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Abstract

We study Broué’s abelian defect group conjecture for groups of Lie type using the recent theory of

perverse equivalences and Deligne–Lusztig varieties. Our approach is to analyze the perverse equivalence

induced by certain Deligne–Lusztig varieties (the geometric form of Broué’s conjecture) directly; this

uses the cohomology of these varieties, together with information from the cyclotomic Hecke algebra.

We start with a conjecture on the cohomology of these Deligne–Lusztig varieties, prove various desirable

properties about it, and then use this to prove the existence of the perverse equivalences predicted by the

geometric form of Broué’s conjecture whenever the defect group is cyclic. This is a necessary first step

to proving Broué’s conjecture in general, as perverse equivalences are built up inductively from various

Levi subgroups.

This article is the latest in a series by Raphaël Rouquier and the author with the eventual aim of

proving Broué’s conjecture for unipotent blocks of groups of Lie type.

1 Introduction

Broué’s abelian defect group conjecture is one of the deepest conjectures in modular representation theory

of finite groups, positing the existence of a derived equivalence between a block B of a finite group G and

its Brauer correspondent, whenever the block has abelian defect groups. If G is a group of Lie type and

B is a unipotent block (e.g., the principal block) then there is a special form of Broué’s conjecture, the

geometric form, in which the derived equivalence is given by the complex of cohomology of a particular

variety associated with G, a Deligne–Lusztig variety. Various properties of this derived equivalence arise

from properties of this cohomology, and this offers another avenue in which these varieties have become

important, beyond their original application in classifying unipotent characters of groups of Lie type, and

their intrinsic interest.

The first objective of this article is to provide a conjecture giving the precise cohomology of these Deligne–

Lusztig varieties over an algebraically closed field of characteristic 0. This is the information required for the

derived equivalence and so, equipped with this information, we can search directly for the derived equivalence

without analyzing the geometry of Deligne–Lusztig varieties. Previously, only the cases where the prime `

divides q± 1 were conjectured [9], and the case where ` divides Φd(q) with d the Coxeter number was solved

by Lusztig in [19], so this conjecture is a considerable extension of this work. We give the precise conjecture

later in this introduction, and then give the theorems that we prove about it afterwards.

We then turn our attention to the applications to Broué’s conjecture. The majority of the article is spent

proving the following theorem.

Theorem 1.1 Let B be a unipotent block of a finite group of Lie type, not of type E8. If B has cyclic

defect groups, then the combinatorial form of Broué’s conjecture holds for B.
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The ‘combinatorial version’ of Broué’s conjecture, at least for blocks with cyclic defect group, will be

given in Section 7, with its rather more delicate extension to all groups to appear in a later paper in this

series. In fact, the restriction on the type of the group in this theorem is largely not necessary, as there are

only two unipotent blocks of E8 for which the Brauer tree, or equivalently the combinatorial form of Broué’s

conjecture, is not known [6]. Along the way, we give a complete description of all perverse equivalences

between a block with cyclic defect group and its Brauer correspondent in Theorem 6.15.

We now describe in more detail the results given in this paper. We start with the conjecture on the

cohomology of Deligne–Lusztig varieties. Let ` 6= p be primes, q a power of p, write d for the multiplicative

order of q modulo `, and let G = G(q) be a finite group of Lie type. (We are more precise about our setup in

Section 2.) We assume that ` is large enough that the Sylow `-subgroup of G is abelian. The exact varieties

that we consider are given in Section 3; if κ > 1 is prime to d then to the fraction κ/d we attach a variety

Yκ/d in a natural way; it is this variety whose cohomology over Q̄` that we wish to describe.

Let F denote the set of all polynomials in R[q] whose zeroes are either roots of unity or 0. Notice that

the generic degree of any unipotent character of a group of Lie type, including the Ree and Suzuki groups,

which are polynomials in q, lie in the set F . (It also includes the ‘unipotent degrees’ of the real reflection

groups H3, H4 and I2(p), see [20].) If ξ is a non-zero complex number, write Argκ/d(ξ) for the set of all

positive numbers λ such that λ is an argument for ξ and λ 6 2πκ/d. If f is a polynomial, write Argκ/d(f)

for the multiset that is the union of Argκ/d(ξ) for ξ all non-zero roots of f , with multiplicity.

Definition 1.2 For coprime integers d, κ > 1 and f ∈ F , write a(f) for the multiplicity of 0 as a zero of

f , A(f) = deg(f), and φκ/d(f) for the sum of |Argκ/d(f)| and half the multiplicity of 1 as a root of f . Set

πκ/d(f) = (a(f) +A(f))κ/d+ φκ/d(f).

If χ is a unipotent character lying in a block with d-cuspidal pair (L,λ) (see [2] for a definition), and

Deg(χ) denotes the generic degree of χ, then we write πκ/d(χ) for the difference πκ/d(Deg(χ))−πκ/d(Deg(λ)).

(For those unfamiliar with d-cuspidal pairs, as an example, for the principal block λ is the trivial character,

and so πκ/d(Deg(λ)) = 1 and πκ/d(χ) = πκ/d(Deg(χ)).) We are now able to state the conjecture on

cohomology for unipotent characters of G.

Conjecture 1.3 If χ is a unipotent character of Q̄`G then πκ/d(χ) is the unique degree of the cohomology

of the Deligne–Lusztig variety H•(Yκ/d, Q̄`) in which χ appears.

As we have mentioned before, one reason for interest in the cohomology of Deligne–Lusztig varieties

is Broué’s conjecture: for unipotent blocks of groups of Lie type, it provides a more explicit version –

the geometric version of Broué’s conjecture – of a derived equivalence between the block and its Brauer

correspondent. We will describe this in more detail in Section 3. In particular, this derived equivalence

should be perverse (see [5] and Section 6 below). The cohomology of the varieties Yκ/d should provide

perverse equivalences for Broué’s conjecture, and the geometric version of Broué’s conjecture implies the

following.

Conjecture 1.4 If χ1, . . . , χs are the unipotent ordinary characters in the unipotent `-block B of kG with

abelian defect group, then there is a perverse equivalence from B to B′ with perversity function given by

πκ/d(χi), where B′ is the Brauer correspondent of B.

Again, we are more specific about when this conjecture should hold in Section 3. The firming up of

this conjecture, into the full combinatorial form of Broué’s conjecture, where all aspects of the perverse
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equivalence are given, is the subject of a later paper, but in the case of cyclic defect groups it is completed

here. The precise description is complicated, and will be given in Section 7.

The first test that Conjectures 1.3 and 1.4 might hold is to prove that πκ/d(χ) is always an integer, which

is the content of our first theorem. This result also holds for the unipotent degrees of the Coxeter groups

that are not Weyl groups, by a case-by-case check.

Theorem 1.5 Let d > 1 be such that Φd(q) divides |G(q)|, and let κ > 1 be prime to d. If χ is a unipotent

character of G then πκ/d(χ) is an integer.

The next theorem checks that in a bijection with signs arising from a perfect isometry between a unipotent

block and its Brauer correspondent, the sign attached to χ is (−1)πκ/d(χ).

Theorem 1.6 Let B be a unipotent `-block of kG, with Brauer correspondent B′. In a bijection with

signs IrrK(B) → IrrK(B′) arising from a perfect isometry, the sign attached to a unipotent character χ is

(−1)πκ/d(χ).

We prove Theorems 1.5 and 1.6 simultaneously in Section 4; the proof is not case-by-case, and is re-

markably short, needing no facts about groups of Lie type beyond the statement that Deg(χ)/Deg(λ) is a

constant modulo Φd(q), which is known [2, §5]. In particular, we get a geometric interpretation of πκ/d(f);

the quantity πκ/d(f) is (modulo 2) the argument of the complex number f(e2κπi/d) divided by π. This proof

gives some meaning behind the somewhat obscure function πκ/d.

We move on to perverse equivalences: we firstly prove that the structure of a perverse equivalence is in

some sense independent of ` when the defect group is cyclic, a fact closely related to the statement that the

Brauer tree of a unipotent `-block only depends on the d such that ` | Φd(q), but not ` or q. The general

statement that perverse equivalences should in some sense be independent of the characteristic ` of the field is

still ongoing research of Raphaël Rouquier and the author. The next stage is to classify all possible perverse

equivalences between a block B with cyclic defect groups and its Brauer correspondent B′, which we do in

Section 6.4. It turns out that two obvious conditions – one being that the perversity function satisfies the

conclusion of Theorem 1.6 on the parity of the perversity function, the other that the perversity function,

which is defined on simple modules of the block, increase towards the exceptional node – are sufficient, and

so there is a nice parametrization of all perverse equivalences in this situation.

This is enough to prove Conjecture 1.4 for blocks with cyclic defect group whenever the Brauer tree

is known, but for applying to derived equivalences for higher-rank groups, which will be done inductively,

we need more complete information about the derived equivalence, and prove the complete combinatorial

Broué’s conjecture; this task takes the remainder of the article. For exceptional groups we only perform

a few representative cases here, but full details (which is too extensive to publish here at 100 pages) are

available on the author’s website.

The structure of this article is as follows: Section 2 introduces the general setup and the following section

introduces the Deligne–Lusztig varieties under study. We prove Theorems 1.5 and 1.6 in Section 4, and look

at some evidence in favour of the conjecture on Deligne–Lusztig varieties in Section 5.

A long section on perverse equivalences in next, in which we determine all perverse equivalences between

a block with cyclic defect group and its Brauer correspondent, among other results. Section 7 gives the final

form of the combinatorial Broué conjecture for blocks with cyclic defect group, which we will prove in the

remaining sections. Section 8 gives some formulae regarding calculating the πκ/d-function, and the section
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afterward introduces cyclotomic Hecke algebras for the cyclic group Ze, as well as proving the important

Proposition 9.4, which enables us to compute with a different function to the πκ/d-function in classical

groups.

We then have two sections that give the standard combinatorial devices of partitions and symbols and

the unipotent character degrees, then studies the character degrees of blocks with cyclic defect group to

prove one part of the combinatorial Broué conjecture; the succeeding two sections wrap up the proof. The

final section gives four example computations with the unipotent blocks of exceptional groups, with the rest

being summarized on the author’s website.

2 General Setup and Preliminaries

Let q be a power of a prime p, and let G be a connected, reductive algebraic group over the field F̄p. Let F

be an endomorphism of G, with F δ a Frobenius map for some δ > 1 relative to an Fqδ -structure on G, and

write G = GF for the F -fixed points. (We may normally take δ = 1 unless G is a Ree or Suzuki group, in

which case q is an odd power of
√

2 or
√

3 and δ = 2.) Let W denote the Weyl group of G, B+ the braid

monoid of W , and let φ denote the automorphism of W (and hence B+) induced by F . We let ` 6= p be a

good prime, and write d for the multiplicative order of q modulo `, so that ` | Φd(q). Suppose that ` does

not divide any other Φd′(q) for d′ 6= d, so that a Sylow `-subgroup of G is abelian; in particular, ` is odd.

Finally, we let O, K and k be, as usual, a complete discrete valuation ring, its field of fractions, and its

residue field; we assume that O is an extension of the `-adic integers Z`, so that K is an extension of Q` and

k is an extension of F`; we assume, again as usual, that these extensions are sufficiently large, for example

the algebraic closures. (The assumption that Q` ⊂ K makes it easier for the theory of Deligne–Lusztig

varieties.)

We make a few remarks about the particular groups of Lie type we are studying: since we are interested in

unipotent blocks only, we may be quite flexible about the precise form of the group involved; the centre of a

group always lies in the kernel of any unipotent character, and the set of unipotent characters is independent

of taking or removing diagonal automorphisms, although the defect group of a unipotent block might change.

For example, as long as ` does not divide q − 1, the restriction map from GLn(q) to SLn(q) induces Morita

equivalences of unipotent blocks; therefore, if we term the blocks of PSLn(q) whose inflation to SLn(q) to be

unipotent, the unipotent blocks of PSLn(q), SLn(q), PGLn(q) and GLn(q) are all Morita equivalent, with

simple modules with isomorphic Green correspondents, so for Broué’s conjecture it is irrelevant which one

is considered.

For definiteness, when G is classical we take it to be one of the groups GLn(q) (which is important if

` | (q−1)), GUn(q) (which is important if ` | (q+1)), SO2n+1(q) (where q is odd), Sp2n(q), and (CSO±2n)0(q),

where this last group is the subgroup of CSO±2n(q) of index 2, where the outer automorphisms induced on

the simple group are diagonal. (For q odd, we could take SO±2n(q) as well, but for q even the SO-action

induces the graph automorphism on the simple group, so we cannot take this group.)

Let κ be a non-negative integer prime to d and write ζ = e2κπi/d, so that ζ is a primitive dth root of

unity. (In previous work in this area it has sometimes been assumed that 0 6 κ 6 d − 1, but in this and

subsequent papers we will need to also consider the case κ > d.) Let B be a unipotent `-block of G with

defect group D, and let T be a Φd-torus containing D with D and T of the same rank. Write e for the

number of unipotent characters of d: in almost all cases where the defect group D is cyclic, e = d, e = 2d

or e = d/2. To B we associate a d-cuspidal pair (L,λ), and for any unipotent character χ in B we write
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Deg(χ), or simply χ(1), for the generic degree of the unipotent character χ, a polynomial in q. Write E for

the `′-group NG(D)/CG(D), which is a complex reflection group, and its natural action on the Φd-torus T

is as complex reflections.

As usual, if f is a polynomial, A(f) and a(f) denote deg(f) and the multiplicity of 0 as a zero of f

respectively: these are usually called Lusztig’s A- and a-functions, or often simply the A- and a-functions.

For a unipotent character χ in B, we introduce the notation

aA(χ) = (a(Deg(χ)) +A(Deg(χ)))− (a(Deg(λ)) +A(Deg(λ))).

The quantity aA(χ) is closely related to the parameters of the cyclotomic Hecke algebra of B (see Section

9), and the eigenvalues of the Frobenius map.

Write B′ for the Brauer correspondent of B, a block of H = NG(D). The simple B-modules will usually

be denoted by Si and the simple B′-modules will be denoted by Ti. If D is cyclic then the Brauer tree of

B′ is a star, which we can envisage as being embedded in C, with the exceptional node positioned at 0 and

the e non-exceptional characters being equally spaced around the exceptional node on the circle |z| = 1. We

choose our orientation of the Brauer tree to be anti-clockwise, so that in the following example the projective

cover of the trivial module has second radical layer T2.

T1

T2

T3

T4

In order to save space, we use the ‘/’ character to delineate radical layers in a module, so that for example

we write T1/T2/T3/T4/T1 for the radical layers of the projective cover of the trivial module above (assuming

exceptionality 1).

Write P(M) for the projective cover of the module M , and Ω(M) for the kernel of the natural map

P(M)→M . In the opposite direction, write Ω−1 for the cokernel of the morphism mapping a module into

its injective hull. Notice that Ω2(Ti) = Ti+1 (with indices taken modulo e) so that Ω2 acts like a rotation

by 2π/e on the Brauer tree, and hence on the complex plane. It makes sense therefore to place Ω(Ti) on

the circle of unit radius halfway between Ti and Ti+1, so that Ω acts like a rotation of π/e on the doubled

Brauer tree (this terminology, and concept, is not standard).

3 Deligne–Lusztig Varieties

In this section we give information on the varieties that we deal with in Conjecture 1.3. In the geometric

form of Broué’s conjecture, for each unipotent block B of kG, where ` | Φd(q), and each κ > 1 prime to d,

there is a variety Yκ/d, which has an action of G on the one side and an action of the torus T on the other:

its complex of cohomology inherits this action, and the action of T may be extended to an action of NG(D),

so that this complex provides a derived equivalence between B and its Brauer correspondent B′. We now

describe the variety Yκ/d.

