebraic simple modules in the principal 3-block.
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Corollary G Let G be a finite group with Sylow 3-subgroups of order at most 9, and let k be a field of

characteristic 3. Write B for the principal 3-block of kG. All simple B-modules are algebraic if and only if

neither M11 nor M23 is a composition factor of G.

For symmetric and alternating groups, we study simple modules in blocks with defect group Cp × Cp,
and prove the following result.

Theorem H Let p be one of 2, 3 and 5, and let k be a field of characteristic p. Let G be either an alternating

group An or a symmetric group Sn for some n. If B is a block of kG with defect group Cp × Cp, then all

simple B-modules are algebraic.

The reason that this result cannot be extended further is that it is not possible to prove whether the

simple modules in the principal p-block of kSn are algebraic for p > 7.

Finally, in Section 8 we consider nine of the sporadic groups: the five Mathieu groups, HS, J2, Suz and

He. In some cases, for example, HS in characteristic 3, all simple modules are algebraic, and we refer to

that section for the specific results that we achieve in this direction.

The organization of this paper is as follows: the next section includes the quoted and preliminary results

that we need, and Section 3 is concerned with SL2(q). The next two sections deal with classical and

exceptional groups, and then Lie-type groups in non-defining characteristic in Section 6. The alternating

and symmetric groups are considered in Section 7, and the final section, Section 8, is on the sporadic groups.

Throughout this article, all groups are finite and all modules are finite dimensional, unless otherwise

specified.

2 Quoted Results and Preliminaries

In this section we summarize results gathered from the literature, together with a few other results needed

in the sections to come.

The basic properties of algebraic modules may be found in [18] for example: being algebraic is closed

under direct sums, tensor products, taking summands, induction, restriction, Green correspondence and

taking sources. This makes the first result trivial.

Proposition 2.1 Let M be a kG-module, and let H be a p′-index subgroup of G. We have that M is

algebraic if and only if M ↓H is algebraic.

The next three results are in the literature, and we quote them.

Theorem 2.2 ([9]) Let G be a group with abelian Sylow 2-subgroups, and let k be a field of characteristic

2. All simple kG-modules are algebraic.

Theorem 2.3 ([10, Theorem B]) Let G be a finite group and let k be a field of characteristic p. If M is

a non-periodic, algebraic kG-module, then Ωi(M) is non-algebraic for all i 6= 0. If M is a periodic, algebraic

kG-module then Ωi(M) is algebraic for all i ∈ Z.

Theorem 2.4 Let G be a finite group, and let k be a field of characteristic 2. If B is a block of kG with

cyclic or Klein-four defect group, then all simple B-modules are algebraic.
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Proof: For blocks with cyclic defect group this follows from the simple fact that there are only finitely many

indecomposable modules of a group with cyclic vertex, and for Klein-four defect group this result is in [11].

The next easy observation is very useful when dealing with sporadic groups in particular, as it allows us

to prove that many modules are non-algebraic almost immediately.

Proposition 2.5 (V4 restriction test) Let G be a finite group, let Q be a Klein-four subgroup of G, and

let k be an algebraically closed field of characteristic 2. If M is a kG-module such that M ↓Q contains

non-trivial odd-dimensional indecomposable summands, then M is non-algebraic.

Proof: By [6], the odd-dimensional indecomposable kG-modules are Ωi(k) for i ∈ Z, and i 6= 0 for them to

be non-trivial. By Theorem 2.3 these modules are non-algebraic, and hence M is non-algebraic.

As a remark, by [3, Theorem 3.4] this result holds with Q replaced by any dihedral 2-group.

Proposition 2.6 ([10]) Let G = Cp×Cp and let k = F3. If M is an absolutely indecomposable kG-module

of dimension either 3 or 6, then M is periodic if and only if it is algebraic.

We remind the reader of [10, Conjecture E], which motivates some of the expected results in this article.

Conjecture 2.7 Let k be a field of characteristic p, and let G = Cp × Cp, where p is an odd prime. If M

is an absolutely indecomposable kG-module of dimension a multiple of p, then M is algebraic if and only if

it is periodic.

Let T (M) denote the (infinite-dimensional) module

T (M) =
⊕
n>1

M⊗n,

and let T (M) denote the set of isomorphism classes of indecomposable summands of T (M).

Lemma 2.8 Let G be a finite group, and let k be a field of characteristic p. Let M be an indecomposable

kG-module. If M⊗2 = M ⊕X, where X is algebraic, then M is algebraic.

Proof: Let X = T (X), and let M denote the (finite) set of isomorphism classes of indecomposable sum-

mands of M ⊗ A, as A runs through X , together with M itself. We claim that M = T (M). Certainly,

as X is a summand of M⊗2, all modules in M appear in T (M). To see the converse, we claim that if

A ∈M then all summands of A⊗M lie in M. Since M ∈M, this will complete the proof. If A = M then

A ⊗M = M ⊕X, and the claim is true; if A ∈ X then again clearly all summands of A ⊗M lie in M, by

construction. If A is a summand of B ⊗M , for B ∈ X , then

A⊗M | B ⊗M ⊗M = B ⊗ (M ⊕X) = B ⊗M ⊕B ⊗X.

The summands of B⊗M lie inM, and the summands of B⊗X lie in X ⊆M, so the proof is complete.

Proposition 2.9 Let p be an odd prime, let k be a field of characteristic p, and let G be a finite group with

non-cyclic Sylow p-subgroups. The heart of P(k), rad(P(k))/ soc(P(k)), is non-algebraic.
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Proof: Since G has non-cyclic Sylow p-subgroups, k is non-periodic. Since p is odd, k lies on a component

Γ of the Auslander–Reiten quiver of type A∞. Write M1 = k, and M2i+1 for 3 6 2i + 1 6 p for the

indecomposable modules lying directly above M1 on Γ (with M3 the closest to M1). The modules Ωi(k)

have dimension ±1 mod p, and it is easy to see that the modules Ωi(Mj) have dimension ±j mod p; in

particular, Mp has dimension a multiple of p. Write Γ′ for the component of the Auslander–Reiten quiver

containing Ω(k): write M2 for the middle term of the almost-split sequence starting in Ω(k), and M2i for

4 6 2i 6 p− 1 for the modules lying directly above M2 on Γ′.

Let Ai denote the almost-split sequence starting in Ω(Mi), which has middle term Mi−1 ⊕Mi+1. By [4,

Theorem 3.6], taking the tensor product of A1 by Mi yields (up to projectives) Ai, and so taking middle

terms we get

Mi−1 ⊕Mi+1 = Ω0(Mi ⊗M2),

for 1 < i < p. Finally, since Mp has dimension a multiple of p, A1 ⊗Mp is split by [4, Theorem 3.6] again,

and so (modulo projectives) Mp ⊗M2 = Ω(Mp)⊕ Ω−1(Mp).

The tensor powers of M2 contain all Mi for 2 6 i 6 p, and hence contains the summands of M2 ⊗Mp.

As not both of Mp and Ω(Mp) can be algebraic, Theorem 2.3 implies that M2 is non-algebraic, as claimed.

Proposition 2.10 Let p be an odd prime, let k be a field of characteristic p, and let G be a finite group

with non-cyclic Sylow p-subgroups. Write E for the heart of P(k).

(i) If M is a non-algebraic module then E ⊗M is non-algebraic.

(ii) If M is an algebraic module of p′-dimension then E⊗M contains a non-algebraic summand of dimension

prime to p.

In particular, if p - dimM then M ⊗ E is non-algebraic.

Proof: If M is non-algebraic then, since E is self-dual and of dimension prime to p, M⊗2, which is non-

algebraic, is a summand of (M ⊗ E)⊗2. Hence (M ⊗ E)⊗2, so M ⊗ E, is non-algebraic, proving (i).

For (ii), notice that, since M is algebraic, if all p′-dimensional summands of E ⊗M were algebraic, then

the same would be true for E ⊗M ⊗M∗ as, if X and Y are absolutely indecomposable modules with one

of dimX and dimY a multiple of p, the same is true for all summands of X ⊗ Y by [5, Proposition 2.2].

However, as k | M ⊗M∗, we see that E | E ⊗M ⊗M∗, a contradiction as E is non-algebraic. This proves

(ii).