We first define the Deligne–Lusztig variety Y (b), for b ∈ B+. Let w 7→ w be the length-preserving lift

W → B+ of the canonical map B+ → W . Let B, T and U be, as usual, a fixed F -stable Borel subgroup,
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an F -stable torus T contained in B and the unipotent radical U of B. Fix an F -equivariant morphism

τ : B+ → NG(T) that lifts the canonical map NG(T) → W . For w ∈ W , write ẇ = τ(w), and given

w1, . . . , wm ∈W , we set

Y (w1, . . . ,wm) = { (g1U, . . . , gmU) ∈ (G/U)m |

g−1
1 g2 ∈ Uẇ1U, . . . , g

−1
r−1gr ∈ Uẇr−1U, . . . , g

−1
r F (g1) ∈ UẇrU }.

Up to isomorphism this variety depends only on the product b = w1 . . .wm ∈ B+, and we write Y (b) for

this variety.

We now describe the cases in which Yκ/d has been identified. Recall that (L,λ) is a d-cuspidal pair

associated to the block B. If L is a torus then the variety Yκ/d was identified in [3], and we briefly describe

this case (see also [7, §3.4]). Let w0 be the lift of the longest element of W in B+. Choose bd ∈ B+ such

that (bdφ)d = (w0)2φd; the variety Yκ/d should be the Deligne–Lusztig variety Y ((bd)
k).

Recently [8] a generalization of this construction of Y (bd) was given, producing so-called parabolic Deligne–

Lusztig varieties. The construction of these is more technical, and we do not give it here. In [8] a candidate

variety Yκ/d is identified in the case where L is minimal (i.e., the trivial character of L is d-cuspidal). Thus in

these cases the variety Yκ/d has been found, but in general the identification has not been explicitly worked

out, although it seems as though it can be from the information contained in [8].

4 Integrality of πκ/d and a Bijection with Signs

In this section we prove that the πκ/d-function, evaluated at a unipotent character, is always an integer, and

demonstrate that, in a bijection with signs IrrK(B) → IrrK(B′) that arises from a perfect isometry, that

the sign attached to χ is (−1)πκ/d(χ). In this section we may assume that d > 2, and write ζ = e2κπi/d, a

primitive dth root of unity. (The case where d = 1 is easy, since it is clear that it is an integer and we will

see in Section 5 that the integer is always even, tallying with [2].) Let F , as before, denote the set of all

polynomials in q with real coefficients that have as zeroes either roots of unity of finite order or 0.

A preliminary result is needed to simplify some of the proofs that follow, and it will be useful in its

own right; it describes the relationship between different fractions κ/d that describe the same root of unity

ζ = e2κπi/d.

Lemma 4.1 Let f be a polynomial in F . If κ and d are coprime positive integers, then

π(κ+d)/d(f) = πκ/d(f) + 2A(f).

Proof: The difference in the sets Arg(k+d)/d(f) and Argκ/d(f) is one copy of an argument for each non-zero

root of f , so that the difference in cardinalities is A(f)− a(f). Obviously the remaining contribution to the

πκ/d-function – (A(f) + a(f))κ/d – yields a difference of A(f) + a(f), and the sum of these two is 2A(f), as

claimed.

Since 2A(f) is always an integer, we see that πκ/d(f) ≡ π(κ+d)/d(f) modulo 2 for any polynomial f , so

in proving integrality and correct parity, we may assume that κ is less than d.

We can of course extend the domain of πκ/d(−) to include all polynomials, and for the proof of the next

result we extend the domain to include all polynomials with complex coefficients that have as zeroes either

roots of unity of finite order or 0.
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Theorem 4.2 Let 1 6 κ < d be coprime integers. Let f be a polynomial in F such that f(ζ) 6= 0. Writing

arg(z) for the argument of the complex number z, taken in [0, 2π), modulo 2 we have that arg(f(ζ))/π ≡
πκ/d(f).

Proof: Since f is a polynomial with real coefficients, if ω is a complex zero of f then so is ω̄. Since

arg(zw) = arg(z) + arg(w) and πκ/d(fg) = πκ/d(f) + πκ/d(g) it suffices to prove the result for f = q,

f = (q ± 1) and f = (q − ω)(q − ω̄), where ω is a root of unity of finite order. If f = q then the result is

obvious, since arg(f(ζ)) ≡ 2πκ/d mod 2π and πκ/d(f) = 2κ/d.

If f = (q − ω) for some ω 6= ζ then

πκ/d(f) =


κ/d+ 1/2 ω = 1,

κ/d arg(ζ) 6 arg(ω),

κ/d+ 1 arg(ζ) > arg(ω).

It is easy to see that if z has norm 1 then z − 1 has argument arg(z)/2 + π/2 for arg(z) ∈ [0, 2π), proving

the result for ω = 1. As q+ 1 = −(−q− 1), this does ω = −1 as well. In fact, since, ζ − ω = ω(ζ/ω− 1), we

have

arg(ζ − ω) ≡ arg(ω) + arg(ζ/ω − 1) ≡ arg(ω) + arg(ζ/ω)/2 + π/2 mod 2π.

As we have declared that arg(−) lies in [0, 2π), arg(ζ/ω) is equal to arg(ζ)− arg(ω) if arg(ζ) > arg(ω), and

arg(ζ)−arg(ω) + 2π if arg(ζ) 6 arg(ω). Hence (ζ−ω)(ζ− ω̄) has argument arg(ζ) if arg(ζ) > arg(ω), arg(ω̄)

or arg(ζ) < arg(ω), arg(ω̄), and arg(ζ)± π (to stay in [0, 2π)) otherwise. Hence this argument divided by π

is either 2κ/d or 2κ/d+ 1 (modulo 2), as needed.

Let χ be a unipotent ordinary character in a block B, with associated d-cuspidal pair (L,λ). It is known

[2, §5] that (as polynomials in q) Deg(χ) ≡ (−1)εα ·Deg(λ) mod Φd(q), for some positive α ∈ Q and ε ∈ Z.

Hence Deg(χ)/Deg(λ) is a rational function which, when q is evaluated at a primitive dth root of unity,

becomes ±α, a real number. Thus πκ/d(χ), which modulo 2 is the argument of ±α divided by π, must be ε

modulo 2; in particular, πκ/d(χ) is always an integer, proving Theorem 1.5.

If ` is large then it is also proved in [2, §5] that (−1)ε = (−1)πκ/d(χ) is the sign in a perfect isometry

between B and B′, so this proves Theorem 1.6 as well.

5 Previous Work and Known Cases

In this section we will summarize some of the previous work on this problem, and how it interacts with

Conjecture 1.3.

In the cases of d = 1 and d = 2 with κ = 1 there is already a conjecture from [9], which states that the

degree should be 2 deg(Deg(χ))/d, i.e., 2A(Deg(χ))/d for the principal block. Note that in these cases, there

is only one option for ζ.

Proposition 5.1 If d = 1 or d = 2 then for χ in the principal `-block, πκ/d(χ) = 2κA(Deg(χ))/d.

Proof: Let f = Deg(χ). If κ = d = 1 then f(1) 6= 0, and hence a(f) +φκ/d(f) = deg(f), since any zero of f

must either be 0, so is counted in a(f), or non-zero and not 1, so counted in φκ/d(f). Hence πκ/d(f) = 2A(f),

and so πκ/d(χ) = 2A(f). The case of κ arbitrary follows now from Lemma 4.1.

Now let d = 2 and κ = 1; if ω is a complex zero of f then so is ω̄, since f ∈ R[q]; hence exactly one of

ω and ω̄ contributes to φκ/d(f). Finally, we count half of each zero that is +1, and since d = 2 we cannot
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have that Φ2(q) divides f , so that φκ/d(f) counts half of the number of zeroes of f not equal to 0. Thus

πκ/d(f) = (a(f) + A(f))/2 + φκ/d(f) = A(f), as needed. The case of κ an arbitrary odd integer follows

again from Lemma 4.1.

Notice that the case d = 1 can also have κ = 0, in which case πκ/d(f) = 0 as long as f(1) 6= 0. This

suggests that there is a Deligne–Lusztig variety that is a collection of points, and indeed this is the case:

this is the case proved by Puig in [21], that establishes a Puig equivalence (in particular Morita equivalence)

between the blocks B and B′.

The other case where much is known about the structure of the Deligne–Lusztig variety is when d is

the Coxeter number, which for the groups other than the Ree and Suzuki groups is simply the largest

integer d such that Φd(q) | |G(q)| (in the Ree and Suzuki groups case it is d′′ for d the largest integer

such that Φd(q) | |G(q)|, so that the associated polynomial Φ′′d(q) has as a zero the root of unity with

smallest argument). In this case, both the structure of the cohomology of the Deligne–Lusztig variety and

the geometric version of Broué’s conjecture are known.

Theorem 5.2 (Lusztig [19]) Conjecture 1.3 on the cohomology of Deligne–Lusztig varieties holds when-

ever d is the Coxeter number and κ = 1.

If d is the Coxeter number then the Sylow Φd-subgroups (or Φ′′d-subgroups) are cyclic, so Rickard’s

theorem holds and there is a perverse equivalence (see Section 6.3). In this case, it is actually seen that the

perversity function for d the Coxeter number and κ = 1 is the canonical perversity function in Secction 6.3.

It is easy to see that, in this case, φκ/d(χ) is half the multiplicity of (q − 1) in χ(1), where χ is a unipotent

B-character, so it is straightforward to show that πκ/d(χ) = (A(χ) + a(χ))/d+φκ/d(χ(1)) is equal to π0(χ),

the canonical perversity function. (To see the last step we need the structure of the Brauer tree for d the

Coxeter number, but this is now known for all groups [12]; it satisfies the conjecture of Hiss, Lübeck and

Malle from [18].) Hence we get the following result.

Theorem 5.3 Conjecture 1.4 holds whenever d is the Coxeter number and κ = 1.

By work of Olivier Dudas [11, Theorem B] and Dudas and Rouquier [12], it is known that the complex of

cohomology of the Deligne–Lusztig variety, over O, does indeed induce a perverse equivalence, and so even

the geometric version of Broué’s conjecture holds in this case.

In other work, Dudas has proved the geometric version of Broué’s conjecture for the principal `-block of

GLn(q) whenever d > n/2 and κ = 1, and proved for all GLn(q) that Conjecture 1.3 holds for all d if and

only if it holds for d = 1 [10], where we require κ = 1 in these cases.

In addition to these results, Dudas and Jean Michel have calculated the cohomology of various Deligne–

Lusztig varieties, and the results are consistent with the conjecture here. A non-exhaustive list, with κ = 1

(except for the first), is the following:

(i) GL3(q), all d and κ;

(ii) G = GU4(q), d = 4;

(iii) G = GU6(q), d = 6;

(iv) G = F4(q), d = 8;

(v) G = E6(q), d = 9;
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(vi) G = 2E6(q), d = 12;

(vii) G = E7(q), d = 14 (principal series and cuspidal modules only);

(viii) G = E8(q), d = 24 (principal series and cuspidal modules only).

Finally, since Conjecture 1.4 can be thought of as a shadow of the geometric form of Broué’s conjecture

and Conjecture 1.3, so it is also of interest to know when this conjecture is known, particularly for non-cyclic

defect groups. In [7], Raphaël Rouquier and the author proved this version for the principal blocks of all

groups of Lie type, ` = 3 (so in particular, dividing the order of the Weyl group), and d = 1, 2 whenever the

Sylow `-subgroup is elementary abelian of order 9. In addition, in as-yet unpublished work, we have verified

it for ` = 5 and d = 4 for the principal blocks of (CSO+
8 )0(2) and Sp8(2), ` = 5 and d = 8′ for 2F4(2), and

for ` = 7 and d = 3 for the principal block of G = 3D4(2). (To extend this to all appropriate q we need to

know that the Green correspondents of the simple B-modules in the principal blocks do not depend on q, a

widely believed, but unproven, statement.)

6 Perverse Equivalences

In this section we will give some of the theory of perverse equivalences, as developed in [5] originally, and [7].

We begin with a definition of (a special case of) perverse equivalences relying on cohomology (rather than

equivalences of Serre subcategories as per the original definition) and describe an algorithm that computes

all perverse equivalences. We then prove a theorem that the output of the algorithm is ‘generic’ in ` in a

suitable sense whenever the defect group is cyclic (the statement is general is ongoing research of Raphaël

Rouquier and the author), before constructing all perverse equivalences between any Brauer tree algebra (for

example, a block with cyclic defect group for a finite group) and that of the star with exceptional vertex at

the centre (for example, the Brauer correspondent of a block with cyclic defect group). This infinite family

will then contain all of the perverse equivalences that should arise from Deligne–Lusztig varieties Yκ/d.

6.1 Definition and Algorithm

We begin with the definition of a special type of perverse equivalence, which includes those equivalences

expected for groups of Lie type.

Definition 6.1 Let R be one of O and k, and let A and A′ be R-algebras. A derived equivalence f :

Db(A−mod)→ Db(A′−mod) is perverse if there exists a bijection between the simple A-modules S1, . . . , Se

and simple A′-modules T1, . . . , Te (relabelled so that the bijection sends Si to Ti), and a function π :

{1, . . . , r} → Z>0 such that, in the cohomology of f(Si), the only composition factors of H−j(f(Si)) are Tα

for those α such that π(α) < j 6 π(i), and a single copy of Ti in H−π(i)(f(Si)).

Another way of viewing this is, if we construct a table with the cohomology in the jth place of the

module f(Si) from left to right, then there is a single copy of Ti on the ith row, at the position −π(i), and

if a module Tα appears for α 6= i in the table then the column it appears in is strictly to the left of −π(α).

Hence, if we order the Si so that π(i) weakly increases with i, the table is triangular in shape.

Perverse equivalences are of interest because there is an algorithm to compute them. We will describe

this algorithm only in the case of a block of a finite group, since this is the case that concerns us, and refer

to [5] for the general case. This algorithm takes as inputs the following:

9



(i) the Brauer correspondent B′ of the block B of kG;

(ii) a function π from the simple B′-modules to non-negative integers, or, labelling the simple B′-modules

T1, . . . , Te, a function π from {1, . . . , e} → Z>0;

(iii) a collection R of sequences of relatively Q-projective B′-modules for various 1 < Q < D – one sequence

Ri for each simple B′-module Ti;

it returns a collection of complexes in the derived category of B′, which are meant to represent the images

of simple B-modules in a derived equivalence from B to B′. Notice that the output – a series of complexes –

makes no reference to B, and so what we actually get is a derived self-equivalence on B′. We say ‘we apply

the algorithm to the triple (B′, π,R)’ when we perform the algorithm on this triple, or if R is empty as it

in the case where D is cyclic, to the pair (B′, π).

The collection R should come from a stable equivalence between B and B′, but can be an arbitrary

collection for the statement of the algorithm, except the algorithm will fail for many such sequences R. We

assume that the number of terms in Ri is less than π(i). The output is a set of complexes Xi of B′-modules,

with the set of degree 0 terms (hopefully) being the Green correspondents of the simple B-modules.

The first term of the complex Xi is the injective hull P(Ti) of Ti, in degree −π(i). The cohomology

H−π(i)(Xi) consists of Ti in the socle, and the largest submodule of P(Ti)/Ti consisting of those Tα such

that π(α) < π(i). This module Mπ(i) will be the kernel of the map from degree −π(i) to −π(i) + 1; let

Lπ(i) = Ω−1(Mπ(i)), i.e., P(Ti)/Mπ(i).

Now let 0 < j < π(i). Write Ri = (Ri,1, . . . ,Ri,ni). The −jth term of Xi is the module Pj : this

is the direct sum of Ri,j (which is 0 if j > ni) and the smallest injective module P ′j such that the socle

of Ri,j ⊕ P ′j contains that of Lj+1 (so that, if j > ni then P ′j is simply the injective hull of Lj+1). At

this stage, it is not generally true that Lj+1 is isomorphic to a submodule of Pj, or even if

it is, that the quotient Pj/Lj+1 is independent of the choice of injective map, but we assume

that Ri,j is chosen so that these conditions are satisfied; in particular, these hold if Ri,j = 0.

(If these statements do not hold, we say that the algorithm fails, noting that the algorithm

cannot fail for R = ∅.) The submodule Lj+1 is the image of the previous map, and define Mj to be the

largest submodule of Pj , containing Lj+1, such that Mj/Lj+1 has composition factors only those Tα such

that π(α) < j. The module Mj/Lj+1 is H−j(Xi), and Mj is the kernel of the map from degree −j to degree

−j + 1. Again, write Lj = Pj/Mj .

Finally, the 0th term of Xj is the module L1, which should be the Green correspondent of a simple

B-module, which we denote by Si.

An important remark is that, if the injective module Pj in degree −j has a simple module Tα in its socle,

then π(α) > j, since otherwise in degree −j − 1 the module Tα, which lies in the socle of Lj+1, would have

been subsumed into Mj+1.

We now discuss the cohomology of the complexes Xi, and how this may be used to reconstruct the

decomposition matrix of the block B. Let π and the Si and Ti be as above, and let Xi be the complex in

Db(B′−mod) obtained by running the algorithm. The alternating sum of cohomology H(Ti) of Xi is the

virtual B′-module
π(Ti)⊕
j=0

⊕
T∈cf(H−j(Xi))

(−1)j−π(T )T,
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where cf(M) is the set of composition factors of M . These virtual B′-modules determine r rows of the decom-

position matrix in an easy way, and can determine the rest of the decomposition matrix if the corresponding

rows of B′ are known (it is an easy task to determine these rows for B′).

We will explain this description via an example.

Example 6.2 Let G = G2(3) and ` = 13 | Φ3(3), so that d = 3, and let κ = 1. Let P denote a (cyclic)

Sylow `-subgroup of G, H = NG(P ) ∼= Z` o Z6, and order the simple kH-modules so that the ith radical

layer of P(k) is Ti for 1 6 i 6 6, where k denotes the trivial module as well as the field. Using the notation

of [4] for the unipotent characters of G2(q), the ordering on the simples for the principal block B of kG is

φ1,0, G2[θ2], φ2,2, G2[θ], φ1,6, G2[1], yielding a particular bijection between the unipotent characters of B

and the simple B′-modules. For the reason why we chose this particular ordering, see Section 7. This allows

us to transfer the πκ/d-function to the simple B′-modules, meaning we can run the algorithm.

Applying the formula for the π1/3-function, with this ordering, we get 0, 3, 3, 3, 4, 4. (It is a coincidence

that, in this case, the ordering on the simple kH-modules makes the π-function weakly increasing, and

in general this does not happen.) By Theorem 6.15 below this is the perversity function for a perverse

equivalence between B and its Brauer correspondent, and the particular bijection needed is that above.

The Green correspondents of the simple B-modules have dimensions 1, 12, 11, 12, 5 and 1, and have

radical layers (writing i for Ti)

C1 = 1, C2 = 6/ · · · /5, C3 = 2/ · · · /6, C4 = 3/ · · · /2, C5 = 5/ · · · /3, C6 = 4.

(We can delete the inner radical layers since a kH-module is determined by its dimension and socle (or top).)

Applying the algorithm to the pair (B′, π), where B′ = kH and the π-function given by π1/3(−) on the

simple kH-modules, we get six complexes, of the form:

X1 : C1.

X2 : P(2)→ P(6)→ P(6)→ C2.

X3 : P(3)→ P(2)→ P(2)→ C3.

X4 : P(4)→ P(3)→ P(3)→ C4.

X5 : P(5)→ P(6)→ P(4)→ P(5)→ C5.

X6 : P(6)→ P(5)→ P(5)→ P(4)→ C6.

The cohomology of the complexes above is displayed in the following table.

Xi H−4 H−3 H−2 H−1 Total

2 1/2 1 2

3 3 1 3− 1

4 4 4

5 1/2/3/4/5 5− 4− 3− 2 + 1

6 6 6

The column ‘Total’ gives the alternating sum of cohomology. To construct the first six rows of the

decomposition matrix for B, we stipulate that the vector consisting of 0 everywhere except a 1 in the ith

position should be the sum of the rows (with signs) given in the Total column. Hence the third row, minus

the first row, should be (0, 0, 1, 0, 0, 0), and hence the third row is (1, 0, 1, 0, 0, 0). Continuing this, we get
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the matrix below.
Name Degree πκ/d S1 S2 S3 S4 S5 S6

φ1,0 1 0 1

G2[θ2] qΦ2
1Φ2

2/3 3 1

φ2,2 qΦ2
2Φ6/2 3 1 1

G2[θ] qΦ2
1Φ2

2/3 3 1

φ1,6 q6 4 1 1 1 1

G2[1] qΦ2
1Φ6/6 4 1

To construct the rest of the rows, we take a ‘non-unipotent’ row of B′ – in this case it is (1, 1, 1, 1, 1, 1) –

multiply it by the row (−1)πκ/d(Si) – yielding in this case v = (1,−1,−1,−1, 1, 1) – and take the sum of

the ith row of the matrix multiplied by the ith entry of v – yielding (0, 0, 0, 0, 1, 1). In the cyclic case, the

non-unipotent rows are those of the exceptional characters, and for B′ these are always (1, 1, . . . , 1).

In the definition of the perverse equivalence there is a bijection between the simple B- and B′-modules,

and this was the assignment Si 7→ Ti above given by identifying the Green correspondent in the degree 0

term.

We end this section with a remark about the πκ/d-function. We have defined the πκ/d-function on the

unipotent B-characters, and we need it on the simple B′-modules. There are many potential bijections, and

finding the correct one is non-trivial; we state the correct bijection in this article for the cyclic case, but in

general we need technical information provided by the cyclotomic Hecke algebra to find this bijection. This

topic will be explored in a later paper in this series. Similarly, in the cyclic case the collection R of relative

projective modules is empty, and the description of this in the general is the subject of a later paper in this

series.

6.2 Genericity

Let R be the ring of integers of some algebraic number field, and let E be finite subgroup of GLn(R). The

fundamental example of this for our purposes is E a complex reflection group, for example, R = Z and

E a Weyl group, or the group R = Z[i] and E = G8 6 GL2(R). Let ¯̀ be an integer (not necessarily

prime, nor even a prime power) with (|E|, ¯̀) = 1, and suppose that ¯̀ is chosen so that there is a surjective

homomorphism R→ Z¯̀ (the ring Z/¯̀Z), inducing the map α : GLn(R)→ GLn(Z¯̀), whose restriction to E is

injective: such ¯̀ are admissible integers for E. This yields a map E → Aut(Zn¯̀) (where here Z¯̀ is considered

simply as a group), so we may form the group G¯̀ = (Z¯̀)n o E; this group is in some sense generic in the

integer ¯̀. These groups can be found as the normalizers of Φd-tori in groups of Lie type, where |Φd| = ¯̀.

Now specify ¯̀ to be a power of a prime `, and let k be a field of characteristic ` (as is our convention).

In the situation of Broué’s conjecture, there is an isomorphism between B′ and kG¯̀ (since if ¯̀ is a prime

power, this group algebra has only one block), so the simple B′-modules are in one-to-one correspondence

with the simple kG¯̀-modules: one of the key difficulties is to define a canonical such bijection, which is a

fundamental part of the problem discussed in the remark at the end of the previous section.

The simple kG¯̀-modules are ‘independent’ of ¯̀, in the sense that there is a natural identification of the

simple kG¯̀-modules with the ordinary E-characters, and hence and identification between the simple kG¯̀-

and simple k′G¯̀′ -modules, where ¯̀′ is a power of a different prime `′, k′ is a field of characteristic `′, and ¯̀′ is

chosen to have the same above properties as ¯̀. We say that the simple kG¯̀- and k′G¯̀′ -modules are identified.

With this identification, it is clear that we can also identify the projective kG¯̀- and k′G¯̀′ -modules, and we
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do so. An obvious remark, but worth making, is that the projective modules have dimension ¯̀, and also the

defect group D of the block kG¯̀ is cyclic of order ¯̀.

Let T1, . . . , Te be an ordering of the simple kG¯̀-modules, and pass this ordering onto the k′G¯̀′ -modules

through the identification. The main philosophy of genericity is the following: given a fixed π-function

π : {1, . . . , e} → Z>0, the outputs when applying the algorithm to the pairs (kG¯̀, π) – yielding complexes Xi

– and (k′G¯̀′ , π) – yielding complexes X ′i – should be ‘the same’ (note we are assuming that the collections

R are empty, although a version should exist with these included). By ‘the same’, we mean

(i) in the complexes Xi and X ′i, the projective modules appearing in each degree are identified;

(ii) the multisets of composition factors of the cohomologies H−j(Xi) and H−j(X ′i) are equal up to iden-

tification.

If these two conditions hold for all ¯̀ and ¯̀′ at least m, then we say that the algorithm is generic for (E, π)

with lower bound m.

In general, for any (E, π) there should exist m ∈ N such that the algorithm is generic with lower bound

m, although this is ongoing research of Raphaël Rouquier and the author. In the cyclic case however, i.e.,

n = 1, it can fairly easily be proved with no restriction on ¯̀and ¯̀′ (except that they are admissible for (E, ρ)

of course), i.e., m = 1, and we give this now.

Let R = Z[e2πi/e] and E be the cyclic subgroup of R∗ of order e. An admissible prime power ¯̀ is one

where the prime ` satisfies e | (`−1). Before we start, we want to extend our definition of identified modules:

consider the indecomposable kG¯̀-modules. The group algebra kG¯̀ has a single block, with cyclic defect

group, and the Brauer tree of kG¯̀ is a star, with e vertices on the boundary. The projective cover of any

simple module is uniserial: label the simple kG¯̀-modules so that T1 is the trivial module, and the first e

radical layers of P(T1) are the simple modules T1, T2, . . . , Te. For any 1 6 i, j 6 e, there exists a unique

uniserial module with j layers and socle Ti: write Ui,j for this indecomposable module. If ¯̀′ is a power of

another prime `′ with e | (`′−1), then we can perform the same construction, and produce uniserial modules

U ′i,j ; we identify Ui,j and U ′i,j .

Proposition 6.3 Let E be as in the previous paragraph, and let π : {1, . . . , e} → Z>0 be arbitrary. The

algorithm is generic for (E, π) with lower bound 0. More precisely, let ¯̀ and ¯̀′ be powers of primes `

and `′ such that e | (` − 1), (`′ − 1), and write G1 = G¯̀ and G2 = G¯̀′ , using the construction above. If

π : {1, . . . , e} → Z>0 is a perversity function then, if Xi and X ′i (1 6 i 6 e) are the complexes describing the

results of the algorithm applied to (G1, π) and (G2, π) respectively, we have:

(i) for 1 6 j 6 π(i), the projective module in degree −j for both Xi and X ′i is the projective cover P(Tα)

for some 1 6 α 6 e;

(ii) the module H−j(Xi) is a uniserial module Uα,β , and this is identified with H−j(X ′i);

(iii) writing Ai for the term in degree 0 of Xi, and A′i for the term in degree 0 of X ′i, if π(i) is even then Ai

and A′i are identified uniserial modules, and if π(i) is odd then Ω(Ai) and Ω(A′i) are identified uniserial

modules.

Proof: Label the uniserial kG1-modules of length at most e (and hence also the k′G2-modules via identi-

fication) Uα,β , as above. Fix 1 6 i 6 e, and for kG1 and 1 6 j 6 π(i), we construct the modules Pj , Mj

and Lj , as in the algorithm, so that Pj is the injective hull of Lj+1, and Mj is the largest submodule of Pj ,
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containing Lj−1, such that Mj/Lj−1 contains as composition factors only modules Tα where π(α) < j. For

k′G2 we construct the modules P ′j , M
′
j and L′j similarly.

We proceed by reverse induction on j, starting with the case j = π(i). Here, Pj = P(Ti) and P ′j = P(Ti),

so (i) of the proposition is true for j = π(i). Additionally, H−π(i)(Xi) is uniserial of length r + 1 for some

r > 0, so is the module Ui,r+1, with radical layers Ti−r, Ti−r+1, . . . , Ti (with indices read modulo e); this

is the largest r > 0 such that all of Ti−r, Ti−r+1, . . . , Ti−1 have π-value less than π(i). Clearly r < e, as

the (e + 1)th socle layer of P(Ti) is Ti, which cannot be part of H−π(i)(Xi); hence r is independent of the

particular exceptionality of the vertex, and so H−π(i)(Xi) and H−π(i)(X ′i) are both Ui,r+1, proving (ii) for

j = π(i).

Now let j be less than π(i). We notice that, if the top of H−(j+1)(Xi) – which is the top of Mj+1 – is

Tα for some α, then the projective module in degree −j is P(Tα−1); since Tα−1 was not included in Mj+1,

we must have that π(α− 1) > j + 1. Since H−(j+1)(Xi) is identified with H−(j+1)(X ′i), we see that both Pj

and P ′j are P(Tα−1), and so (i) is true for j. Also, if Pj+1 = P(Tβ), then the top of Pj+1, and hence the top

of Lj , is Tβ : by the remark just before the start of this subsection, π(β) > j.

The module Mj/Lj−1 is uniserial, with radical layers Tβ−s, Tβ−s+1, . . . , Tβ−1 (with indices read modulo

e), and some s, possibly zero; this is the largest s > 0 such that all of Tβ−s, Tβ−s+1, . . . , Tβ−1 have π-value

less than j. Clearly s < e, as the Tβ−e = Tβ , and π(β) > j. Hence H−j(Xi) = Uβ−1,s; as the top of L′j is

also Tβ , we must also have that H−j(X ′i) = Uβ−1,s, proving (ii) for this j. Hence, by reverse induction, (i)

and (ii) hold.

It remains to deal with (iii). We note that Ai = Ω−1(M1) and A′i = Ω−1(M ′1); since all projective

modules have dimension ¯̀ and ¯̀′ respectively, dim(Ai) + dim(M1) = ¯̀ and dim(A′i) + dim(M ′1) = ¯̀′. As

the tops of M1 and M ′1 are identified simple modules, the socles of Ai and A′i are identified simple modules;

as Ai and A′i are determined by their dimension and their socle, we need to show that if π(i) is even then

dimAi = dimA′i, and if π(i) is odd then dim(Ω(Ai)) = dim(Ω(A′i)), or equivalently dim(M1) = dim(M ′1).

Firstly, dim(Lj)+dim(Mj) = ¯̀, and dim(Mj) = dim(Lj+1)+dim(H−j(Xi)); by repeating this calculation,

we see that if π(i)− j is even, we have

dim(Mj) =

π(i)∑
α=j

(−1)α−j dim(H−α(Xi)).

If π(i) − 1 is even, so π(i) is odd, then dim(M1) = dim(M ′1), as the cohomology of Xi and X ′i is the same,

yielding (iii) in this case. If π(i) is even,

dim(Ai) =

π(i)∑
α=1

(−1)α−j dim(H−α(Xi)),

and so we get dim(Ai) = dim(A′i), as needed for (iii).

Because of Proposition 6.3, we can run the algorithm constructing perverse equivalences ‘generically’, at

least for cyclic defect groups. In this situation, let E be a cyclic group of order e, and π : {1, . . . , e} → Z>0

be a perversity function. We say that we apply the algorithm generically to (E, π) if we apply the algorithm

to the pair (kG`, π) for some prime ` ≡ 1 mod e. The data we retrieve are:

(i) generic complexes for each i, that is, a sequence (ni,1, . . . , ni,π(i)) of π(i) integers in [1, e], with ni,j

being the label of the projective modules in degree π(i) + 1− j, so that for example ni,1 = i;
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(ii) generic cohomology for each i, that is, a sequence (Mi,1, . . . ,Mi,π(i)) of π(i) uniserial modules of

dimension at most e (these exist for any admissible `, with Mi,j being the module H−(π(i)+1−j)(Xi)

in the complex Xi associated to Ti), and the associated generic alternating sum of cohomology ;

(iii) a generic Green correspondent for each i, that is, if Ci is the module in degree 0, then the generic

Green correspondent is the integer pair (ci,1, ci,2), where Ci has Socle Tci,1 and top Tci,2 . (There is

a unique such uniserial module with dimension at most e, and a unique such uniersial module with

dimension at least ¯̀− e, so this pair, together with the parity of π(i), determine Ci.)