Using this proposition we may easily prove Proposition F from the introduction. Let M be a kG-module

that lies on the second row of its Auslander–Reiten quiver, so that the almost-split sequence with middle

term M is

0→ Ω−1(N)→M ⊕X → Ω(N)→ 0

where X is zero or a projective module. If p - dimM then, by [4, Theorem 3.6], if E denotes the heart

of P(k), we have that N ⊗ E = M ⊕ X; by Proposition 2.10, this module, hence M , is non-algebraic, as

claimed.
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3 SL2(q)

In this section, p is an odd prime, q = pn, k = Fq, and G = SL2(q). Let G = SL2(k̄). We embed G inside G

in the standard way, as the fixed points under the map Fn, where F : G→ G is the Frobenius map raising

each matrix entry to the pth power.

It is well known that the simple kG-modules L(λ) are labelled by non-negative integers λ, and the simple

kG-modules are the restrictions of L(λ) for 0 6 λ 6 q. Let Vi = L(λ)|G for 0 6 i 6 p − 1, the so-called

fundamental modules. By Steinberg’s tensor product theorem, for λ > 0, writing λ =
∑d
i=0 jip

i (for some

d), we have that L(λ) is the tensor product

L(λ) ∼=
d⊗
i=0

L(λi)
σi

for 0 6 λi 6 p−1, where σ is the map on the module category obtained by applying the Frobenius morphism

(so that it sends L(λ) to L(pλ), for example). This tensor product theorem obviously restricts to G, with d

replaced by n− 1.

We also require tilting modules for SL2(k̄). We will not repeat the definition here, but instead give the

properties of them that we need (see [12]). The indecomposable tilting modules, T (λ), are parameterized by

non-negative integers, with T (λ) having composition factors L(λ) and L(µ) for µ < λ, and a tilting module

is a sum of the T (λ) for various λ. The tensor product of two tilting modules is a tilting module.

We determine some specific tilting modules now, using [16, Lemma 5]. For 0 6 λ 6 p − 1 we have

T (λ) = L(λ); for p 6 λ 6 2p−2, writing λ = p+µ, T (λ) is uniserial of length 3, with radical layers L(p−2−µ),

L(λ) = L(µ)⊗L(1)σ and L(p− 2−µ); the module T (2p− 1) is simple, and is L(2p− 1) = L(p− 1)⊗L(1)σ.

Finally, notice that, since T (λ) has composition factors L(λ) and L(µ) for µ < λ, a tilting module is

determined up to isomorphism by its composition factors.

We now identify the modules Vi: V0 is the trivial module, V1 is the 2-dimensional natural module, and

Vi = Si(V1) is the ith symmetric power of Vi for 2 6 i 6 p− 1. As Si(M) is a summand of M⊗i for i 6 p,

we see that if V1 is algebraic then so are all fundamental modules. Furthermore, since M is algebraic if and

only if the Frobenius twist Mσ is algebraic, we see that if V1 is algebraic then all simple kG-modules are

algebraic, by Steinberg’s tensor product theorem.

The tensor products of L(λ) and L(µ) for 0 6 λ 6 µ 6 p− 1 are easy to describe.

Lemma 3.1 Let 0 6 µ 6 λ 6 p− 1.

(i) If λ+ µ 6 p− 1, then

L(λ)⊗ L(µ) = L(λ− µ)⊕ L(λ− µ+ 2)⊕ · · · ⊕ L(λ+ µ).

(ii) If λ+ µ > p− 1 and λ < p− 1 then

L(λ)⊗ L(µ) = L(λ− µ)⊕ L(λ− µ+ 2)⊕ · · · ⊕ L(a)

⊕

L(p− 1)⊕ T (p+ 1)⊕ T (p+ 3)⊕ · · · ⊕ T (λ+ µ) µ even

T (p)⊕ T (p+ 2)⊕ · · · ⊕ T (λ+ µ) µ odd
,

where a = 2p− (λ+ µ+ 4).
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(iii) If λ = p− 1 then

L(µ)⊗ L(p− 1) =

L(p− 1)⊕ T (p+ 1)⊕ T (p+ 3)⊕ · · · ⊕ T (p+ µ− 1) µ even

T (p)⊕ T (p+ 2)⊕ · · · ⊕ T (p+ µ− 1) µ odd
.

Proof: Notice that the decompositions suggested in the lemma are into tilting modules, so it suffices to

prove that the composition factors of the tensor product L(λ)⊗L(µ) match those of the decomposition. For

(i) and (ii), this is [16, Lemma 4].

Now suppose that µ = 1 and λ = p − 1. By [13, Theorem 3.2], L(1) ⊗ L(p − 1) = T (p), agreeing with

(iii). From this one can easily determine the composition factors of L(µ)⊗L(p− 1), and this gives (iii).

Lemma 3.2 We have

T (p)⊗ L(p− 1) ∼= 2 · (T (p)⊕ T (p+ 2)⊕ · · · ⊕ T (2p− 3))⊕ L(2p− 1)

∼= 2 · L(p− 1)⊗ L(p− 2)⊕ L(p− 1)⊗ L(1)σ.

Consequently, for 0 6 λ, µ 6 p − 1, we may express L(1) ⊗ L(λ) ⊗ L(µ) as a sum A ⊕ B ⊗ L(1)σ, where A

and B are sums of tensor products L(i) ⊗ L(j) for i, j 6 p − 1, and B = 0 unless λ = µ = p − 1, in which

case B = L(p− 1).

Proof: Firstly, notice that by Lemma 3.1 and the fact that L(2p − 1) = L(p − 1) ⊗ L(1)σ, the second

and third expressions are equal. Next, since L(2p − 1) = T (2p − 1), all expressions are of tilting modules,

so it suffices to check that the composition factors coincide. However, the composition factors of T (p) are

L(1)σ and L(p − 2) twice, so the composition factors of T (p) ⊗ L(p − 1) are those of L(p − 1) ⊗ L(1)σ and

L(p − 1) ⊗ L(p − 2) twice, which are clearly the same composition factors as the third expression in the

lemma.

To see the consequence, note that if 0 < λ < p− 1 then L(1)⊗ L(λ)⊗ L(µ) = L(λ− 1)⊗ L(µ)⊕ L(λ+

1)⊗L(µ), and similarly for µ, so that λ = µ = p− 1, and we have the displayed equation in the lemma.

Theorem 3.3 The module V1 is algebraic.

Proof: In the case where d = 1, the Sylow p-subgroups of G are cyclic, so the result holds: hence we assume

that d > 1.

We claim that every module in T (V1) appears as an indecomposable summand of M ⊗ N for simple

kG-modules M and N ; let M denote the set of such summands, and notice that X ∈ M if and only if

Xσ ∈ M. It suffices to show that if M and N are simple kG-modules then every summand of V1 ⊗M ⊗N
appears in M. We proceed by induction on dim(M ⊗N), noting that if this dimension is 1 then the result

is trivial.

By Steinberg’s tensor product theorem, we may write M ⊗N as

Y =

n−1⊗
i=0

(Vi,1 ⊗ Vi,2)σ
i

.

Write Y = V1,1 ⊗ V1,2 ⊗ Y ′, and consider V1 ⊗ Y : if V1,1 and V1,2 are not both Vp−1 then V1 ⊗ V1,2 ⊗ V1,2 is

a sum of tensor products of two fundamental modules, by Lemma 3.2, and hence V1 ⊗ Y is a sum of tensor

products of two simple modules, as required. Hence both V1,1 and V1,2 are Vp−1, and V1 ⊗ V1,1 ⊗ V1,2 can

be written as the sum A ⊕ B ⊗ V σ1 , where A and B are non-zero sums of tensor products of fundamental
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simple modules. Hence V1 ⊗ Y = A⊗ Y ′ ⊕ V σ1 ⊗B ⊗ Y ′; the module A⊗ Y ′ is a sum of tensor products of

two simple modules, so all summands of it lie inM, and (V σ1 ⊗B⊗Y ′)σ
−1

is a tensor product V1⊗M ′⊗N ′

(as B = Vp−1)) with dim(M ′ ⊗N ′) < dim(M ⊗N), whence all summands of it lie in M by induction. As

X ∈M if and only if Xσ ∈M, all summands of V σ1 ⊗B ⊗ Y ′ lie in M, as needed.

4 Natural Modules for the Classical Groups

We begin by recalling Jennings’s theorem on the group algebras of p-groups. Let P be a finite p-group.

Define the dimension subgroups

∆i(P ) = [P,∆i−1(P )]∆di/pe(P )p.

This is the fastest-decreasing central series whose quotients ∆i(P )/∆i+1(P ) are elementary abelian p-groups.

Theorem 4.1 (Jennings, [21]) Let P be a p-group and k = Fp. Denote by kP the group algebra of P

over k.

(i) Let Ai(P ) be defined by

Ai(P ) = {g ∈ P : g − 1 ∈ radi(kP )}.

Then Ai(P ) = ∆i(P ).

(ii) Suppose that we choose xi,j ∈ P such that xi,j∆i+1 form a basis of ∆i/∆i+1. Write Xi,j = xi,j − 1.

Then ∏
i,j

X
αi,j

i,j , 0 6 αi,j 6 p− 1

generate kP . Furthermore, if the weight of such a product is defined to be
∑
i,j iαi,j , then all products

of weight i form a basis of radi−1(kP )/ radi(kP ), and all products of weight at most i form a basis for

kP/ radi(kP ).

Now let P = Cp × Cp be the elementary abelian group of order p2, and let k = Fp. Write Mi =

kP/ radi(kP ). Then Jennings’ theorem immediately implies the following result.

Proposition 4.2 (i) The module kP has 2p− 1 radical layers.

(ii) The module Mi has dimension i(i+ 1)/2 if i 6 p.

(iii) The module Mi is spanned by all monomials in X and Y of degree at most i− 1, for i 6 p.

In particular, (iii) of this proposition implies the next lemma.

Lemma 4.3 Let 1 6 i 6 p− 1 be an integer. Then Si(M2) = Mi+1.

Proof: This is obvious if one remembers that Si(M2) is spanned by all monomials of degree i in the basis

elements of M2, which are 1, X and Y . Thus Si(M2) is spanned by all monomials in X and Y of degree at

most i.

Finally, recall that if i < p and k is a field of characteristic p, then for any kG-module M the module

Si(M) is a summand of M⊗i.

Proposition 4.4 The 3-dimensional kP -module M2 is non-algebraic.
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Proof: Firstly, notice that both S1 = Sp−2(M2) and S2 = Sp−1(M2) are summands of M
⊗(p−2)
2 and

M
⊗(p−1)
2 respectively, and hence if at least one of S1 and S2 is non-algebraic, then M2 is non-algebraic and

the proposition follows.

To see that not both of S1 and S2 are algebraic, we simply note that

S2 = Ω(S1)∗.

Thus by Theorem 2.3, either S1 or S2, and consequently M2, is non-algebraic.

Using this, we easily deal with the special linear groups.

Proposition 4.5 Let q be a power of a prime p, and let G be the group SLn(q), where n > 3. The natural

kG-module is non-algebraic.

Proof: The natural module for SLn(q) restricts to the subgroup SLn(p) as the natural module for this group,

so it suffices to prove the result for this group. Since the natural module for SLn(p) is algebraic if and only

if the natural module for GLn(p) is algebraic (by Proposition 2.1), it suffices to find a non-algebraic module

of dimension n over Fp for some finite group. This is assured by Proposition 4.4, by taking the sum of a

3-dimensional non-algebraic module with n− 3 copies of the trivial module for the group Cp × Cp.

Before we deal with the other classical groups in general, we need to prove a result about A8 = Ω+
6 (2).

Lemma 4.6 Let k be a field of characteristic 2 and let G = A8 = Ω+
6 (2). The 6-dimensional natural

kG-module M (viewing G as Ω+
6 (2)) is non-algebraic.

Proof: Consider the 8-point natural permutation representation of A8: this is easily seen to be uniserial, with

radical layers k, M and k. Let H denote a (transitive) subgroup of A8 isomorphic with SL3(2) = PSL2(7),

acting on the eight points of the projective line. The restriction of M to H is the heart of the permutation

module of PSL2(7) = SL3(2) acting on the projective line, and this is the sum of the two 3-dimensional

simple modules. Since these are both non-algebraic by Proposition 4.5, we see that M is non-algebraic, as

claimed.

(As a remark, it can easily be shown that all non-trivial simple modules in the principal 2-block of A8

are non-algebraic.)

Using the well-known theory of alternating forms (see [30, Chapter 3] for example) it is easy to see that

for n > 4 there is a subgroup H of G = Sp2n(q) isomorphic with Sp6(q), such that the natural module for G

restricts to the sum of the natural module for H and a (2n−6)-dimensional trivial module. For G = Sp6(q),

one may embed H = SL3(q) as block-diagonal matrices, with h ∈ H as the top 3 × 3-matrix. In this case,

the restriction of the natural module for G is the sum of the natural module for H and its dual, so that the

natural module for Sp2n(q) is non-algebraic.

The case of orthogonal groups is similar: for G = Ω±2n(q) with n > 4 and q even, there is a copy of

H = Ω+
6 (2) embedded so that the natural module for G restricts to the sum of the natural module for H

and a (2n−6)-dimensional trivial module. For odd q, we reduce to Ω+
6 (q) in the same way as for even q, and

here again see a diagonally embedded copy of SL3(q) in the same way. Hence for orthogonal groups Ω±2n(q),

n > 4, the natural module is non-algebraic. The case of Ω2n+1(q), n > 3, is very similar, and is omitted.

For unitary groups SUn(q), things are similar, but only when n > 6. Consider SUn(q) as those matrices

A in SLn(q2) such that (Ā)t = A−1, where Ā denotes the matrix obtained from A by raising each entry to
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the qth power. One notes that SU6(q) ∩ SL6(q) is the set of all matrices satisfying At = A−1, so that it is

orthogonal for odd q and symplectic for even q. As we showed that, for both of these, the natural module is

non-algebraic, this completes the statement.

Collating these statements, we have the following.

Proposition 4.7 Suppose that k is an algebraically closed field of characteristic p, let q = pa, and let

G = Sp2n(q), SUn+3(q), SO+
2n(q) or SO−2n+2(q) (q odd or even), or SO2n+1(q) (q odd), where n > 3. The

natural kG-module is non-algebraic.

In the case of Sp4(q) it is not known in general what happens. For q = 2, G = Sp4(q) ∼= S6, and in this

case it is true that all simple kG-modules are algebraic, as we shall see in Theorem 7.3. However, in general

it is not clear whether the natural module is algebraic. (Note that the Suzuki groups Suz(22n+1) are likely

to follow the same pattern as Sp4(2n).)

For unitary groups, we are interested in SUn(q) for n = 3, 4, 5. The group SU3(2) is soluble, so the

natural module is algebraic, and the natural module for SU3(3) is algebraic, by a computer-based proof. For

q > 4 however, it is not clear whether the natural module for SU3(q) is algebraic, even using a computer.

For n = 4, the natural module for SU4(2) is non-algebraic, as there is a conjugacy class of V4 subgroups

such that the natural module restricts to the sum of a 1- and 3-dimensional module, and so is non-algebraic

by the V4 restriction test (Proposition 2.5). By embedding SU4(2) into SUn(q), where q is even and n = 4, 5,

we see that the natural module is non-algebraic for even q and all n > 4. It appears as though this statement

also holds for odd q, but as of yet the author does not have a proof.

5 The Natural Module for the Exceptional Groups

In this section we will prove that the natural module for the exceptional groups of Lie type is non-algebraic

in all cases apart from the Suzuki groups. The strategy in the larger-rank cases is as follows: for an algebraic

group G, find a subgroup H such that the natural module, restricted to H, has a simple summand that

is known to be non-algebraic by earlier results. For small-rank groups, we use some direct computation

and some general results on restricting modules. We use the notation from [28] for the weights of algebraic

groups.

Proposition 5.1 If G is the group 2G2(q), where q is an odd power of 3, then the 7-dimensional natural

module is non-algebraic.

Proof: Let G be the group 2G2(3) = SL2(8) o C3, and let M denote the natural kG-module, where k is a

splitting field of characteristic 3. This group has a 9-point permutation representation, and the corresponding

permutation module X is uniserial, with radical layers k, M and k.

Let P be a Sylow 3-subgroup of G. It is generated by an element x of order 9, which generates a Sylow 3-

subgroup of SL2(8), and y of order 3, acting non-trivially on 〈x〉. Let Q = 〈x3, y〉, which must act transitively

on the nine points; thus we have X ↓Q= kQ, and so M restricts to the heart of kQ, which is non-algebraic

by Proposition 2.9. Hence M is non-algebraic.

Clearly the natural module for 2G2(q) restricts to G
2 (3) as M , and so we have proved our result.

Having dealt with the small Ree groups, we turn our attention to the big Ree groups. The smallest is

the Tits group, 2F4(2)′, which will require a computer to analyze. Although there is a subgroup of the Tits
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group isomorphic with PSL3(3), and the natural module restricts to the 26-dimensional simple module for

this group, we will prove in Proposition 6.2 that this module is, in fact, algebraic. Using a computer, we

confirm that there are ten conjugacy classes of subgroups of G = 2F4(2)′ isomorphic with V4, three of which

have a normalizer of order 256. One of these is important, and we will need it in the next proposition.