This generic setup will be needed particularly in Section 6.4, where we want to compare the outputs of the

algorithm when the acting group E has order e and e− 1; of course there can be no prime ` such that e | `
and (e− 1) | `, so we are forced to work in a generic situation.

6.3 Perverse Equivalences and Brauer Trees

We continue with notation from previous sections, specialized to the cyclic defect group case: E is a cyclic

group of order e, acting faithfully on Z¯̀, and G¯̀ = Z¯̀ o E. We label the simple kG¯̀-modules T1, . . . , Te,

with T1 being the trivial module, as in Section 2. If B has cyclic defect groups (and recall that B′ is its

Brauer correspondent) then B′ is isomorphic to kG¯̀; we will in this section describe a specific identification

of the simple B′-modules and the Ti. If π : {1, . . . , e} → Z>0 is a perversity function we write Xi for the

complex corresponding to Ti when we apply the algorithm to (kG¯̀, π), or after the identification, (B′, π).

In [22], Rickard proved that there is a derived equivalence between any block with cyclic defect group

and the block of the normalizer of the defect group; in fact, the equivalence he constructed is perverse,

for some bijection between the simple B- and B′-modules. We will produce this particular bijection and

perversity function here, and using Green’s walk on the Brauer tree [16] we will show that the Green

correspondents of the simple B-modules are indeed the terms in degree 0 of the complexes. (In terms of [22],

the perversity function can easily be extracted, and the bijection is slightly more subtle.) The proof that

Rickard’s equivalence is perverse is in [5], but our proof of the existence of a perverse equivalence does not

require either paper.

We now make some important remarks about the rest of this section and the next: in Sections 6.1 and

6.2 a perversity function was defined on the simple modules for the algebra kG¯̀, and in the case of a block

B, on the Brauer correspondent B′. However, in the groups of Lie type, the perversity function is defined

for the simple B-modules, and must be passed to the simple B′-modules via a bijection between the two sets

of simples. Technically speaking, a function defined on the simple B-modules is not a perversity function;

however, since it can be turned into one via a bijection between the simple B- and B′-modules, which we

will always provide, we will often abuse nomenclature somewhat and conflate the two.

In this section a perversity function will be defined on the simple B-modules with the help of the Brauer

tree, and in the next section we will find it useful to think of the perversity function as defined on the simple

B-modules, with the bijection between the simple B- and B′-modules being altered.

We begin with a result that will be of great use in computing the degree 0 terms in the complexes of our

putative equivalence.

Lemma 6.4 Suppose that π : {1, . . . , e} → Z>0 is a perversity function, and that for all 1 6 j < e we have

π(j + 1) − π(j) 6 1, and π(1) − π(e) 6 1. Let ¯̀ be a power of ` such that e | (` − 1), write G¯̀ = Z¯̀o Ze,
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and apply the algorithm to (kG¯̀, π), to form complexes Xi. The cohomology H−j(Xi) of the complex Xi is

zero for 1 6 j < π(i); in other words, the cohomology is concentrated in degree −π(i).

Proof: We use the notation Mj and Lj introduced in Section 6.1 for the complex Xi, and write Hi =

H−π(i)(Xi). It is easy to see, since there is at most one copy of Ti in Hi, that Hi is a (uniserial) module

of dimension a, with a 6 e. In addition, as the socle of Lπ(i)−1 is the module Ti−a, and it is not a part

of Hi, we have that π(i − a − 1) > π(i). Finally, the hypothesis π(j + 1) − π(j) 6 1 clearly implies that

π(i− j) > π(i)− j and π(i− a− j) > π(i)− j for all j > 1.

Our aim is to show by downward induction on j for π(i) > j > 0, that H−j(Xi) = 0, so that Lj = Mj ,

and therefore that Mj = Ωj−π(i)(Mπ(i)). We assume that Mj = Lj = Ωj−π(i)(Mπ(i)): as the socle of Mπ(i) is

Ti and the top of Mπ(i) is Ti−a+1, the socle of Mπ(i)−j is Ti−b if π(i)−j = 2b and Ti−a+1−b if π(i)−j = 2b+1.

As Lj−1 = Pj/Mj , we have that the top of Lj−1 is the socle of Mj ; hence

soc(Pj−1/Lj−1) =

Ti−b−1 π(i)− j = 2b

Ti−a+1−b π(i)− j = 2b+ 1.

In order for Hj−π(i)(Xi) to be non-zero, we must have that the socle Tα of Pj−1/Lj−1 satisfies π(α) < π(i)−j.
However, π(i− j) > π(i)− j and π(i− a− j) > π(i)− j for all j > 1, proving that Hj−π(i)(Xi) = 0 for all

π(i) > j > 0, as required.

The point of this is that, if there is no cohomology except at degree −π(i), then moving along the complex

has the effect of applying Ω−1. We get the following corollary.

Corollary 6.5 Use the notation of the previous lemma. Write Hi for H−π(i)(Xi). The term in degree 0 of

Xi is Ω−π(i)(Hi).

Since the projective covers of the simple kG¯̀-modules are all uniserial, the effect of applying Ωi is very easy

to describe: namely, Ω(Ti) is the indecomposable module of dimension ¯̀−1 with socle Ti, and Ω2(Ti) = Ti+1.

There is a natural one-to-one correspondence between non-exceptional characters and simple modules in

a block with cyclic defect group, obtained by making a non-exceptional character of valency 1 in its Brauer

tree correspond to the unique simple module to which it is incident, then removing both character and

module from the tree and repeating.

Definition 6.6 Let B be a block with cyclic defect group. For S a simple B-module, let f(S) denote

the length of the path from the exceptional vertex of the Brauer tree of B to the vertex incident to S

that is closest to the exceptional vertex; let r be the maximum of the f(S). Write π0(S) = r − f(S), and

πα(S) = π0(S)+α for any α > 0. We call π0 the canonical perversity function, and πα the α-shifted canonical

perversity function.

If χ is a non-exceptional character in B, then χ(1) is congruent to either 1 or −1 modulo `: we only

consider α-shifted canonical perversity functions such that χ(1) ≡ (−1)πα(χ) mod `, where πα is transferred

from the simple B-modules to the non-exceptional B-characters using the correspondence described just

before Definition 6.6. (Recall the remark at the start of this subsection about perversity functions being

defined on B and transferred to B′.)

We recall Green’s walk on the Brauer tree from [16], which can be used to construct the Green corre-

spondents of the simple B-modules. Let χ be a non-exceptional character of maximal distance from the
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exceptional node: as χ lies on the boundary of the Brauer tree, χ has simple reduction modulo `, say S.

We define T1 by the statement that Ωπα(S)(T1) is the Green correspondent of S. (The module T1 is always

simple.) We keep our notation for modules of B′, writing Ti = Ω2i(T1). We now wish to label the simple

B-modules as Si, so that, with respect to πα, the bijection between simple B- and B′-modules is Si 7→ Ti.

Starting from the vertex χ1 we walk around the edges of the Brauer tree in an anti-clockwise direction,

labelling the edges δ(1), 2, δ(2), . . . , e, δ(e), 1. It is easy to see that every edge is labelled exactly twice,

with i and δ(j) for some i and j, so that δ is a permutation of {1, . . . , e}. We then rotate the labelling of the

edges anti-clockwise α times, so that for example if α = 1 then the first edge in the sequence is now labelled

1, not δ(1).

Write Ai for the simple module whose edge is labelled ‘i’. (Note that each edge is labelled ‘i’ and ‘δ(j)’

for some i and j.) The Green correspondent of Ai is an indecomposable B′-module whose top is Ti and

whose socle is Tδ−1(i) [16, (6.1)], and its dimension is between 1 and e, or between ¯̀− 1 and ¯̀− e, depending

on whether πα(Ai) is even or odd.

If πα(Ai) = 2c is even, write Sδ−1(i)+c = Ai, and if πα(Ai) = 2c + 1 is odd, write Si+c = Ai. (These

indices should be taken modulo e.) An important point to notice, and that we will use in the proof of the

next theorem, is that if we start from any vertex χ of the Brauer tree and start our walk in the same way,

finally rotating the labelling by πα(χ) rather than α, then we get the same labelling of the Ai and the Si,

except that the indices are shifted all by the same amount. This observation yields the following lemma.

Lemma 6.7 Let S be a simple module whose associated non-exceptional vertex lies on the boundary of the

Brauer tree. If πα(Ai) is even then δ(i) = i, and if πα(Ai) is odd then δ(i− 1) = i.

Proof: Travelling on Green’s walk alternates between positive and negative vertices (i.e., vertices whose

associated character is congruent to +1 and −1 modulo `), and also alternates between labels of the form ‘i’

and ‘δ(i)’. Hence a label of the form ‘i’ always occurs when moving from a positive to a negative vertex, and

‘δ(i)’ when moving from negative to positive. The result now follows since when encountering a boundary

vertex the walk doubles back and labels the same edge on consecutive steps of the walk.

The most important case is when the Brauer tree is a line, and of course in this case we can be completely

explicit: the ordering on the simple modules is to start from one end of the tree and travel to the exceptional

node, then to repeat this from the other end.

Lemma 6.8 Suppose that the Brauer tree of a block is a line, with s vertices to the right of the exceptional

node and t vertices to the left. Assume that s > t. Write χ for the vertex farthest to the right, and start

Green’s walk from this vertex; let α 6 1 and consider the corresponding πα and Si. The simple modules Si

for 1 6 i 6 s are the simple modules, in sequence, starting from χ and ending at the exceptional node, and

for s+ 1 6 i 6 t the Si are the simple modules, in sequence starting from the farthest-left vertex and ending

at the exceptional node. Moreover, for each i, if πα(Ai) = 2c then i + c 6 e + 1 and δ−1(i) + c 6 e, and if

πα(Ai) = 2c+ 1 then i+ c 6 e and δ−1(i) + c 6 e.

Proof: If α = 0, then the permutation δ swaps i and e+2−i. For 1 < i 6 s/2+1 we have πα(Ai) = 2i−3, so

that i+c = πα(Ai)+1 6 e and δ−1(i)+c = (e+2−i)+(i−2) = e. If i > s/2+1+t then πα(Ai) = 2(e+1−i)
so that δ−1(i) + c = (e + 2− i) + (e + 1− i) = πα(Ai) + 1 and i + c = (e + 1− i) + i = e + 1. This proves

the lemma for the modules to the right of the exceptional node; for the other side the result is similar.

If α = 1, then the permutation δ swaps i and e+ 1− i. For 1 < i 6 (s+ 1)/2 we have πα(Ai) = 2i− 1, so

that i+c = πα(Ai) 6 e and δ−1(i)+c = (e+1− i)+(i−1) = e. If i > (s+1)/2+ t then πα(Ai) = 2(e+1− i)
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so that δ−1(i) + c = (e+ 1− i) + (e+ 1− i) = πα(Ai) and i+ c = (e+ 1− i) + i = e+ 1. This again proves the

lemma for the modules to the right of the exceptional node; for the other side the result is similarly similar.

At the moment it is not clear that distinct Aj produce distinct Si in general. The first step along the

way is to show that, if α 6 1 and χ is a vertex of maximal distance from the exceptional vertex with respect

to which the edges are labelled, then as in the case of the line above, the index i of Si need not be taken

modulo e, i.e., that i+ c 6 e and δ−1(i) + c 6 e.

Lemma 6.9 Let χ be a vertex of maximal distance from the exceptional node, and let the Ai and δ be as

constructed above. Let α = 0 or α = 1. If πα(Ai) = 2c is even then i+ c 6 e+ 1 and δ−1(i) + c 6 e, and if

πα(Ai) = 2c+ 1 is odd then i+ c 6 e and δ−1(i) + c 6 e.

Proof: If one removes from the Brauer tree any edge that does not lie on the unique line connecting the

edges A1, Ai and the exceptional node, then e reduces by 1 and i and δ−1(i) either remain the same or at

least one is reduced by 1, with the πα-function remaining constant. Hence, if ψ denotes the vertex incident

to Ai that is farther from the exceptional node than the other, then the case where i + c− e is maximal is

where the Brauer tree is a line, with χ as one of the boundary vertices and either the exceptional node or ψ

as the other. This case is done in Lemma 6.8.

Having proved something about the Si, in every case, we can proceed with an inductive proof of the well

definedness of the Si, together with enough facts about πα(Si) to get a perverse equivalence between B and

B′.

Theorem 6.10 Let πα, the Si and Ti be as above, and let Ci denote the Green correspondent of Si in B′.

(i) The module Si is well defined; i.e., for a given i, there is a unique Aj such that in the definition above

we get Aj = Si. Consequently, the Si form a complete set of simple B-modules.

We may now produce a perversity function on the Ti by defining πα(i) := πα(Si).

(ii) We have that πα(i+ 1)− πα(i) 6 1 for all 1 6 i 6 e (where e+ 1 and 1 are identified).

(iii) If πα(Ai) = 2c is even, then πα(Sj) < πα(Ai) for δ−1(i) + c > j > i+ c, and πα(Si+c−1) > πα(Ai). If

πα(Ai) = 2c+1 is odd, then πα(Sj) < πα(Ai) for i+c > j > δ−1(i)+c+1, and πα(Sδ−1(i)+c) > πα(Ai).

(iv) Denote by Xi is the complex associated to Ti when one applies the algorithm to (B′, πα). For j > 0

we have H−j(Xi) = 0 unless j = πα(Si), and the 0th term of Xi is the module Ci. Consequently,

there is a perverse equivalence between B and B′, with perversity function πα(−) and bijection given

by Si 7→ Ti.

Proof: We will begin by proving (i), (ii) and (iii), and then prove that (iv) follows from these.

Firstly, we show that the result holds for a given α if and only if it holds for α + 2. For this, we simply

note that replacing α by α + 2 has the effect of cycling the Ai (i.e., replacing Ai by Ai+1), doing the same

to the Ti, and increasing the c used to relate the Ai and the Si by 1, so that Si is replaced by Si+2. Since

the Si are all shifted by 2, this means that (i), (ii) and (iii) all hold for α if and only if they hold for α+ 2.

We can therefore assume that α = 0 or α = 1, and in particular A1 = S1 has Green correspondent either

T1 (if α = 0) or Ω(T1) (if α = 1). Our plan is to remove the edge labelled by S1 and use induction on the
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smaller Brauer tree, since the construction of the Ai and Si do not require that the tree is a Brauer tree for

a particular block. Notice that in the base case, where there is one simple module, all parts are true.

We first assume that α = 0: as the edge corresponding to A1 is labelled by ‘1’ and ‘δ(1)’, removing it

results in a Brauer tree with one fewer edge, and with edges labelled in a Green’s walk from 2 to e, instead

of from 1 to e − 1. By induction, if we subtract 1 from the labels of these edges, we get a labelling A′i and

S′i, with A′i = Ai+1 for 1 6 i 6 e − 1, and the S′i are well defined, with S′i = Si+1. Lemma 6.9 now proves

that the Si are well defined, proving (i).

For (ii), we notice that the relative orders of the Si and S′i are unchanged except for the insertion of S1,

so that (ii) is valid except possibly for i = e and i = 1. If i = e then, since πα(S1) = 0 we clearly have

πα(Si+1)− πα(Si) 6 1 for i = e.

If i = 1 then we need to locate S2. If πα(S2) 6 1 then the result holds, so πα(S2) > 2, in which case

c > 1. As S2 = Aj+c or Aδ−1(j)+c, and c, j > 1, we get that c = 1 and hence either j = 1 or δ−1(j) = 1;

since δ(1) = 1, this implies j = 1 in either case, a contradiction as A1 = S1. Hence πα(S2) 6 1 and so (ii)

holds.