Proposition 5.2 If G is the group 2F4(q)′, where q is an odd power of 2, and M is the 26-dimensional

natural module for G, then M is not algebraic.

Proof: There is a conjugacy class of G = 2F4(2)′ isomorphic with V4, and with normalizer of order 256,

such that the restriction of M to an element P from this class is

M ↓P= 4 · P(k)⊕ Ω2(k)⊕ Ω−2(k).

By Proposition 2.5, M ↓P , and hence M , is non-algebraic. Since the natural module for 2F4(q) restricts to

the natural module for 2F4(2)′, we get the result.

In fact, there are five simple modules in characteristic 2 for the Tits group 2F4(2)′: three in the principal 2-

block and two projective simple modules. The two non-trivial, non-projective, simple modules – of dimensions

26 and 246 – are both non-algebraic.

The Suzuki groups are the other twisted groups that only exist in certain circumstances. In this case,

nothing is known for any of the groups in characteristic 2; even if we can prove that (say) the natural 4-

dimensional module for Sz(8) is non-algebraic, then since Sz(8) is not inside Sz(32) we get nothing directly

from this.

We now turn to G2(q), and the case where q is even needs a separate treatment, given that the natural

module has dimension 6 in this case.

Proposition 5.3 Let G be the group G2(q), and let M be the 7-dimensional natural module for G, unless

p = 2, in which case M is the 6-dimensional natural module. Then M is non-algebraic.

Proof: Firstly, assume that q is odd. Let H be the subgroup SL3(q)oC2, denoted K+ in [23, Theorem A].

In [23], Kleidman remarks that M restricts to H as the sum of the trivial and a simple 6-dimensional simple

module. It is clear that the restriction of this 6-dimensional module to H ′ ∼= SL3(q) is the direct sum of the

two (dual) 3-dimensional simple modules. By Proposition 4.5, the 3-dimensional simple modules for SL3(q)

are non-algebraic, and so M is non-algebraic.

Now suppose that q is even. The group G2(2) = PSU3(3) o C2 has a conjugacy class of Klein-four

subgroups with 63 elements, and restricting the 6-dimensional natural module to this class is the sum of two

3-dimensional indecomposable summands; hence by the V4 restriction test, the natural module for G2(2) is

non-algebraic, and the same therefore holds for G2(q) by restriction to G2(2).

By considering the embedding of G2(q) inside 3D4(q), we may prove the next result.

Proposition 5.4 If G is the group 3D4(q), and M is the 8-dimensional natural module for G, then M is

non-algebraic.

Proof: Let H be a maximal subgroup of 3D4(q) isomorphic to G2(q). If q is odd then the module M restricts

as the sum of k and the natural module for H (see the construction in [30, Section 4.6]), so is non-algebraic.

For even q this restriction is indecomposable, and one proceeds as in Proposition 5.3: the conjugacy class
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of Klein-four subgroups with 2457 members fulfils the requirement of the V4 restriction test, so the natural

module is non-algebraic in this case as well.

To work with the rest of the groups, we will restrict simple modules for an algebraic group to a subgroup

isomorphic with A2, so we need some information about such modules. If G is an algebraic group, H

is a subgroup of G isomorphic to A2, and M is a module for G such that the restriction of M to H has

composition factors only L(00), L(10), L(01) and L(11) (of dimensions 1, 3, 3 and 8 (7 if p = 3) respectively),

then the only non-trivial extension can occur between L(00) and L(11) by the linkage principle, and so if

either L(10) or L(01) is a composition factor then it must be a summand. As the restrictions of these

modules to a fixed point subgroup H ∼= SL3(q) is non-algebraic, the module M for the fixed point subgroup

G = GF is also non-algebraic.

The next group is F4(q), which has a 26-dimensional natural module. This module is simple unless q is

a power of 3, in which case this 26-dimensional module splits as the sum of a 25-dimensional module and

the trivial module.

Proposition 5.5 Let G be the group F4(q), and let M be the module L(0001), which is 26-dimensional if

q is not a power of 3, and 25-dimensional if 3 | q. Then M is not algebraic.

Proof: Let G = F 4 and let H ∼= A2 be a Levi subgroup corresponding to the two short roots of the root

system: the restriction of L(0001) to this subgroup is a sum of one L(11), three L(10), three L(01), and one

L(00) if p = 3. By the previous remarks, this means that each of the L(10) is a summand of L(0001) ↓H ,

and so, taking fixed points under the Frobenius map, there is a subgroup H ∼= SL3(q) such that the natural

module for H is a summand of M ↓H ; hence M is non-algebraic, as claimed.

We will now deal with the groups E6(q) and 2E6(q); there is a 27-dimensional natural module of this

group in all characteristics.

Proposition 5.6 If G is either E6(q) or 2E6(q), and M is the 27-dimensional natural module, then M is

non-algebraic.

Proof: Let G = E6, and let H be a subgroup of E6 isomorphic with F 4. By [28, Proposition 2.5], the

restriction of the 27-dimensional natural module for G to H is the sum of the natural module L(0001) and

the trivial module, for all p 6= 3. In the case where p = 3, we use a different subgroup, namely the one

isomorphic to C4, which only exists for odd primes. By [28, Proposition 2.5] again, the restriction to this

C4 subgroup is L(0100).

Hence we consider the module L(0100) for G1 = C4. Let H1
∼= A2 be the Levi subgroup corresponding

to the A2 on the end of the Dynkin diagram. The restriction of L(0100) to this subgroup is a sum of

one L(11), three L(10), three L(01), and two L(00) (only one if p > 3). Hence L(10) is a summand of

L(0100) ↓H1 .

Taking fixed points under the appropriate Frobenius map, and noting that F4(q) and Sp8(q) (q odd) are

contained in 2E6(q), we see that for all q the module M is non-algebraic since the restriction of M to F4(q)

or Sp8(q) is non-algebraic (the latter case because its restriction to the SL3(q)-Levi is non-algebraic).

To deal with the groups E7(q) and E8(q), we use the fact discussed above for modules for A2.

Proposition 5.7 Let G be either E7(q) and E8(q), and let M denote the natural module, of dimension 56

and 248 respectively. Then M is non-algebraic.
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Proof: We use the various tables from [28]. If a module N for A2 has composition factors L(00), L(10),

L(01) and L(11), then we say that N has ‘the desired composition factors’. This will complete the proof for

E7(q) and E8(q) by taking fixed points under the appropriate Frobenius map.

If G = E7, then by [28, Proposition 2.3] there is a subgroup isomorphic with a central product A2A5,

and restricting the 56-dimensional simple module to the A2 factor has the desired composition factors.

Now let G = E8. By [28, Proposition 2.1], there is a subgroup that is a central product A2E6, and

restricting the Lie algebra module to the A2 factor has the desired composition factors.

One should note that the same argument, using [28, Proposition 2.1], proves that the kG-module corre-

sponding to the Lie algebra module is non-algebraic for G of type F 4, E6 and E7 as well.

6 Non-Defining Characteristic Groups

In this short section we use a mixture of theoretical and computational techniques to prove results in

characteristics 2 and 3. We use known theorems about the fact that the sources of simple modules in non-

defining characteristic are ‘generic’, in the sense that they do not depend on the underlying field but only

on congruences. We start with the following easy proposition.

Proposition 6.1 Let G be the group PSL2(q) for q odd, and let k be a field of characteristic 2. If q ≡
−1 mod 8 then the non-trivial simple modules in the principal block of kG are non-algebraic, and in all other

cases all simple modules are algebraic.

Proof: We may assume that F4 ⊆ k, so that k is a splitting field for G. If q ≡ 3, 5 mod 8, then the Sylow 2-

subgroup of G is Klein-four: hence all simple kG-modules are algebraic by Theorem 2.4. If q ≡ 1 mod 4 then

by [14, Theorem 1] the source of a non-trivial simple module in B0(kG) is 2-dimensional, hence algebraic by

Corollary C. If q ≡ 3 mod 4 then by [14, Theorem 3] the source of a non-trivial simple module in B0(kG) has

dimension 2a−1−1, where 2a is the order of a Sylow 2-subgroup of G. Since 2a−1−1 is odd and greater than

1, and dihedral 2-groups have no non-trivial odd-dimensional indecomposable modules that are algebraic by

[3, Theorem 3.4], this module cannot be algebraic, as claimed.

It is easy to see that for PSL2(q) there is a unique block with non-cyclic defect group, and so the proof

is complete.

The remaining simple group with dihedral Sylow 2-subgroups is A7. By [14, Theorem 5], the three simple

modules in the principal 2-block have source either trivial or 2-dimensional, so these are algebraic, just as

in the previous proposition. As the non-principal 2-block has Klein-four defect group, we see that all simple

kA7-modules are algebraic, where k is a field of characteristic 2.

The two odd central extensions of simple groups with dihedral Sylow 2-subgroups are 3 · A6 and 3 · A7:

in the former case, there is a faithful 2-block with full defect, and it is splendidly Morita equivalent to

the principal 2-block of PSL2(7), so there are non-algebraic simple modules; in the latter case, the faithful

2-block with full defect has 6-dimensional and 15-dimensional simple modules, both of which are algebraic.

Having dealt with simple groups with dihedral Sylow 2-subgroup, we consider simple groups with semidi-

hedral Sylow 2-subgroup, in characteristic 2. Together with M11, these are PSL3(q) and PSU3(q), for certain

congruences modulo 4. In the case where the Sylow 2-subgroup is semidihedral, work of Erdmann [14] has

identified the vertices and sources of the simple modules lying in blocks with full defect, allowing us to prove

the following proposition.
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Proposition 6.2 Let G be a simple group with semidihedral defect group, and let k be a field of charac-

teristic 2.

(i) If G ∼= PSL3(q) for q ≡ 3 mod 4, then all simple kG-modules in blocks of full defect are algebraic if

and only if q ≡ 3 mod 8, and if q ≡ 7 mod 8 then there is exactly one non-algebraic simple module in

each block of full defect.

(ii) If G ∼= PSU3(q) for q ≡ 1 mod 4, then all simple modules in blocks of full defect are algebraic.

(iii) If G ∼= M11 then all simple kG-modules are algebraic.

Proof: (i) Let G act on the projective plane in the standard way, with q2 +q+1 points, and let H denote

a point stabilizer. This is of the form U o C, where C is the centralizer of an involution and U is

a group of odd order. The group C is a quotient of GL2(q) by a central subgroup of odd order: by

Proposition 6.1, if q ≡ 7 mod 8 then there are non-algebraic simple modules in the principal 2-block

of PSL2(q), and the diagonal automorphism amalgamates these two modules, so that the principal

2-block of kC has a unique non-trivial simple module, and this is non-algebraic.

In [15, (3,4)], it is shown that the sources of simple modules in blocks of full defect are either trivial

source, or uniserial, of dimension 2n−3−1, where the power of 2 dividing |G| is 2n > 16. If q ≡ 3 mod 8

then n = 4, so all simple modules have trivial source, thus are algebraic. If q ≡ 7 mod 8 then two of

the simple modules in the principal block have trivial source, and the other, M , has the property that

the restriction to C has as a summand the non-trivial simple module in the principal 2-block of kC:

this module is non-algebraic, so M is non-algebraic. In [15, (3,4)] it is also stated that each 2-block of

kG contains a simple module whose source is the same as M , completing the proof.

(ii) This follows immediately from [15, (4.10)], where it is proved that all sources of simple modules in

blocks of full defect are of dimension at most 2, so are algebraic by Corollary C.

(iii) This is proved in Proposition 8.1.

Let G be the group SL3(q) for q ≡ 3 mod 4. The centralizer of an involution is the group GL2(q), and

the defect groups of blocks of GL2(q) are easy to understand: they are Sylow 2-subgroups of direct products

of GLd(q) for d 6 2, so are either of full defect or abelian. Hence all 2-blocks of G are either of full defect, or

of Klein-four or cyclic defect group. Since all simple modules in blocks with the latter two defect groups are

algebraic, this means that all simple modules for PSL3(q) belonging to 2-blocks that are not of full defect

are algebraic; in particular, all simple modules for PSL3(q) are algebraic if q ≡ 3 mod 8.

Similarly, if G is the group SU3(q) for q ≡ 1 mod 4 then the centralizer of an involution is GU2(q), and

again the defect groups are either a Sylow 2-subgroup of G, Klein-four, or cyclic. Hence again, all simple

modules lying in 2-blocks of PSU3(q) (for q ≡ 1 mod 4) that are not of full defect are algebraic.

We now move on to characteristic 3, and consider simple groups with Sylow 3-subgroup C3 × C3.

Proposition 6.3 Let k be a field of characteristic 3. Let G be one of the groups PSL3(4), PSU3(5), PSL4(2),

PSL5(2), PSU4(4), PSU5(4), PSp4(2), PSp4(4), PSL2(q) for q a power of 3, A7, M22 and HS. All simple

modules in B0(kG) are algebraic.
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Proof: If G is one of PSp4(4), PSU4(4) and PSU5(4), then by [29] there is a splendid Morita equivalence

between B0(kG) and (C3 × C3) o D8, so that all simple B0(kG)-modules are algebraic. Similarly, if G =

PSL5(2) then there is a splendid Morita equivalence between B0(kG) and (C3 × C3) oD8 by [26], so that

all simple B0(kG)-modules are algebraic.

If G is one of PSp4(2) = S6, A7 or PSL4(2) = A8 then all simple B0(kG)-modules are algebraic by

Theorem 7.3 below. Finally, if G is M22 or HS, then all simple B0(kG)-modules are algebraic by Propositions

8.3 and 8.6 respectively.

Notice that the two sporadic groups M11 and M23 are not on this list: by Propositions 8.1 and 8.4 they

have non-algebraic simple modules.

We are now in a position to state the main theorem about these groups.

Theorem 6.4 Let G be a finite group, and suppose that a Sylow 3-subgroup P of G has order at most 9.

Let k be a field of characteristic 3. All simple B0(kG)-modules are algebraic if and only if G does not have

a composition factor M11 or M23.

Proof: Let G be a finite group of this form. By [19, Section 5], there are normal subgroups H and L of

G with L 6 H, such that G/H and L are 3′-groups and H/L is a direct product of simple groups and

an abelian 3-group. As L is a normal 3′-group, the simple kG-modules and the simple k(G/L)-modules

in the principal 3-block are the same, so we may assume that L = 1. Also, since G/H is a 3′-group, a

simple kH-module M is algebraic if and only if M ↑G is algebraic. Since the simple modules in B0(kG)

are summands of M ↑G for M a simple B0(kH)-module, we may assume that G = H, in which case G is

a direct product of simple groups with abelian Sylow 3-subgroups and an abelian 3-group. As |P | = 9, if

G is the direct product of more than one group then the factors have cyclic Sylow 3-subgroup, whence all

simple kG-modules are algebraic, and in the other case G is simple. There is a splendid Morita equivalence

between B0(kG) and B0(kH), where H is one of PSL3(4), PSU3(5), PSL4(2), PSL5(2), PSU4(4), PSU5(4),

PSp4(2), PSp4(4), PSL2(9), A7, M11, M22, M23, and HS (see [24] and the references contained therein). By

hypothesis, G 6∼= M11 and G 6∼= M23, so by Proposition 6.3 the theorem is proved.

7 Alternating and Symmetric Groups

In this section we consider blocks of alternating and symmetric groups having defect groups Cp × Cp. If

p = 2 then this is the Klein-four group, and all simple modules in such blocks are algebraic by Theorem

2.4. Hence we consider odd primes p: in general, knowing the sources of simple modules in these blocks is a

difficult problem, but for small primes this can be done.

The primary tool in this section will be the following theorem of the author [7].

Theorem 7.1 Let B be a p-block of a symmetric group, and suppose that B has defect group Cp × Cp. If

M is any simple B-module then the source of M is isomorphic to the source of a simple module from either

B0(kS2p) or B0(k[Sp o C2]).

The proof of this theorem uses various combinatorial techniques, and is entirely theoretical. Since all

simple kSp-modules are algebraic, we see that all simple k[Sp oC2]-modules are algebraic. Hence we get the

following corollary.
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Corollary 7.2 If all simple kS2p-modules are algebraic, then all simple B-modules are algebraic, where B

is any p-block of any symmetric group with defect group Cp × Cp.

Thus we need to determine whether the simple kS2p-modules are algebraic. In general this is unsolved,

but for p = 3 and p = 5 we can prove that they are.

Theorem 7.3 If p = 3 or p = 5, and B is a p-block of a symmetric or alternating group with defect group

Cp × Cp, then all simple B-modules are algebraic.

Proof: It suffices by the previous corollary to prove that result for S6 and p = 3, and S10 and p = 5. Let

k be a field of characteristic p. If p = 3 then A6 = PSL2(9), and all simple kPSL2(9)-modules are algebraic

by Theorem B, so that all simple kS6-modules are algebraic, proving the theorem.