It remains to show (iii). As with the previous part, the only possible problem is when we reintroduce

A1 = S1, for which πα(S1) = 0. For a given i > 1, the only way that πα(S1) cannot satisfy πα(Sj) < πα(Ai)

is if πα(Ai) = 0, in which case Lemma 6.7 proves that the requirement is vacuous for this i. Hence we

need to show the remaining requirement: if πα(Ai) = 2c is even then i + c − 1 6 e by Lemma 6.9, so that

Si+c−1 6= S1 unless i = 2 and c = 0, in which case πα(S1) = πα(S2), and if πα(Ai) = 2c + 1 then for the

same reason Sδ−1(i)+c 6= S1, this time with no exception. Hence by the inductive hypothesis the inequality

does hold, and we complete the proof of (i), (ii) and (iii) when α = 0.

Now assume that α = 1. In this case, removing the edge corresponding to A1 = S1 again results

in a Brauer tree with e − 1 edges, but this time, the label ‘δ(1)’ must be replaced by ‘δ(e)’; hence the

resulting permutation on {2, . . . , e} is simply (1, e)δ. By induction, subtracting 1 from the labelling produces

A′i = Ai+1, a permutation δ′ on {1, . . . , e− 1} such that δ′−1(i− 1) = δ−1(i)− 1 unless δ−1(i) = 1, in which

case δ′−1(i− 1) = e− 1, and well-defined S′i with 1 6 i 6 e− 1.

If πα(Ai) = πα(A′i−1) = 2c+ 1 is odd, then Si+c = S′i+c−1, and if πα(Ai) = πα(A′i−1) = 2c is even then

Sδ−1(i)+c = S′δ′−1(i−1)+c unless δ−1(i) = 1, in which case S1+c = S′e−1+c. Note that A1 = S1: if δ−1(i) = 1

then the edges labelled i and 1 share a vertex, so that πα(Ai) differs from πα(A1) = 1 by at most 1. Since

πα(A1) is minimal, we have πα(Ai) = 1 or πα(Ai) = 2. Since we require πα(Ai) to be even, we have c = 1,

so that Ai = S2 = S′1, and hence Si+1 = S′i for all 1 6 i 6 e− 1. This proves (i).

For (ii), the same argument as in case α = 0 means we only need to investigate whether πα(S2) 6

πα(S1)+1. Let j be such that Aj = S2; if πα(Aj) = 2c+1 is odd then since j+c 6 e we have that j = 2 and

c = 0, so that πα(S2) = πα(S1). On the other hand, if πα(Aj) = 2c is even then δ−1(j) + c = 2 then c 6 1

(with c = 1 implying that δ(1) = j), in which case πα(S2) = πα(S1) + 1, as πα(Aj) 6= 0. This completes the

proof of (ii).

As with the case where α = 0, the only possible problem is for A1 = S1, for which πα(A1) = 1 is minimal.

For a given i > 1, the only way that πα(S1) cannot satisfy πα(Sj) < πα(Ai) is if πα(Ai) = 1, in which

case Lemma 6.7 proves that the requirement is vacuous for this i. Hence we need to show the remaining

requirement: if πα(Ai) = 2c is even then i+ c− 1 6 e by Lemma 6.9, so that Si+c−1 6= S1 unless i = 2 and

c = 0, in which case πα(S1) = 1 > 0 = πα(Ai) (and in any case, there is no such Ai), and if πα(Ai) = 2c+ 1

then for the same reason Sδ−1(i)+c 6= S1 unless δ−1(i) = 1 and c = 0, in which case πα(Si) = πα(Ai). Hence

by the inductive hypothesis the inequality does hold, and we complete the proof of (i), (ii) and (iii) when
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α = 1 as well.

It remains to prove that the first three parts imply the existence of a perverse equivalence, for which we

require Green’s walk. Let 1 6 i 6 e, consider Ai = Si+c (assume that πα(Ai) = 2c + 1 is odd, as the even

case is exactly the same) and the complex Xj of B′-modules corresponding to Si+c. By (iii) we have that

H−π(i)(Xi) is the uniserial module Mi of dimension at most e, with socle Ti+c and top Tδ−1(i)+c+1. By (ii)

and Lemma 6.4, the 0th term of the complex Xi is the module Ω−π(i)(Mi), which is a uniserial module of

dimension at least ¯̀− e with socle Tδ−1(i) and top Ti; this is the Green correspondent of Ai = Si+c, and

hence we get a perverse equivalence, as needed.

The bijection given when α = 0 is called the canonical bijection, and for a given α it is called the α-shifted

canonical bijection. We summarize the results of this section for future reference.

Corollary 6.11 Let B be a block of kG with a cyclic defect group D, and let B′ be its Brauer correspondent

in kNG(D). The α-shifted canonical perversity function, together with the α-shifted canonical bijection,

yields a perverse equivalence between B and B′.

6.4 A Family of Perverse Equivalences

We will describe a family of perverse equivalences for blocks with cyclic defect groups: by varying the

perversity function in a natural way, we get infinitely many different perverse equivalences, for some bijection

between the simple modules. We use the canonical perversity function and bijection from the previous section.

As in the previous section, the canonical ordering on B′ is the ordering where Ti is the ith radical layer of

the projective cover of T1, for all 1 6 i 6 e. Therefore, if the exceptionality of the vertex of the Brauer tree

is 1, then the projective cover of T1 has radical layers

1/2/3/4/ · · · /e/1.

As in the previous section, we extend the perversity function given in Definition 6.6 to an arbitrary Brauer

tree algebra, as since we will again be proceeding by induction on the number of vertices, we need to consider

Brauer trees that do not necessarily come from groups. We will also be pursuing the same proof method as

in the previous section – removing a single simple module and using induction – and so we need to compare

results of the algorithm when there are e and e− 1 simple modules; we introduced the idea of applying the

algorithm generically in Section 6.2 for precisely this purpose.

There are two situations that we are interested in: the first is comparing two different perversity functions,

π and π′, and we want to know whether, when we apply the algorithm generically to (E, π) and (E, π′), if

the sets generic alternating sums of cohomology of generic Green correspondents are identical; the second is

where we have a block B of a finite group and we have a perversity function π on the simple B-modules,

and we wish to know if there is a bijection between the simple B- and B′-modules that yields a perverse

equivalence, with perversity function π. (Recall the remark made at the start of the previous section about

defining perversity functions on simple B-modules.)

Let E be the cyclic group of order e, and let π and π′ be perversity functions from {1, . . . , e} to Z>0.

We say that the perversity functions π and π′ are algorithmically equivalent if there exists some permutation

ρ ∈ Sym(e) such that, for all 1 6 i 6 e, if one applies the algorithm generically to (E, π) and (E, π′), and

consider the modules Ti and Tρ(i) respectively, then the generic alternating sums of cohomology and generic

Green correspondents of Ti under (E, π) and of Tρ(i) under (E, π′) are identical, and π(i) ≡ π′(ρ(i)) mod 2.
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(Notice that we do not need to include the group E in the definition because |E| is the size of the domain

of π and π′.)

To turn the second situation described into a version of the first, let π′ be the α-shifted canonical

perversity function on B for a suitable α, passed through the α-shifted canonical bijection between B and

B′; we ask whether there is a function π̄ : {1, . . . , , e} → Z>0 taking the same values as π and such that π̄

and π′ are algorithmically equivalent.

The bulk of this section will be spent proving that, given any perversity function π, one may construct

another perversity function π′ that is algorithmically equivalent to π via a certain map ρ ∈ Sym(e) and such

that π′(i) = π(i) if ρ(i) = i, and π′(ρ(i)) = π(i) + 2 otherwise; furthermore the map ρ is easy to describe,

being a single cycle on the non-fixed points.

As usual, let B be a block of a finite group and let B′ be its Brauer correspondent. There are two obvious

conditions that a perversity function π on the simple B-modules must satisfy if there is to be a bijection

from the simple B- and B′-modules σ that yields a perverse equivalence between B and B′:

(i) if Sj lies on a path between Si and the exceptional node, then π(Sj) > π(Si).

(ii) χi(1) ≡ (−1)π(Si) mod `, where χi is the non-exceptional character in bijection with the simple module

Si, as described just before Definition 6.6;

The first condition is simply because, ordered by the π-function, the decomposition matrix of B must be

lower triangular; the second condition is required by the perfect isometry induced by the perverse equivalence

(see Theorem 1.6). The main result of this section is that these are the only restrictions on π. This therefore

classifies all perverse equivalences between a block with cyclic defect groups and its Brauer correspondent.

In order to prove this, we first prove Theorem 6.13, which works directly with perversity functions. We

then interpret it in Theorem 6.14 in the language above, of perversity functions on the simple B-modules and

a bijection with the simple B′-modules. This leads to Theorem 6.15, which proves the asserted classification

above.

The proof of Theorem 6.13 is a similar approach to the main result of the previous section, removing a

vertex of degree 1 from the Brauer tree and using induction; we extract part of the inductive step into the

next technical lemma.

Lemma 6.12 Let π : {1, . . . , e} → Z>0 be a perversity function, and apply the algorithm generically to π,

yielding generic complexes (ni,j), generic cohomology (Mi,j) and generic Green correspondents (ci,1, ci,2).

Suppose that the generic cohomology associated to Te is the sequence (Te, 0, . . . , 0), i.e., Me,1 = Te and

Me,j = 0 for j > 1. Let π̄ be the restriction of π to the subset {1, . . . , e − 1}, and apply the algorithm

generically to π̄, yielding (n̄i,j), (M̄i,j) and (c̄i,1, c̄i,2) analogously. Fix a 6= e.

(i) The sequences (na,j) and (n̄a,j) are identical if and only if neither ca,1 nor ca,2 is e − x for some

0 6 x < π(e)/2.

(ii) If ca,1 = e− x for some 0 6 x < π(e)/2, then:

(a) c̄a,1 = e− x− 1;

(b) for all j 6 x we have na,2j = e− x+ j and n̄a,2j = e− x+ j − 1.

(iii) If ca,2 = e− x for some 0 6 x < (π(e)− 1)/2, then:
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(a) c̄a,2 = e− x− 1;

(b) for all j 6 x we have na,2j−1 = e− x+ j and n̄a,2j−1 = e− x+ j − 1.

(iv) The multiplicity of each Tα, α 6= e, in the modules Ma,j and M̄a,j is the same, for each j > 0.

(v) Write π(e) = 2c+ δ where δ ∈ {0, 1}. We have (ce,1, ce,2 = (e− c− δ, e− c).

Proof: In order to prove this, we choose primes ` and ¯̀ such that ` ≡ 1 mod e and ¯̀≡ 1 mod (e− 1), form

the groups G` = Z` o Ze and G¯̀ = Z¯̀o E, let k be of characteristic ` and k̄ of characteristic ¯̀, and apply

the algorithm to (kG`, π) – yielding complexes Xi associated to Ti – and apply the algorithm to (k̄G¯̀, π̄) –

yielding complexes X̄i associated to Ti. We apply Proposition 6.3 repeatedly to pass between the generic

and particular cases. Fixing a 6= e, write Pj for the projective in degree −j of the complex Xa, and similarly

for P̄j and X̄a.

Firstly, since Xe has no cohomology outside of the module Te, we must have that π(e−j) > π(e)−2j+2,

for all 1 6 j 6 π(e)/2. We prove (iv) while we prove (i) and (ii), noting that if Pj and P̄j are covers of the

same simple modules for all j then clearly the multiplicities of all simple modules Tx (1 6 x 6 e− 1) are the

same in H−j(Xa) and H−j(X̄a), so we assume that this is not the case.

Consider the difference between the terms of Xa and X̄a: use the notation Mj and M̄j as in Section

6.1. In all degrees −j with j > π(e), the projective modules Pj and P̄j are labelled by the same simple

module, since the module Te is taken in cohomology whenever it has the opportunity to be. In particular,

the multiplicity of Tx in H−j(Xa) and H−j(X̄a) coincide for 1 6 x 6 e− 1, proving (iv) for j > π(e).

For j < π(e) however, the modules Pj and P̄j will not coincide if P̄j = P(Te−1) for some j, in which

case Pj = P(Te). Let −α be the lowest degree for which Pα 6= P̄α (note α < π(e)), so that Pα = P(Te)

and P̄α = P(Te−1). We also see that therefore H−j(Xa) and H−j(X̄a) coincide for α < j 6 π(e), proving

(iv) in this range as well. An easy induction yields that H−α+2j−1(Xa) = 0 and hence Pα−2j = P(Te−j),

since π(e − j) > π(e) − 2j + 2. What this proves is that, if α is even then the socle of the degree 0 term

of Xa is Te−α/2 and that of X̄a is Te−α/2−1, whereas if α is odd then the top of the degree 0 term of Xa

is Te−(α−1)/2 and that of X̄a is Te−(α+1)/2. This completes the proof of one direction of (i) and, assuming

the other direction, proves all parts of (ii). It remains to prove (iv) for j 6 α. In this case, for every other

α − j even, H−j(Xa) = H−j(X̄a) = 0 so the result holds there, and for α − j odd, the only time H−j(Xa)

and H−j(X̄a) can differ is if Te is not taken in cohomology, in which case Te−1 would not be either (as

π(e) 6 π(e− 1), and so again the cohomologies coincide, completing the proof of (iv).

We now prove the converse for (i); let 0 6 x < π(e)/2, and suppose that a 6= e is such that the socle of

the degree 0 term of Xa is Te−x. We reverse the algorithm, and prove that we must have that P2x = P(Te),

which will be enough. By the condition on the degree 0 term, we see that M1 has top Te−x+1. Using the

observation at the start of this proof, π(e − x + 1) > π(e) − 2(x − 1) + 2 > 1, so that Te−x+1 cannot lie

in H−1(Xa). Thus L1 = M1 and H−1(Xa) = 0, so that P2 = P(Te−x+1). A simple induction shows that,

given that π(e − x + j) > π(e) − 2(x − j) + 2 > 2j + 2, L2j−1 = M2j−1 has top Te−x+j , H
−2j−1(Xa) = 0

and P2j = P(Te−x+j) until j = x, at which point P2x and P̄2x will differ and the converse of (i) holds for

the socle.

The proof of the result for the top, i.e., (iii), is similar and omitted.

The statement (v) is simply determining the socle and top of Ω−π(e)(Te).

Call a subset I ⊆ {1, . . . , e} cohomologically closed for π if, when we apply the algorithm generically to

π, yielding generic cohomology (Mi,j), and whenever x ∈ I and Tx appears in the cohomology Mi,j for some
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i and j, then i ∈ I. (In other words, if Tx appears in the cohomology of the complex corresponding to Ti

and x ∈ I, then i is also in I.) This concept has a very natural interpretation for the canonical perversity

function and bijection: if J is a subset of the simple B-modules such that, if Sj ∈ J and Si lies on the

path between Sj and the exceptional node, then Si ∈ I, then the image of J under the canonical bijection

is cohomologically closed. It is this interpretation that the reader should bear in mind, especially when it is

used in Theorem 6.15.

Theorem 6.13 Let π be a perversity function. Let I = {x1, . . . , xm}, with xi < xi+1, and I1 ⊆ I be

cohomologically closed subsets for π. Define ρ ∈ Sym(e) by ρ(i) = i for i 6∈ I and ρ(xi) = xi+1 (cycling

indices modulo m), and let π′(−) be defined by π′(i) = π(i) for i /∈ I, and π′(ρ(i)) = π(i) + 2 for i ∈ I. The

functions π and π′ are algorithmically equivalent, via the permutation ρ ∈ Sym(e). Moreover, the sets I and

I1 are cohomologically closed for π′.

Proof: If I = {1, . . . , e} then the same argument as at the start of the proof of Theorem 6.10 yields the

result, so we may assume that I ⊂ {1, . . . , e}. One may apply a cyclic permutation to the function π so

that π(e) is minimal subject to not being in I; applying the algorithm generically to a cyclic permutation

of π results is the same generic objects, but with the integers and module labels cyclically permuted. In

particular, when applying the algorithm generically to π, the generic cohomology corresponding to Te is

(Te, 0, . . . , 0). Let i /∈ I, and consider the generic complexes – (ni,j) and (n′i,j) – and cohomologies – (Mi,j)

and M ′i,j) – of Ti with respect to π and π′; we claim that the generic complexes and cohomologies are

identical.

To see this, firstly note that the Mi,j only have composition factors Tx for x /∈ I by the definition of

cohomological closure. We need to prove that the M ′i,j only involve Tx for x /∈ I as well, for then Mi,j = M ′i,j

for all j as the π- and π′-functions coincide outside of I; as the cohomology is identical, ni,j = n′i,j for all j,

and we have proved algorithmic equivalence for i /∈ I.

Let j be minimal subject to Mi,j 6= M ′i,j ; then M ′i,j contains some Tρ(x) for x ∈ I, and π′(ρ(x)) =

π(x) + 2 < π(i)− j+ 1 but π(ρ(x)) > π(i)− j+ 1. (As π′(ρ(x)) > 2 we must have that j < π(i)−1.) Choose

ρ(x) with this property so that Tρ(x) is in the smallest socle layer of M ′i,j : we see that Mi,j is a submodule

of M ′i,j , and the socle of M ′i,j/Mi,j is Tρ(x), so that ni,j+1 = ρ(x). By the description of the algorithm, the

module Mi,j+2, if it is non-zero, has socle Tρ(x)−1.

Notice that for y such that ρ(x) > y > x (with e and 0 identified), y /∈ I, by the definition of ρ. If

π(y) < π(i)− j − 1 = π(i)− (j + 2) + 1 for all ρ(x) > y > x, then Mi,j+2 contains as a composition factor

each Ty; however, in this case, since π(x) = π(ρ(x)) − 2 < π(i) − j − 1, we see that Mi,j+2 would also

contain Tx as a composition factor, a contradiction since Tx cannot be a composition factor by the second

paragraph. From those y such that π(y) > π(i) − j − 1, choose y so that Ty is in the highest socle layer

in the uniserial module with socle Tρ(x) and top Tx: we now claim that Tx is a composition factor in the

module My,1, which is a contradiction as x ∈ I and y /∈ I. This can easily be seen as π(y) is greater than

all z from y to x, including x, and this final contradiction completes the proof. Thus the generic complexes

and generic cohomology for i /∈ I are the same for π and π′.

Let i ∈ I, and write π̄ and π̄′ for the restrictions of π and π′ to {1, . . . , e − 1}. The functions π̄ and π̄′

are algorithmically equivalent by the restriction of ρ to Sym(e − 1) by induction (as ρ(e) = e). Hence the

generic Green correspondents for Ti for π̄ and for Tρ(i) for π̄′ are identical; however, by Lemma 6.12, we

can construct the generic Green correspondent for Ti for π from that of π̄, and similarly for Tρ(i) and π̄′

and π′. This means that the generic Green correspondents for Ti for π and for Tρ(i) for π′ are identical as
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well. Hence the second criterion of being algorithmically equivalent – that the generic Green correspondents

match up – is true for all 1 6 i 6 e.

In addition, Lemma 6.12(iii) states that the coefficient of Tj (1 6 j 6 e − 1) in the generic alternating

sums of cohomologies of π for Ti and π̄ for Ti coincide, and similarly for π′ for Tρ(i) and π̄′ for Tρ(i). However,

as π̄ for Ti and π̄′ for Tρ(i) have the same generic alternating sum of cohomologies, this means that so must

π for Ti and π′ for Tρ(i), except possibly for the multiplicity of Te. However, the multiplicity of Te is

determined by the generic Green correspondent and the multiplicities of the other Tj in the alternating sum

of cohomology, and since these are the same for Xi and X ′i, the multiplicity of Te in the alternating sum of

cohomologies must also be the same. (To see this statement, use the same method of proof as that of the

end of Proposition 6.3.)

This proves that π and π′ are algorithmically equivalent, as claimed.

Finally we prove that I1 is cohomologically closed for π′. Using Lemma 6.12(iv) we see that I1 is

cohomologically closed for π̄, so by induction I1 is cohomologically closed for π̄′. Another application of

Lemma 6.12(iv), together with the fact that the generic cohomology of the module Te for π′ is the sequence

(Tj , 0, . . . , 0), proves that I1 is cohomologically closed for π′, as needed.

We now translate this theorem into a statement about producing a new perverse equivalence between

two blocks from an old one. We simply state this theorem, as it is merely a rewriting of the previous result.

Theorem 6.14 Let π be a perversity function on the simple B-modules S1, . . . , Se, and order the simple

B′-modules T1, . . . , Te in accordance with Section 2. Let σ : {1, . . . , e} → {1, . . . , e} be a bijection from the

Si to the Ti, such that there is a perverse equivalence from B to B′ with perversity function π̄(Tσ(i)) := π(Si)

and bijection σ. Let I = {x1, . . . , xm}, with xi < xi+1, and I1 be cohomologically closed subsets for π̄, with

I1 ⊆ I, and let J be the preimage of I under σ.

Define π′(Si) = π(Si) for i /∈ J and π′(Si) = π(Si) + 2 for i ∈ J . Let ρ ∈ Sym(e) be defined by ρ(i) = i

for i /∈ I and ρ(xi) = xi+1 (cycling indices modulo m). Finally, define π̄′(Tρ(σ(i))) := π′(Si). There is also a

perverse equivalence from B to B′ with perversity function π̄′ and bijection ρ ◦ σ.

Starting from the canonical perversity function and canonical bijection, we can therefore add 2 to the

perversity function for any collection of simple modules as long as we also do it to ones on a path to the

exceptional node. The main theorem of this section is the result of allowing repeated uses of the previous

theorem.

Theorem 6.15 Let B be a block of kG with a cyclic defect group D, and let B′ be its Brauer correspondent

in kNG(D). Let π(−) be a Z>0-valued function on the set {S1, . . . , Se} of simple B-modules such that:

(i) if Si and Sj share a non-exceptional vertex in the Brauer tree of B, with Sj closer to the exceptional

vertex than Si, then π(Sj)− π(Si) is positive;

(ii) if χi is the non-exceptional ordinary character associated to Si, then χ(1) ≡ (−1)π(Si) mod `.

There is a bijection between the simple B- and B′-modules such that, via this bijection, there is a perverse

equivalence from B to B′ with π as perversity function.

Proof: Write π0(Si) for the appropriate α-shifted perversity function with α ∈ {0, 1}, and let σ0 : {1, . . . , e} →
{1, . . . , e} be the α-shifted canonical bijection from the Si to the Ti. Let m be the smallest even non-negative

integer such that π(Si) + m > π0(Si) for all i, and let π′(Si) = π(Si) + m. By Theorem 6.14, the claimed
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result holds for π if and only if it holds for π′, so we may replace π by π′ and assume that π(Si) > π0(Si)

for all i. (Notice that π(Si) − π0(Si) is even by the second hypothesis.) For each j > 1, let Jj denote the

set of all 1 6 i 6 e such that π′(Si) − π0(Si) > 2j, and note that Jj ⊆ Jj−1. By the first hypothesis on π,

the images of the Jj under σ0 are all cohomologically closed with respect to π0. Suppose that Jn 6= ∅ but

Jn+1 = ∅.
Inductively for j > 1, write πj and σj for the perversity function and bijection σj : {1, . . . , e} → {1, . . . , e}

that results when applying Theorem 6.14 with the (cohomologically closed) set Ij = σj−1(Jj) and the

perversity function πj−1, with associated bijection σj−1, noting that at each stage all subsets σj(Jx) with

x > j stay cohomologically closed with respect to πj . Clearly, πn = π and πj and πj−1 are algorithmically

equivalent via σj ◦ σ−1
j−1 for all j, hence the result is proved.

We will show in later sections that the perversity function on blocks with cyclic defect group, for groups

of Lie type, does satisfy the hypotheses of this corollary in the cases where the Brauer tree is known.

7 The Combinatorial Broué Conjecture

In this section we give a complete description of the combinatorial Broué conjecture for unipotent blocks

with cyclic defect groups, and give an outline of how to prove it for all blocks where the Brauer tree is known,

which is all but two unipotent blocks for E8 at this stage [6].

In order to give a perverse equivalence between a block and its Brauer correspondent, we need a perversity

function and a bijection. The perversity function is given by πκ/d(−) applied to the unipotent B-characters;

we need to provide a bijection between the simple B- and B′-modules, and also a bijection between the

simple B-modules and unipotent B-characters. This latter bijection was given in the previous section – we

associate a vertex of valency 1 on the Brauer tree of B to its incident edge, remove both, and repeat the

process – but we repeat it below in a more general setting for all unipotent blocks. We now produce a

bijection between simple B-modules and simple B′-modules.

In Section 9 we recall the definition of a cyclotomic Hecke algebra. This is a deformation of the group

algebra of the cyclic group Ze (in our case, being deformations of group algebras of any complex reflection

group in general) that take parameters of the form ui = ωiq
vi for 1 6 i 6 e, where vi is a semi-integer and

ωi is a root of unity. These parameters are defined up to a global multiplication by any root of unity and

any power of q.

To each parameter ui one can associate a generic degree, given in (9.1). For a given unipotent block B

with cyclic defect groups, it was proved in [2] that there is a collection of parameters u1, . . . , ue such that

the generic degrees of the ui are the degrees of the unipotent characters in the block B, up to a global

scaling factor of a polynomial. Using Lemma 9.2, we see that, up to scaling by a power of q, the vi satisfy

vi = −aA(χi)/e, where χi is the unipotent character whose degree is the relative degree (up to scaling again)

associated to the parameter ui.

For the root ωi, if the Brauer tree is a line – in particular if G is a classical group – then ωi = ±1, with

all parameters corresponding to characters on one side of the exceptional node having the same sign, so with

the power of q given above, this completely determines the parameters in this case. For the unipotent blocks

of exceptional groups, a case-by-case description of the parameters is given in [2] with some cases missing,

and on the author’s website for all cases. Thus there is a bijection between unipotent ordinary characters

of B and parameters of the cyclotomic Hecke algebra. Finally, recall that the decomposition matrix for B

is conjecturally lower triangular in all cases, with the top square consisting of unipotent characters (and of
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course is for Brauer trees): this produces a natural bijection between the simple B-modules and the ordinary

unipotent B-characters.

The collection ωiq
−vi (note the minus sign), upon the substitution q 7→ ζ, produces a complete set of

eth roots of unity (they also do so without the minus sign, but it is these ones that we want). Furthermore,

the Brauer tree of B′, the Brauer correspondent, is a star embedded in C, with exceptional node at 0 and

e edges – corresponding to simple B′-modules – equally spaced around 0. In order to achieve a bijection

between the simple B′-modules and the eth roots of unity, we need to determine the exact embedding of the

Brauer tree in C, i.e., the rotational position of the star.

In order to do this, we choose χ a unipotent character with minimal πκ/d-function in the block B. This

has simple reduction modulo `, since it must lie on the boundary of the Brauer tree, so write S for the simple

B-module to which it corresponds. By Green’s walk on the Brauer tree either the Green correspondent T

is simple, if πκ/d(χ) is even, or Ω(T ) is simple, if πκ/d(χ) is odd. In either case, the Green correspondent

T lies on the doubled Brauer tree (see the end of Section 2), and we embed the Brauer tree of B′ in such a

way so that T is at position ωχ. This fixes the rotation of the Brauer tree, and completes the description

of the bijection; in particular, this allows us to pass the πκ/d-function to the simple B′-modules, so we may

apply the algorithm to (B′, πκ/d).

Conjecture 7.1 Let B be a unipotent block of kG with cyclic defect groups. The perversity function πκ/d

given above, and the bijection between the simple B- and B′-modules, induce a perverse equivalence between

B and B′.

In this paper we will prove this conjecture whenever the Brauer tree is known; our task, therefore, is

twofold:

(i) prove that the perversity function πκ/d satisfies the first condition in Theorem 6.15 (as it is known to

satisfy the second by Theorem 1.6);

(ii) prove that the associated bijection described recursively in Theorem 6.14 matches the bijection given

above.

The first task will be done case by case for the exceptional groups, but for the classical groups we go via the

cyclotomic Hecke algebra. In Section 9 we prove a result, Proposition 9.4, which states that, if the Brauer

tree is a line, then the πκ/d-function increases towards the exceptional node if and only if the exponent of

the q-part of the parameter of the cyclotomic Hecke algebra decreases, in other words, the quantity aA(−)

increases towards the exceptional node.

We therefore prove the following theorem over the course of Section 11, using the standard combinatorial

devices of partitions and symbols introduced in Section 10.

Theorem 7.2 Let B be a unipotent block of kG with cyclic defect groups, whose Brauer tree is a line. If

χ and ψ are two unipotent characters in B, with ψ appearing on a minimal path from χ to the exceptional

node, then aA(χ) < aA(ψ).

This proves that the πκ/d-function induces a perverse equivalence with some bijection, completing the

first objective given above. The second objective itself splits into two parts: the first is to prove that a

unipotent character with minimal πκ/d-function (amongst those of its block) has the correct image under

the bijection; the second is to prove that the relative positions of the images of all unipotent characters are
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correct, i.e., that the bijection is correct up to a rotation of the Brauer tree of B′. Of course, combining

these two statements yields that the bijection is correct, and proves the combinatorial Broué conjecture.

To prove that a unipotent character with minimal πκ/d-function has the correct image, we note that

using the bijection described above, Ωπκ/d(S)(T ) is a simple B′-module, and its position on the Brauer tree

has argument arg(ωχ) + πκ/d(S) · π/e. On the other hand, evaluating ωχq
aA(χ) at q = ζ yields a root of

unity with argument arg(ωχ) + aA(χ)/e · 2πκ/d. We therefore need to prove the following theorem.

Theorem 7.3 A unipotent character χ in B with πκ/d(χ) minimal satisfies πκ/d(χ) = 2κaA(χ)/d.

By Lemma 4.1, if one moves from κ to κ+ d, the change in the π-function satisfies

π(κ+d)/d(χ)− πκ/d(χ) = 2(A(χ)−A(λ)),

whereas the theorem says it should be 2aA(χ). This yields the following corollary.

Corollary 7.4 A unipotent character χ in B with πκ/d(χ) minimal satisfies a(χ) = a(λ), and πκ/d(χ) =

2κ(A(χ)−A(λ))/d.

In fact, while the method of proof for the classical groups is as above, for exceptional groups Corollary

7.4 is established first, and then that πκ/d(χ) = 2κ(A(χ)−A(λ))/d for κ < d, which yields Theorem 7.3 for

all κ; we prove this theorem in Section 10 as well.

The last part is to prove the statement about the relative position of the images in the bijection: for

blocks whose Brauer tree is a line – so the parameters all have roots of unity ±1 – this is performed using the

cyclotomic Hecke algebra. We introduce a combinatorial procedure in Section 12 called perturbation, and a

generalization of the cyclotomic Hecke algebra associated to the principal Φd-block for d the Coxeter number,

called the Coxeter Hecke algebra. Perturbing a cyclotomic Hecke algebra involves replacing the parameter qa

with lowest exponent by another qa+d, and then reordering the parameters in order of decreasing exponent.

(There are two other types of perturbation, involving replacing −qb by −qb+d, and qa by −qa+d/2 and −qb

by qb+d/2, where −qb is the negative parameter with lowest exponent.) Because of the conditions placed

upon these three types of perturbations, only one is allowed for any cyclotomic Hecke algebra.

Given a cyclotomic Hecke algebra, the generic degrees and parameter specialization give a perversity

function and bijection with roots of unity. The main result of Section 12 is the statement that perturbing

the cyclotomic Hecke algebra induces changes in both the perversity function and bijection, and these are

identical to that given in Theorem 6.14 for adding 2 to the π-function associated to certain simple modules

and cycling their images under the bijection. Thus when checking if the bijection induced by parameter

specialization is consistent with the perversity function, we may perturb the cyclotomic Hecke algebra as

often as we like before checking this.

Finally, in Section 13 we prove that repeated perturbation eventually results in a Coxeter Hecke algebra,

and prove that in this case the bijection is consistent with the perversity function, finally proving the

combinatorial Broué conjecture whenever the Brauer tree is a line, in particular for classical groups.