Now let p = 5, and consider A10. The 8-dimensional simple kA10-module has 8-dimensional source A2,

and there are twenty-six different non-projective, indecomposable modules appearing in tensor powers of

A2: twenty-two periodic modules, A2, the trivial module k = A1, and the sources A3 and A7 of the simple

modules of dimensions 28 and 56, which are hence also algebraic.

The 34-dimensional simple module has a 9-dimensional source A4, and all nine indecomposable summands

of tensor powers of A4 lie in A⊗24 . The two 35-dimensional simple, periodic, modules have 10-dimensional

sources A5 and A6, and there are ten different non-projective indecomposable summands in their tensor

powers. (These modules are swapped by the outer automorphism of A10, so it suffices to check one of them.)

The remaining simple modules in the principal block have dimensions 133, 133 and 217, and the sources

have dimensions 8, 8 and 42 respectively. The two 133-dimensional modules are swapped by the outer

automorphism of A10, and so it suffices to check one of them. There are thirty-four different non-projective

summands in T (A8), with thirty of them periodic.

The last module, A10, has dimension 42. The exterior square Λ2(A10) contains a summand M of dimen-

sion 47. It is easier to prove that M is algebraic than A10 is, and indeed M is algebraic, with 32 different

indecomposable modules appearing in T (M), of which the largest has dimension 80. Since A⊗210 is a sum of

indecomposable modules that also appear in M⊗2, we see that A10 is algebraic, completing the proof for

this 5-block. As A10 has only one block with non-cyclic defect, all simple kA10-modules are algebraic, and

so all simple kS10-modules are algebraic, completing the proof.

8 Sporadic Groups

In this section we will examine nine sporadic simple groups: the five Mathieu groups, HS, J2, Suz and He.

Having analyzed the smallest Janko group J1 in [9], this brings the total to ten.

The results here are almost entirely computer driven, and so we do not provide proofs of our statements

that may be checked on the computer. In particular, if a simple module fails the V4 restriction test, we simply

state that it does, without going into details, unless it is non-trivial to prove this, even with a computer.

We deal with the Mathieu groups in detail, then only consider certain other sporadic groups, of particular

interest, either because they have a block with abelian defect group or because all simple modules are

algebraic for some prime p with non-cyclic Sylow p-subgroups. More detailed proofs are available in the

author’s thesis [8] for these groups in the majority of cases, and we are brief in our justification.

In this section, the simple modules in the principal p-block are labelled k = S1, S2, . . . , Sn, ordered by

increasing dimension. In one case we consider a non-principal block explicitly, and its simple modules are

denoted T1, . . . , Tm, again ordered by dimension. Information on the simple modules is available in [20].
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8.1 The Mathieu Groups

We deal with the five Mathieu groups here.

Proposition 8.1 Let G be the simple group M11. If p = 2 then all simple kG-modules are algebraic, and

if p = 3 then a simple kG-module is algebraic if and only if it is self-dual, so that there are four simple

kG-modules in the principal block that are not algebraic.

Proof: Firstly let p = 2. The subgroup M9 o C2 has index 55, and the permutation representation on this

subgroup is semisimple, the sum of the three modules in the principal block. Hence all simple modules in

B0(kG) are trivial source, so algebraic. The simple modules outside of the principal block are projective, so

are also algebraic, proving the result for p = 2.

If p = 3, then the standard 11-point permutation representation is semisimple, with non-trivial submodule

the 10-dimensional self-dual simple module S4. The sources of the 10-dimensional simple modules S5 and S6

that are not self-dual are Ω±2(k), and so are not algebraic. If M is one of the 5-dimensional simple modules

S2 and S3 then Λ2(M) is one of S4 or S5, and as M⊗2 = Λ2(M)⊕ S2(M), we see that M is not algebraic.

The 24-dimensional simple module S7 has a 6-dimensional source, and is algebraic since it is periodic, via

Proposition 2.6. The only simple module not lying in B0(kG) is projective, and hence algebraic, completing

the proof.

Proposition 8.2 Let G be the simple group M12. If p = 2 or p = 3 then the non-trivial simple modules in

B0(kG) are non-algebraic, and the simple modules outside the principal block are algebraic.

Proof: Firstly suppose that p = 2. The non-trivial simple modules lying in B0(kG) fail the V4 restriction

test, and the non-principal block has Klein-four defect group, so all simple modules in it are algebraic by

Theorem 2.4. Hence the result is proved.

Now let p = 3. There are two conjugacy classes of subgroups isomorphic with M11, with representatives

H1 and H2. Restricting the 10-dimensional simple modules S1 and S2 to the Hi proves that these are

non-algebraic, since the restriction of S1 to one of the Hi is the sum of the two 5-dimensional, non-algebraic,

modules for M11, and similarly with S2 (and the other of the Hi). As S⊗21 is the sum of k, the 54-dimensional

projective simple module and the 45-dimensional simple S7, we see that S7 is non-algebraic (as S⊗21 is non-

algebraic, and the other summands are algebraic). Taking S⊗22 yields the other 45-dimensional simple S8 as

a summand of the tensor square, and so it is non-algebraic also.

It remains to discuss the 15-dimensional simples S4 and S5, and the 34-dimensional simple S6. We first

deal with S4: there are two classes of subgroups of order 9 with 220 conjugates, and let Q denote one of

these. The restriction of S4 to Q is

S4 ↓Q= 21 · P(k)⊕M ⊕ Ω−1(M),

where M is a 15-dimensional, non-periodic indecomposable module. (As S4 and S5 are dual, we might need

to consider S5 for this decomposition to hold.) As not both of M and Ω−1(M) can be algebraic, S4 (and

hence S5) is not algebraic. The module S6 has vertex a Sylow 3-subgroup and 7-dimensional source S: the

module S ↓Q is the heart of the projective indecomposable module for Q, and is hence non-algebraic by

Proposition 2.9. This completes the proof.

Proposition 8.3 Let G be the simple group M22. If p = 2 then the non-trivial simple modules are non-

algebraic, and if p = 3 then all simple modules are algebraic.
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Proof: Using the V4 restriction test, we get the result for p = 2. For p = 3, all non-principal blocks have

cyclic defect groups, so it suffices to consider the principal 3-block. In this case, there is a splendid Morita

equivalence with the principal block of the Mathieu group M10 = A6.22, all of whose simple modules are

algebraic by Theorem 7.3 and Proposition 2.1. This completes the proof.

Proposition 8.4 Let G be the simple group M23. If p = 2 then all non-trivial simple modules in the

principal block, apart from that of dimension 252, are non-algebraic. If p = 3 then a simple module is

algebraic if and only if it does not have dimension 104.

Proof: Using the V4 restriction test, we get the result for p = 2. For p = 3, all non-principal blocks have

cyclic defect groups, so it suffices to consider the principal 3-block. All simple modules in B0(kG), apart

from the two 104-dimensional simple modules S3 and S4, are trivial-source modules, and hence algebraic.

The modules S3 and S4 = S∗3 are non-algebraic: to see this, we note that the source of (say) S3 is a

5-dimensional module M , and M⊗2 has Ω2(k) as a summand. As Ω2(k) is non-algebraic, M is non-algebraic,

as claimed.

The 252-dimensional module has algebraic restriction to all elementary abelian subgroups of M23, so it

is not clear whether this module is algebraic or not. However, the 252-dimensional simple module for M24

is non-algebraic, and it restricts to this simple module, which suggests that it is probably not algebraic.

Proposition 8.5 Let G be the simple group M24. If p = 2 then all non-trivial simple modules in the

principal block, apart from that of dimension 320 or 1792, are non-algebraic. If p = 3 then a simple module

is algebraic if and only if it does not have dimension 770 (there are two simple modules with this dimension).

Proof: For p = 2, the V4 restriction test proves that the non-trivial simple modules, with the exception

of the two mentioned, are non-algebraic. Now suppose that p = 3: all non-principal blocks have cyclic

defect group, so it suffices to consider the seven simple modules in the principal block. The 22-dimensional

simple S2 has vertex a Sylow 3-subgroup P of G, and 4-dimensional source, which has a kernel of order

3. It is easy to check by direct calculation that this module is algebraic. Since Λ2(S2) = S3, the simple

module of dimension 231, and S⊗22 = Λ2(S2)⊕S2(S2), we see that S3 is also algebraic. The 483-dimensional

simple module S4 has trivial source (it is a summand of a permutation module of dimension 759), and is

hence algebraic. Finally for the algebraic modules, the largest simple module S7, of dimension 1243, has a

19-dimensional source M (and vertex P ). The tensor square of this module is (up to projectives) the sum

of k and two non-isomorphic 18-dimensional modules, induced from subgroups of order 9 in P . Hence S7 is

algebraic if and only the 6-dimensional sources N1 and N2 of the 18-dimensional indecomposable modules

are algebraic. The fact that the Ni are periodic, together with Proposition 2.6, completes the proof that S7

is algebraic.