For blocks of exceptional groups whose Brauer tree is not a line, we unfortunately do not have a general

method like the perturbation of the cyclotomic Hecke algebra. (It should exist, but developing the theory is

currently outside of our understanding.) We instead resort to a case-by-case check, which is performed for

three representative blocks, and we relegate the list of all blocks with cyclic defect groups for exceptional

groups to the author’s website; this gives Brauer trees and parameters in every case, and completes the proof

of the combinatorial Broué conjecture for all unipotent blocks whose Brauer tree is known.
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8 Evaluating πκ/d

This section contains some calculations of the πκ/d-function needed for evaluating it on character degrees of

classical groups. We assume that d > 2, as if d = 1 and f = f(q) is a polynomial such that f(1) 6= 0, then

πκ/d(f) = 2A(f), so this case is easy.

Proposition 8.1 Let i and j be integers with i > j. We have

πκ/d(q
i − qj) =

κ(i+ j)

d
+

⌊
κ(i− j)

d

⌋
+

1

2
,

and

πκ/d(q
i + qj) =

κ(i+ j)

d
+

⌊
2κ(i− j)

d

⌋
−
⌊
κ(i− j)

d

⌋
.

Proof: Suppose that j = 0. Then πκ/d(q
i − 1) is the sum of κ/d · A(qi − 1), namely κi/d, the number of

ith roots of unity of positive argument less than 2πκ/d – of which there are bκi/dc – and 1/2 (for the single

root at 1); this gives the result. The general case easily follows since qi − qj = qj(qi−j − 1). For the second

equality, we have qi + qj = (q2i − q2j)/(qi − qj), so that

πκ/d(q
i + qj) =

(
κ(2i+ 2j)

d
+

⌊
2κ(i− j)

d

⌋
+

1

2

)
−
(
κ(i+ j)

d
+

⌊
κ(i− j)

d

⌋
+

1

2

)
=
κ(i+ j)

d
+

⌊
2κ(i− j)

d

⌋
−
⌊
κ(i− j)

d

⌋
.

This yields the following proposition in an obvious way, which deals with the effect on the second term

in the numerator for the character degrees for GLn(q), which we will see in Section 10. (We also include a

case that will be needed for symplectic and orthogonal groups.)

Proposition 8.2 Let i and j be integers, and let d > 2 be an integer. Write κ(j − i) = ad + b, where

0 6 b < d. We have that

πκ/d(q
i+d − qj)− πκ/d(qi − qj) =


2κ i− j > 0

2(κ− a)− 1 −d < i− j < 0

0 i− j < −d

.

Now write κ(j − i) = ad+ b− d/2, where 0 6 b < d. We have that

πκ/d(q
i+d + qj)− πκ/d(qi + qj) =


2κ i− j > −d/2κ

2(κ− a) + δ0,b −d+ d/2κ 6 i− j 6 −d/2κ

0 i− j < −d+ d/2κ

Proof: For the first equation, the only case needing comment is when 0 > i− j > −d, in which case we have

πκ/d(q
i+d − qj)− πκ/d(qj − qi) =

κ(i+ j + d)

d
− κ(i+ j)

d
+

⌊
κ(i− j + d)

d

⌋
−
⌊
κ(j − i)

d

⌋
= 2κ−

(⌊
κ(j − i)

d

⌋
−
⌊
κ(i− j)

d

⌋)

= 2κ− 2

⌊
κ(j − i)

d

⌋
−

1 b 6= 0

0 b = 0
.

28



(The last equality relies upon the simple statement that for a > 0, b−ac = −bac if a ∈ Z and b−ac = −bac−1

otherwise.) Of course, since (κ, d) = 1 and 0 < j − i < d, κ(j − i) cannot be divisible by d, so b 6= 0. For the

second equation the same statement about the case needing comment holds, and here we have

πκ/d(q
i+d + qj)− πκ/d(qj + qi) =

κ(i+ j + d)

d
− κ(i+ j)

d
+

⌊
2κ(i− j + d)

d

⌋
−
⌊

2κ(j − i)
d

⌋
−
⌊
κ(i− j + d)

d

⌋
−
⌊
κ(j − i)

d

⌋
= 2κ−

(⌊
2κ(j − i)

d

⌋
−
⌊

2κ(i− j)
d

⌋)
+

(⌊
κ(j − i)

d

⌋
−
⌊
κ(i− j)

d

⌋)

= 2κ− 2

⌊
2κ(j − i)

d

⌋
+ 2

⌊
κ(j − i)

d

⌋
+

1 b = 0

0 b 6= 0
.

When working with unitary groups our integers d and e (i.e., where ` | Φd and there are e unipotent

characters in B) satisfy e = d if 4 | d, e = 2d if d is odd, and e = d/2 otherwise. Evaluating πκ/d((−q)i+e −
(−q)j)−πκ/d((−q)i−(−q)j) is much more complicated than the previous proposition, and so we will content

ourselves with simply giving the special cases that we need, namely i > j and j = i + 1. These particular

cases follow a similar pattern to the previous proposition, and so the proof is omitted.

Proposition 8.3 Let d > 2 and κ > 1 be coprime integers. Write e = d if 4 | d, e = 2d if d is odd and

e = d/2 otherwise. If i > j are non-negative integers, then

πκ/d
(
(−q)i+e − (−q)j

)
− πκ/d

(
(−q)i − (−q)j

)
= 2κ

e

d
,

and

πκ/d ((−q)e + q)− πκ/d(q + 1) =
2κe

d
− 2

⌊
2κ

d

⌋
+ 2

⌊κ
d

⌋
.

This latter quantity is positive unless d = 2, in which case it is −1.

Using Propositions 8.2 and 8.3, we can prove the next difference, which is necessary when evaluating πκ/d

on character degrees for linear and unitary groups.

Proposition 8.4 Let d > 2 and κ > 1 be coprime integers. Write e = d if 4 | d, e = 2d if d is odd and

e = d/2 otherwise. We have

πκ/d

(
n+d∏
i=n+1

(qi − 1)

)
− πκ/d

(
m+d∏
i=m+1

(qi − 1)

)
= 2κ(n−m),

and

πκ/d

(
n+e∏
i=n+1

((−q)i − 1)

)
− πκ/d

(
m+e∏
i=m+1

((−q)i − 1)

)
= 2κ(n−m)

e

d
.

Proof: Notice that πκ/d(q
n+d − 1)− πκ/d(qn − 1) = 2κ and

πκ/d
(
(−q)n+e − 1

)
− πκ/d ((−q)n − 1) =

2eκ

d
:

hence if m = n− 1 the result holds. For general m it is an obvious induction.
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For the symplectic and orthogonal groups, as well as Proposition 8.2 we need to deal with polynomials

like (q2i − 1).

Proposition 8.5 Let d > 2 and κ > 1 be coprime integers. Write d′ = d if d is odd and d′ = d/2 if d is

even. We have

πκ/d

 n+d′∏
i=n+1

(q2i − 1)

− πκ/d
 m+d′∏
i=m+1

(q2i − 1)

 = 4κ(n−m)
d′

d
.

Proof: Notice that πκ/d(q
2(n+d′)− 1)−πκ/d(q2n− 1) = 4κd′/d and hence if m = n− 1 the result holds. For

general m it is an obvious induction.

Finally, we will have to take so-called cohooks when d is even, and this interchanges plus and minus.

Proposition 8.6 Let d > 2 and κ > 1 be coprime integers. Assume that d is even and write d′ = d/2. Let

i and j be integers, and write κ(j − i) = ad+ b− d/2, with 0 6 b < d. We have

πκ/d(q
i+d′ − qj)− πκ/d(qi + qj) =


κ i− j > 0

κ− 2a+ δb,0 0 < j − i < d′

0 j − i > d′

.

Writing κ(j − i) = ad+ b with 0 6 b < d, we have

πκ/d(q
i+d′ + qj)− πκ/d(qi − qj) =


κ i− j > 0

κ− 2a− 1 0 < j − i < d′

0 j − i > d′.

Proof: Firstly, since d is even κ must be odd. This means that, for any integer b,⌊
b

d

⌋
+

⌊
b+ κd′

d

⌋
−
⌊

2b

d

⌋
+

1

2
=
κ

2
;

the rest of the first part is an easy calculation of the same type as the previous propositions. The second

property is similar to previous statements and its proof is omitted.

9 Cyclotomic Hecke Algebras

Cyclotomic Hecke algebras were first introduced in [1]: in some sense they parametrize the unipotent charac-

ters belonging to a given unipotent block B in a group of Lie type. The general definition involves a complex

reflection group, but since we are only concerned about blocks with cyclic defect group, our complex reflection

group is the cyclic group Ze and so the definitions are much easier.

Definition 9.1 Let e > 1 be an integer, and let u = (u1, . . . , ue) be a sequence of transcendentals over Z.

The cyclotomic Hecke algebra H(Ze,u) is the algebra

Z[u, T ]

( (T − u1)(T − u2) . . . (T − ue) )
.

The relative degree associated to ui is, up to sign,∏
j 6=i

uj
ui − uj

. (9.1)
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Notice that, by scaling T , we can replace the parameters ui with αui for any element α ∈ Z[u]; in [1],

the authors use this to set u1 = 1, but we will not do this here for reasons that will become clear later.

For a particular group of Lie type G and unipotent block B of kG with cyclic defect groups, to produce

the cyclotomic Hecke algebra of B we need specializations of the parameters ui. These are of the form

ui 7→ ωiq
vi , where q is another transcendental, ωi is a root of unity (at most a sixth root in fact if G is not

of Suzuki or Ree type) and the vi are rationals (in fact semi-integers). In [1], it was proved that there is a

choice for the vi and ωi such that the relative degrees associated with the ui, multiplied by Deg(RG
T (λ)), are

equal to the generic degrees of the unipotent characters in B.

With this information, it is easy to reconstruct the exponents vi in the specialized parameters ωiq
vi ; this

lemma is well known, and we reproduce it here for completeness. As usual, if ψ is a unipotent character,

let a(ψ) denote the power of q dividing the generic degree of ψ (as a polynomial in q) and A(ψ) denote the

degree of the generic degree of ψ.

Lemma 9.2 Let χ1, . . . , χe be the unipotent characters in B. If H denotes the cyclotomic Hecke algebra of

B then, up to scaling, the specialized parameters ωiq
vi satisfy

vi = −aA(χi)/e = −
(
a(χi) +A(χi)

e
− a(λ) +A(λ)

e

)
, (9.2)

where we recall that (L,λ) is a d-cuspidal pair for B.

Proof: By scaling, we can assume the result for i = 1. Notice that the quotient of the relative degree for χi

by that of χ1 is
u1

ui

∏
j 6=1,i

u1 − uj
ui − uj

= ω1ω
−1
i qv1−vi

∏
j 6=1,i

ω1q
v1 − ωjqvj

ωiqvi − ωjqvj
.

Notice that a(−) and A(−) are both homomorphisms from the multiplicative monoid of polynomials over

C in rational powers of q (without the zero polynomial) to the rationals under addition, and so to evaluate

a(f) + A(f) it suffices to do so on each factor of f . Clearly a(ωiq
vi − ωjqvj ) + A(ωiq

vi − ωjqvj ) = vi + vj ,

and so we get that a(−) +A(−), applied to the quotient of specialized relative degrees, is

2(v1 − vi) + (e− 2)(v1 − vi) = e(v1 − vi).

Since λ and Deg(RG
T (λ)) are the same for χi and χ1, we get a(χi) − a(χ1) + A(χi) − A(χ1) = e(v1 − vi),

which is consistent with (9.2), as needed.

In the case of classical groups, the signs ωi are simply ±1, whereas for exceptional groups ωi can have

order up to 12 for non-real characters. For exceptional groups, however, there is a finite list of possible

cyclotomic Hecke algebras to construct, and we will simply consider each one in turn. For the classical

groups however, we need to develop a general theory.

In what follows we let H be a cyclotomic Hecke algebra with specialized parameters ωiq
vi , where ωi = ±1

and vi is a semi-integer. We introduce the definitions formally now. (Note that these definitions and notation

are non-standard.)

Definition 9.3 Let H = H(Ze,u) be a cyclotomic Hecke algebra, with specialization ui 7→ ωiq
vi , with ωi a

root of unity in C and vi a rational. We say that H has type (s, t) and ambiance d if

(i) e = s+ t,

(ii) ω1, . . . , ωs = 1, ωs+1, . . . , ωe = −1,
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(iii) vi > vj for 1 6 i < j 6 s and s+ 1 6 i < j 6 e, and

(iv) if we evaluate q at a primitive dth root of unity ζ, the set of ωiζ
vi form a complete set of eth roots of

unity (up to a global multiplication by a root of unity).

We write χi for the relative degree associated to ui for 1 6 i 6 s, and ψi for the relative degree associated

to us+i for 1 6 i 6 t. Similarly, we write ai = vi for 1 6 i 6 s and bi = us+i for 1 6 i 6 t.

Hence the relative degrees ofH are χ1, . . . , χs and ψ1, . . . , ψt. As an example, if the specialized parameters

are (in order) 1, q−2, −q, −q3 then H has type (2, 2). There is an ordering of the unipotent characters (and

hence the specialized parameters) of a unipotent Φd-block (with cyclic defect groups) in any classical group

such that the associated cyclotomic Hecke algebra has type (s, t) and ambiance d for some s, t with s+ t = e

being the number of unipotent B-characters.

At this juncture we will summarize the ideas behind this definition, which should help the reader follow

the rest of the proof. If B is a unipotent block with cyclic defect groups in a classical group, then the Brauer

tree of B is a line, with s vertices on one side of the exceptional node, all of whose associated unipotent

characters have parameters +qai , and t nodes on the other side, all of whose associated characters have

parameters −qbi , with the labelling so that qa1 and −qb1 label the vertices of degree 1, as the diagram below

suggests.

−qb1 −qb2 −qbt qas qa2 qa1

The ambiance, d, is the order of q modulo `, i.e., so that the defect groups lie inside a Φd-torus. For classical

groups, we have that e = d, e = 2d or e = d/2, as we will see later.

If d is the Coxeter number then the parameters are consecutive, in the sense that ai+1 = ai − 1 and

similarly for the bi, with a1 = 1 corresponding to the trivial character; we will define a Coxeter Hecke

algebra to be a generalization of this case. For this case it is easy to compute the πκ/d-function, and we will

show that the combinatorial form of Broué’s conjecture holds in these cases, by showing that the bijection

induced is consistent with the πκ/d-function.

We then consider an arbitrary cyclotomic Hecke algebra H with type (s, t) and ambiance d, and ‘perturb’

the specializations of the parameters one by one until we reach a Coxeter Hecke algebra. By keeping track

of the changes to the positions of the parameters (recall that we maintain an ordering on them) and their

associated πκ/d-functions, we show that these two movements are consistent with those given in Theorem

6.14. This will prove combinatorial Broué’s conjecture for an arbitrary unipotent block B with cyclic defect

groups whose Brauer tree is a line, provided we can prove Theorems 7.2 and 7.3.

The next proposition proves that Theorem 7.2 is equivalent to the statement that aA(−) increases towards

the exceptional node, so that the parameter associated to a given character lines up in the way the diagram

above suggests. The need for Theorem 7.3 arises from Theorem 6.14, where it is seen that subtracting 2

from πκ/d(ψ) for all ψ results in rotating the bijection by 2π/e. If πκ/d is exactly twice κ · aA(χ)/d then

subtracting πκ/d(ψ) from all ψ makes ψ in bijection with its Green correspondent, which is consistent with

the case where πκ/d(ψ) = 0. This will be explained in more detail later, but this brief explanation should

suffice to have an idea of the direction we will take.

We now prove an important proposition about the πκ/d function on the relative degrees of such cyclotomic

Hecke algebras.
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Proposition 9.4 Let H be a cyclotomic Hecke algebra of type (s, t) and ambiance d. For 1 6 i < s− 1 we

have πκ/d(χi+1) > πκ/d(χi), and for 1 6 j 6 t− 1 we have π(ψi+1) > π(ψi).