We turn our attention to the the two (dual) 770-dimensional simple modules S5 and S6, which are non-

algebraic. If M denotes the 5-dimensional source of S5, then M⊗2 has as a summand either Ω2(k) or Ω−2(k),

so neither S5 nor S6 = S∗5 is algebraic. This completes the proof.

Again, it is not known whether or not the 320- and 1792-dimensional simple modules are algebraic,

although the author considers it unlikely.

18



8.2 HS, J2, Suz and He

Here we consider the Higman–Sims, second Janko, Suzuki and Held sporadic groups. In the case of HS, in

characteristic 3 then all simple modules are algebraic, and the same is true of J2 in characteristics 3 and

5. For the larger two sporadics however, things are more complicated: it appears possible that all simple

modules for Suz are algebraic in characteristic 5, as at least the smallest six are, and for He almost all of

the simple modules are algebraic for both p = 3 and p = 5.

Proposition 8.6 Let G be the simple group HS. If p = 2 then a non-trivial simple module is algebraic if

and only if it lies outside the principal block. If p = 3 then all simple modules are algebraic.

Proof: The result for the prime 2 follows easily from the V4 restriction test for the principal block and, since

the only non-principal block has Klein-four defect group, for those not in the principal block by Theorem

2.4.

Now let p = 3. There are seven simple modules in each block of kG with non-cyclic defect group, labelled

S1 to S7 for the principal block and T1 to T7 for the non-principal block. The modules S1, S2, S3, T3, T4,

T5, T6 and T7 are all trivial-source modules, hence algebraic.

There is a subgroup H ∼= M22 of G, of index 100. All simple kH-modules are algebraic by Proposition 8.3,

and the restrictions of S4, T1 and T2 to H are semisimple, hence these modules are algebraic by Proposition

2.1. Also, S7 ↓H is the sum of simple and projective modules, so S7 is also algebraic.

This leaves us with S5 and S6. Since S6 = Λ2(T1), and T⊗21 = Λ2(T1)⊕S2(T1), this is algebraic. Finally,

S5 has a 10-dimensional source M , and M⊗2 is the sum of a trivial module, nine free modules, and three 6-

dimensional periodic indecomposable modules, which are algebraic by Proposition 2.6. As M⊗2 is algebraic,

M is algebraic so S5 is algebraic, completing the proof.

There are unfortunately no results on the (non-trivial) simple modules in the principal 5-block of HS.

Proposition 8.7 Let G be the Janko group J2. If p = 2 then all simple modules outside the principal block

are algebraic, and all non-trivial simple modules in the principal block are non-algebraic. If p = 3 or p = 5

then all simple modules are algebraic.

Proof: If p = 2 then the V4 restriction test is enough to prove the result for the principal block and, since

the only non-principal block has Klein-four defect group, for those simple modules not in the principal block

by Theorem 2.4.

If p = 3, then all simple modules lying outside the principal block lie in blocks with cyclic defect groups,

so that they are all algebraic. There are eight simple modules lying in B0(kG), labelled as usual S1 to S8.

Apart from the trivial module k = S1 and the 133-dimensional module S8, the other six come in pairs, of

dimension 13, 21 and 57, each defined over F9. Because of this, proving (for example) that S2 is algebraic

proves that S3 is algebraic. We have firstly that

S2 ⊗ S2 = k ⊕ S4 ⊕ S6 ⊕ T2,

where T2 is the 90-dimensional simple module in the second block. If S2 is algebraic then so are S4 and

S6, and by applying the Frobenius morphism on F9, we see that S3, S5 and S7 are also algebraic. Finally,

S2 ⊗ S3 = S8 ⊕ T1 (where T1 is the 36-dimensional simple module in the second block), so that S8 is also

algebraic. Thus it remains to prove that S2 is algebraic. Let A2 denote the source of S2, which is simply

S2 ↓P . There are nine non-projective modules in T (A2), so it is algebraic.
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Finally, suppose that p = 5. There are six simple modules in the principal block of kG, and all non-

principal blocks have cyclic defect groups. The 14-dimensional simple module S2 has indecomposable restric-

tion to P , and hence its source A2 is 14-dimensional. It is algebraic, and there are twenty-one non-projective

modules in T (A2). Using this we may prove that all simple modules are algebraic: we have

S2 ⊗ S2 = k ⊕ S2 ⊕ S3 ⊕ T1 ⊕ T2,

where T1 and T2 are the two simple modules lying in the second block (with defect 1), of dimensions 70 and

90 respectively. Hence S3 is algebraic, and in addition

S3 ⊗ S3 = k ⊕ S2 ⊕ S3 ⊕ S4 ⊕ S5 ⊕ S6 ⊕ T2,

so that all simple modules in B0(kG) are algebraic, as required.

Proposition 8.8 Let G be the Suzuki sporadic group Suz. If p = 2 then all non-trivial simple modules in

the principal block are non-algebraic. If p = 3 then all non-trivial simple modules in the principal block are

non-algebraic, except possibly for the 8436- and 32967-dimensional modules, and all simple modules outside

of the principal block are algebraic. If p = 5 then the smallest six simple modules in the principal block are

algebraic.

Proof: Firstly, let p = 2. We apply the V4 restriction test, but since the simple modules for Suz are quite

large, we describe completely the restrictions involved. Let Q be a representative from the conjugacy class

of V4 subgroups with 1216215 members. We have decompositions of:

S2 ↓Q = 8 · k ⊕ Ω2(k)⊕ Ω−2(k)⊕ 20 · P(k)⊕X1;

S4 ↓Q = 6 · k ⊕ 4 · Ω2(k)⊕ 4 · Ω−2(k)⊕ 24 · P(k);

S5 ↓Q = 8 · Ω(k)⊕ 8 · Ω−1(k)⊕ 2 · Ω3(k)⊕ 2 · Ω−2(k)⊕ 124 · P(k);

S7 ↓Q = 4 · k ⊕ 4 · Ω(k)⊕ 4 · Ω−1(k)⊕ Ω4(k)⊕ Ω−4(k)⊕ 148 · P(k);

S8 ↓Q = 8 · k ⊕ 16 · Ω(k)⊕ 16 · Ω−1(k)⊕ 4 · Ω2(k)⊕ 4 · Ω−2(k)⊕ 4 · Ω3(k)⊕ 4 · Ω−3(k)⊕ 808 · P(k);

S9 ↓Q = 4 · k ⊕ 4 · Ω(k)⊕ 4 · Ω−1(k)⊕ Ω4(k)⊕ Ω−4(k)⊕ 1116 · P(k);

S10 ↓Q = 24 · k ⊕ 16 · Ω2(k)⊕ 16 · Ω−2(k)⊕ 4 · Ω4(k)⊕ 4 · Ω−4(k)⊕ 1184 · P(k);

S11 ↓Q = 8 · k ⊕ 6 · Ω(k)⊕ 6 · Ω−1(k)⊕ 6 · Ω3(k)⊕ 6 · Ω−3(k)⊕ 2264 · P(k)⊕X2;

S13 ↓Q = 12 · k ⊕ 2 · Ω2(k)⊕ 2 · Ω−2(k)⊕ 2596 · P(k)⊕X3.

Here X1, X2 and X3 are the sums of six, seventy-two and forty-four 2-dimensional indecomposable modules

respectively. Taking Galois conjugates of the decompositions for S2, S11 and S13 give the decompositions for

S3, S12 and S14, and taking the dual of the decomposition for S5 gives the decomposition for S6. Therefore

all non-trivial simple modules in B0(kG) are non-algebraic, as claimed.

Now let p = 3. There are eight conjugacy classes of subgroups of G that are elementary abelian of order

9, and let Q be a representative from the class with 38438400 members. Write E for the heart of P(k) and

M1 for the module soc2(P(k)). There exist M2, a 9-dimensional, self-dual, non-periodic indecomposable

module, and M3, a self-dual, 37-dimensional indecomposable module, such that the restrictions of the simple
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modules Si in the principal block are as follows:

S2 ↓Q = E ⊕ Ω(M1)⊕ Ω−1(M∗1 )⊕ 3 · P(k);

S3 ↓Q = M2 ⊕ Ω2(M1)⊕ Ω−2(M∗1 )⊕ 5 · P(k);

S4 ↓Q = k ⊕M2 ⊕ Ω2(M1)⊕ Ω−1(M∗1 )⊕ 28 · P(k);

S5 ↓Q = Ω(M1)⊕ Ω−1(M∗1 )⊕ Ω3(M∗1 )⊕ Ω−3(M1)⊕ 41 · P(k);

S6 ↓Q = E ⊕ Ω(M1)⊕ Ω−1(M∗1 )⊕ 68 · P(k);

S7 ↓Q = M1 ⊕M∗1 ⊕ Ω3(M∗1 )⊕ Ω−3(M1)⊕ Λ2(E)⊕ 209 · P(k);

S8 ↓Q = Ω(M1)⊕ Ω−1(M∗1 )⊕ Ω2(M1)⊕ Ω−2(M∗1 )⊕ Ω(M2)⊕ Ω−1(M2)⊕ Ω3(M1)⊕ Ω−3(M∗1 )

⊕ Ω4(M∗1 )⊕ Ω−4(M1)⊕ 299 · P(k);

S9 ↓Q = M2 ⊕ Ω2(M1)⊕ Ω−1(M∗1 )⊕ 528 · P(k);

S11 ↓Q = M1 ⊕M∗1 ⊕ 2 · Ω(M1)⊕ 2 · Ω−1(M∗1 )⊕ Ω3(M∗1 )⊕ Ω−3(M1)⊕ Ω(M2)⊕ Ω−1(M2)⊕ 1622 · P(k);

S12 ↓Q = 2 ·M1 ⊕ 2 ·M∗1 ⊕ Ω3(M∗1 )⊕ Ω−3(M1)⊕ Ω2(k)⊕ Ω−2(k)⊕M3 ⊕ 2150 · P(k);

This proves that all non-trivial simple modules Si are non-algebraic, apart from S10 – it appears to be

non-algebraic, but the proof of this currently eludes the author – and the 32967-dimensional simple module

S13. The latter module has the property that the restriction of it to any conjugacy class of subgroup of

order 3 is free, and so the restriction to any conjugacy class of subgroup of order 9 is periodic, which makes

it difficult to prove that it is non-algebraic; indeed, its restriction to Q is even free. (The size of the module

makes a more detailed analysis difficult.)

We turn to the modules outside the principal block. There is only one non-principal block B with non-

cyclic defect groups, and in [25], it is proved that B is splendidly Morita equivalent to the principal 3-block

of PSL3(4); hence all simple B-modules are algebraic by Proposition 6.3.

If p = 5, then the 1001-dimensional simple module S4 is trivial source, hence algebraic. The 143-

dimensional simple module S2 has a 28-dimensional source A2, and we have

A2 ⊗A2 = k ⊕A2 ⊕X ⊕ 29 · P(k),

where X is the (30-dimensional) sum of the permutation modules on the six subgroups of P of order 5.

Hence A2, and S2, are algebraic. The 363-dimensional simple module S3 has a 13-dimensional source A3.

There are 37 different non-projective summands of T (A3), the largest of which has dimension 120; as this

number is finite, A3 is algebraic.

The tensor product of S2 and S3 is a module whose only composition factor in the principal block is

S6, and hence this module is algebraic since it must be a summand of S2 ⊗ S3. Both the 3289-dimensional

simple module S5 and the 11869-dimensional simple module S6 have 74-dimensional sources A5 and A6, and

although they are not isomorphic, they are Aut(P )-conjugate. Hence S5 is also algebraic.

The reason that simple modules of larger dimension for p = 5 were not considered is simply that their

dimensions are too high to be easily constructed on a computer. It is possible that the simple modules of

larger dimension are also algebraic. As technology improves more simple modules will be easily dealt with;

for example, the 41822-dimensional simple module is a composition factor of Λ2(S3), and this module is

almost able to be easily constructed on a modern computer without more sophisticated techniques, such as

the condensation method.
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Proposition 8.9 Let G be the Held sporadic group He. If p = 2 then a simple module is algebraic if and

only if it is trivial or lies outside the principal block. If p = 3 then a simple module is algebraic if and only if

it does not have dimension 6172 or 10879, and if p = 5 then the simple modules with dimension 1, 51, 104,

153, 4116, 4249, and 6528 are algebraic.

Proof: First, let p = 2. The only non-principal block of kG that is not of defect zero has Klein-four defect,

and so all simple modules outside the principal block are algebraic. For the modules in the principal block,

the V4 restriction test proves the result: for all but the largest two simple modules, of dimension 2449, a V4

subgroup from one of the two conjugacy classes with 437325 members will work, whereas for the largest two

simple modules, a V4 subgroup from one of the two conjugacy classes with 5247900 members is necessary.

We next examine p = 3. The 679-dimensional simple module S2 has a 4-dimensional source A2 (which

has a kernel of order 3): there are seven elements in T (A2), so it is easy to prove that it is algebraic. The

1275-, 3673- and 6272-dimensional simple modules S3, S4 and S6 have trivial source, so are also algebraic.

However, the 6172-dimensional simple module S5 has a 7-dimensional source A5 which, when restricted

to two of the four maximal subgroups of P (the two that lie in the G-conjugacy class of size 2332400)

is the heart of the free module. Hence A5, and so S5, is non-algebraic by Proposition 2.9. Finally, the

10879-dimensional has 16-dimensional source A7, and when restricted to the same maximal subgroups as

the previous module, is the sum of a free module and the heart of the free module. Hence A7, and thus S7,

is non-algebraic, completing the proof for modules in the principal 3-block.

In [25], it is proved that the non-principal 3-block B of He is splendidly Morita equivalent to its Brauer

correspondent, and hence all simple B-modules are trivial source, hence algebraic.

Now suppose that p = 5. The 51-dimensional simple modules S2 and S3 have trivial source, so are

algebraic. The 104-dimensional simple module S4 has a 29-dimensional source A4, and there are fifty-eight

different indecomposable summands in T (A4), the largest of which has dimension 129; thus S4 is algebraic as

well. The exterior square of S4 has the 4116-dimensional simple module S11 as a summand, so this module

(which has a 66-dimensional source A11) is also algebraic.

The 153-dimensional simple modules S5 and S6, and the 6528-dimensional simple module S13, all have

the same 28-dimensional source A5, and A⊗25 is the sum of A5, k, the six 5-dimensional permutation modules

on subgroups of P of order 5, and a free module: hence A5 is algebraic by Lemma 2.8, and so S5, S6 and

S13 are algebraic.

The 4249-dimensional simple module S12 has an 8-dimensional source A12, and there are exactly 27

elements of T (A12), the largest of which has dimension 80, so that S12 is algebraic. This completes the

proof.

The remaining simple modules for p = 5 are S7 and S8, of dimension 925, S9 and S10, of dimension

3197, and S14, of dimension 10860. The modules S7, S8 and S14 have dimension a multiple of 5, and are

non-periodic, so are likely to be non-algebraic, in accordance with Conjecture 2.7: the sources of S7 and S8

have dimension 75, and the source of S14 has dimension 110, and at the moment we cannot prove whether

these are algebraic or not.

The modules S9 and S10 are more complicated: they share a 47-dimensional source A9, and we have

S2(A9) = k ⊕X1 ⊕A4 ⊕B1 ⊕ 38 · P(k) and Λ2(A9) = X3 ⊕A5 ⊕A9 ⊕A11 ⊕ 34 · P(k).

Here, Xi is the sum over all (six) subgroups Q of P of order 5 of the i-dimensional indecomposable module

for Q, induced to P , and B1 is a 118-dimensional simple module. Hence by Lemma 2.8, if B1 is algebraic
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then A9 is algebraic. Taking the tensor square of B1 is more difficult, and we just do the symmetric square.

This decomposes as

S2(B1) = k ⊕ 2 ·X1 ⊕X3 ⊕A4 ⊕B1 ⊕B2 ⊕B3 ⊕B4 ⊕ 256 · P(k).

In this decomposition: B2 is a 61-dimensional indecomposable module, which appears as a summand in

S2(A7), hence algebraic; B3 is a sum of four 10-dimensional periodic modules, each of which is easily proved

to be algebraic; and B4 is a 222-dimensional indecomposable module. The module B4 is much more difficult

to analyze, and at present we cannot get any information about this module. However, with the plethora of

algebraic modules appearing in its tensor powers, the author believes that S9 and S10 are indeed algebraic.
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221–236.

[30] Robert A. Wilson, The finite simple groups, Graduate Texts in Mathematics, vol. 251, Springer-Verlag

London Ltd., London, 2009.

24