Proof: Firstly, scale the parameters so that d | ai+1. For any positive rational x, write x̄ for the remainder

upon division by d, so that 0 6 x̄ 6 d − 1. Define a positive parameter qaj to be problematic if aj > ai

and κai > κaj > κai+1 = 0, and define a negative parameter −qbj to be problematic if bj > ai+1 and

κai > κbj + d/2 > κai+1 = 0. Write κ(ai−ai+1) = α+dγ, where α = κai. Notice that, since evaluation of q

at a primitive dth root of 1 yields a bijection between the parameters and all eth roots of 1, the number z of

problematic parameters is at most (α− 1)e/d. Write z+ for the number of positive problematic parameters,

and z− for the number of negative problematic parameters.

We firstly note that

χi+1(1)

χi(1)
= qai−ai+1

s∏
j=1

j 6=i

(qai − qaj )

s∏
j=1

j 6=i+1

(qai+1 − qaj )
·

t∏
j=1

(qai + qbj )

t∏
j=1

(qai+1 + qbj )

. (9.3)

We apply the πκ/d-function to this quotient. The first term clearly gives 2κ(ai − ai+1)/d, and the second

term in (9.3) yields

κ(s− 2)(ai − ai+1)

d
+

 s∑
j=1

⌊
κ|ai − aj |

d

⌋
−
⌊
κ|ai+1 − aj |

d

⌋ (9.4)

Consider the sum in (9.4) above: for a given j, notice that this expression is non-negative if ai+1 > aj ,

and if aj > ai we see that it is −γ − 1 if qaj is problematic, and −γ otherwise. Hence (9.3) is at least

κ(s− 2)(ai − ai+1)/d− γ(i− 1)− z+ > κ(s− 2)(ai − ai+1)/d− γ(s− 2)− z+.

The third term in (9.3) yields

κt(ai − ai+1)

d
+

 t∑
j=1

⌊
2κ|ai − bj |

d

⌋
−
⌊

2κ|ai+1 − bj |
d

⌋
−
⌊
κ|ai − bj |

d

⌋
+

⌊
κ|ai+1 − bj |

d

⌋ (9.5)

Consider the sum in (9.5) above: for a given j, as before, if ai+1 > bj then the expression is non-negative, so

we may assume that bj > ai+1. Write κ(bj−ai+1) = δd+β where b̄j = β, and recall that κ(ai−ai+1) = γd+α.

We first deal with the case where bj > ai. We have⌊
2κ|ai − bj |

d

⌋
−
⌊

2κ|ai+1 − bj |
d

⌋
−
⌊
κ|ai − bj |

d

⌋
+

⌊
κ|ai+1 − bj |

d

⌋
= −γ+

⌊
2(β − α)

d

⌋
−
⌊

2β

d

⌋
−
⌊
β − α
d

⌋
+

⌊
β

d

⌋
.

The last term is always 0. For the rest of the terms, we have (noting that β − α cannot be equal to ±d/2)

⌊
2(β − α)

d

⌋
=



1 d/2 < β − α,

0 0 < β − α < d/2,

1 −d/2 < β − α < 0,

1 β − α < −d/2;

−
⌊

2β

d

⌋
=

−1 β > d/2,

0 β < d/2;
−
⌊
β − α
d

⌋
=

1 β − α > 0,

0 β − α < 0.
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The sum of all of these becomes

−γ +

⌊
2(β − α)

d

⌋
−
⌊

2β

d

⌋
−
⌊
β − α
d

⌋
+

⌊
β

d

⌋
=



−γ β − α > d/2,

−γ β < d/2, β − α > −d/2,

−γ − 1 β > d/2, β − α < d/2,

−γ − 1 β − α < −d/2.

We see that this sum is −γ − 1 if −qbj is problematic and −γ otherwise. Finally, if ai > bj > ai+1 then⌊
2(ai − bj)

d

⌋
−
⌊

2(bj − ai+1)

d

⌋
−
⌊
ai − bj
d

⌋
+

⌊
bj − ai+1

d

⌋

= 2δ − γ +

⌊
2(α− β)

d

⌋
−
⌊

2β

d

⌋
−
⌊
α− β
d

⌋
+

⌊
β

d

⌋
=


2δ − γ + 1 α− β > d/2,

2δ − γ β, α− β < d/2,

2δ − γ − 1 β > d/2;

we have 2δ − γ > −γ, and so this expression is at least −γ − 1 if β > d/2 – so that −qbj is problematic –

and at least −γ otherwise. Hence (9.5) is at least tκ(ai − ai+1)/d− γt− z−.

Adding these three contributions, we see that

πκ/d(χi+1)− πκ/d(χi) >
κe(ai − ai+1)

d
− γ(e− 2)− z > e

d
(dγ + α)− γ(e− 2)− e

d
(α− 1) = 2γ + 1 > 0.

Hence πκ/d(χi+1) > πκ/d(χi), as needed.

The proof that πκ/d(ψi+1) > πκ/d(ψi) is similar.

This shows that the πκ/d-function increases towards the exceptional node if and only if the ai and bi

decrease (as they are negative) towards the exceptional node; the ai and bi are much easier to calculate than

the πκ/d-function, and we will prove this statement in Section 11.

10 Combinatorics for Classical Groups

The purpose of this section is to introduce the combinatorial objects needed for discussion of unipotent

characters of classical groups, and then describe the degrees and distribution into blocks for unipotent

characters.

10.1 Partitions and Symbols

In this section we introduce partitions and symbols. Much of this is well known and we summarize it briefly

here, both to fix notation and for the reader’s convenience.

We often identify a partition with its Young diagram, and talk of boxes for a partition. A hook of a

partition (really, a Young diagram) consists of a box x, all boxes below x, and all boxes to the right of x; if

this is t boxes in total, and there are i boxes below x or equal to x, then this hook is a t-hook (or of length

t) of leg length i. Removing a t-hook consists of deleting all boxes in a hook, and then pushing the boxes

that were below and right of the hook up and to the left, creating a new partition.

If λ = (λ1, λ2, . . . , λa) is a partition of n (with λi > λi+1 > 0 being the parts), the first-column hook

lengths of λ is the set X = {x1, . . . , xa}, where xi = λi+a−i, i.e., the lengths of the hooks of the boxes in the
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far-left column. It is easy to see that the set of all partitions (including the empty partition) is in bijection

with the set of all finite subsets of Z>0, via sending a partition to its set of first-column hook lengths.

A β-set is a finite subset of Z>0. We introduce an equivalence relation on all such sets, generated by

X ∼ X ′ if X ′ = {0}∪ {x+ 1 : x ∈ X}. The rank of X is the quantity
∑
x∈X x− a(a− 1)/2, where a = |X|.

Notice that the rank is independent of the representative of the equivalence class of β-set; indeed, if we take

the unique representative X with 0 /∈ X, then the rank of X is the size of the partition λ whose first-column

hook lengths are X. We tend to order the elements of a β-set X = {x1, . . . , xa} so that xi > xi+1.

If X = {x1, . . . , xa} is a β-set, then the act of removing a t-hook is simply replacing some xi by xi − t
(where xi − t /∈ X), and similarly adding a t-hook to X involves replacing some xi by xi + t (assuming that

xi + t /∈ X). The t-core of X is the β-set obtained by removing all possible t-hooks.

The β-sets of partitions can be more easily understood on the abacus. If t is a positive integer, the

t-abacus is a diagram consisting of t columns, or runners, labelled 0, . . . , t − 1 from left to right. Starting

with 0 at the top of the left-most runner, we place all non-negative integers on the runners of the abacus,

first by moving across the runners left to right, then moving down the runners, as below.

0 1 2 3 4

5 6 7 8 9

If X is a β-set, it can be represented on the t-abacus by placing a bead at position i whenever i ∈ X.

The act of adding or removing a t-hook is very easy to describe on the abacus: it consists of moving a

bead one place on its runner, down or up respectively. The t-core of X is obtained by moving all beads on

the t-abacus as far upwards as possible.

A symbol is an unordered pair λ = {X,Y } of subsets of Z>0. We will write X = {x1, . . . , xa} with

xi > xi+1, and Y = {y1, . . . , yb} with yi > yi+1. We introduce an equivalence relation on the set of

symbols, which is generated by the relation that {X,Y } ∼ {X ′, Y ′} if X ′ = {0} ∪ {x + 1 : x ∈ X} and

Y ′ = {0} ∪ {y + 1 : y ∈ Y }. If X = Y then the symbol is degenerate, and otherwise is non-degenerate.

The defect of λ = {X,Y } is the quantity |a− b|, and the rank of λ is the quantity
∑
x∈X x+

∑
y∈Y y −

b(a+ b− 1)2/4c. Notice that equivalent symbols have the same defect and rank.

Let λ = {X,Y } be a symbol. Adding a t-hook to λ involves adding t to one of the elements of either X

or Y to get another symbol µ. Adding a t-cohook to λ involves adding t to one of the elements of X and

transferring it to Y , or vice versa, to get another symbol µ. By removing all t-hooks we get the t-core, and

by removing all t-cohooks we get the t-cocore. Adding a t-hook does not change the defect of a symbol, but

adding a t-cohook adds or subtracts 2.

(If one envisages a symbol as a pair of β-sets, adding a t-hook is simply adding a t-hook on the abacus

of one of the β-sets; a t-cohook is less easy to visualize.)

10.2 Unipotent Characters and Blocks for Classical Groups

In this section we describe the unipotent characters for the classical groups and their distribution into blocks.

Let G = GLn(q) for some n and q. We describe briefly the unipotent characters and blocks of GLn(q),

as discussed in [13]. The unipotent characters of GLn(q) are labelled by partitions λ of n, or equivalently

β-sets of rank n (up to equivalence). Let X = {x1, . . . , xa} (with xi > xi+1) be a β-set of rank n, and let λ
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be its corresponding partition. If χλ is the unipotent character of GLn(q) corresponding to λ, then

χλ(1) =

(
n∏
i=1

(qi − 1)

) ∏
16i<j6a

(qxi − qxj )


(
q(
a−1
2 )+(a−2

2 )+···

) a∏
i=1

xi∏
j=1

(qj − 1)

 . (10.1)

(Later we will refer to the ‘first’ and ‘second’ terms of the numerator and denominator of this equation:

these have the obvious meanings.)

It is easy to see that χλ(1) does not depend on the choice of β-set X representing λ. Two β-sets X and

Y , with partitions λ and µ, have the same d-core if and only if the corresponding unipotent characters, χλ

and χµ, lie in the same `-block of G: the d-cuspidal pair for that block has character labelled by the d-core

of λ.

Let G = GUn(q) for some n and q, and write d and e for the multiplicative orders of q and −q respectively

modulo `; then e = d if 4 | d, e = 2d if d is odd and e = d/2 otherwise. As with the linear groups, the

facts about unipotent characters and blocks that we need are taken from [13]. The unipotent characters of

GUn(q) are similar to those of GLn(q), in that they are again associated to partitions of n. If χλ is the

unipotent character of GLn(q) associated to λ and φλ is the unipotent character of GUn(q) associated to λ,

then the degree of φλ is obtained from that of χλ by replacing q with (−q) (with a sign change if this makes

the character degree negative). In the expansion of φλ(1) into powers of q and cyclotomic polynomials, this

has the effect of replacing Φr with Φ2r and vice versa, whenever r is odd.

The structure of the `-blocks of G is similar as well: these are parametrized by e-cores, and two unipotent

characters φλ and φµ lie in the same `-block of G if and only if λ and µ have the same e-core: the d-cuspidal

pair for that block has character labelled by the e-core of λ.

For classical groups of types B, C and D, the unipotent characters for a group of Lie type of rank n are

parametrized by symbols Λ = {X,Y } of rank n, with each non-degnerate symbol parametrizing one character

and a degenerate one parametrizing two. Let X = {x1, . . . , xa} and Y = {y1, . . . , yb}, with xi > xi+1 and

yi > yi+1, and let δ be the defect of Λ, the quantity |a − b|. The symbols of odd defect and a given rank

n parametrize the unipotent characters of the groups of type Bn and Cn, whereas the symbols of defect

divisible by 4 correspond to unipotent characters of the groups of type Dn (with two unipotent characters

corresponding to each degenerate symbol), and symbols of defect congruent to 2 modulo 4 correspond to

unipotent characters of the groups of type 2Dn.

In the case of Bn and Cn, if χΛ is the unipotent character corresponding to the symbol Λ (which has odd

defect), then

χΛ(1) =

(
n∏
i=1

(q2i − 1)

) ∏
16i<j6a

(qxi − qxj )

 ∏
16i<j6b

(qyi − qyj )

∏
i,j

(qxi + qyj )


2(a+b−1)/2q(

a+b−2
2 )+(a+b−4

2 )+···

 a∏
i=1

xi∏
j=1

(q2j − 1)

 b∏
i=1

yi∏
j=1

(q2j − 1)

 . (10.2)

As with the linear and unitary groups, this degree is invariant under the equivalence relation on symbols.

In type Dn, so G = (CSO+
2n)0(q), if χΛ is the (or ‘a’ if Λ is degenerate) unipotent character corresponding
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to the symbol Λ (which has defect divisible by 4), then

χΛ(1) =

(qn − 1)

(
n−1∏
i=1

(q2i − 1)

) ∏
16i<j6a

(qxi − qxj )

 ∏
16i<j6b

(qyi − qyj )

∏
i,j

(qxi + qyj )


2cq(

a+b−2
2 )+(a+b−4

2 )+···

 a∏
i=1

xi∏
j=1

(q2j − 1)

 b∏
i=1

yi∏
j=1

(q2j − 1)

 , (10.3)

where c = b(a+ b− 1)/2c if X 6= Y , and a if X = Y . Again, this degree is invariant under the equivalence

relation on symbols.

In type 2Dn, so G = (CSO−2n)0(q), if χΛ is the unipotent character corresponding to the symbol Λ (which

has even defect not divisible by 4), then

χΛ(1) =

(qn + 1)

(
n−1∏
i=1

(q2i − 1)

) ∏
16i<j6a

(qxi − qxj )

 ∏
16i<j6b

(qyi − qyj )

∏
i,j

(qxi + qyj )


2cq(

a+b−2
2 )+(a+b−4

2 )+···

 a∏
i=1

xi∏
j=1

(q2j − 1)

 b∏
i=1

yi∏
j=1

(q2j − 1)

 , (10.4)

where c = (a+ b− 2)/2. This degree is also invariant under the equivalence relation on symbols.

In all of these groups, two unipotent characters lie in the same `-block of their respective group if and

only if the corresponding symbols have the same d-core if d is odd, and d/2-cocore if d is even.

11 Brauer Trees and the Minimal πκ/d-Value

We first go through the classical groups type by type; in all cases, we associate to the block B either a

partition λ or a symbol Λ. We give the description of the Brauer tree, and from this it is easy to describe

the parameters of the cyclotomic Hecke algebra, from [1, Section 2]: the sign ωχ for all characters χ is +1 on

one side of the exceptional node and −1 on the other, and the power of q is −aA(χ)/e. We prove that the

quantity aA(χ) increases towards the exceptional node (as needed for Theorem 7.2 using Proposition 9.4)

and finally prove that Theorem 7.3 is satisfied.

We then consider the exceptional groups, giving a table of those unipotent characters with minimal

πκ/d-value.

11.1 Linear Groups

Let n be a positive integer, let q be a prime power, let ` be a prime, and write d for the multiplicative order

of q modulo `. Let B be an `-block of G = GLn+d(q) with a cyclic defect group, with d-core a partition λ

of n; let X = {x1, . . . , xa} (with xi > xi+1) be a β-set corresponding to λ. We will compute the function

π(−) for the unipotent characters in B. There are d unipotent characters χµ, each with λ as d-core and

|µ| − |λ| = d; by choosing X sufficiently large, we have the subset X ′ = {xi1 , . . . , xid} of X consisting of

those d integers such that xij + d /∈ X (i.e., they represent the possible d-hooks that may be added), and

order them so that xij > xij+1
. Notice that if one adds d to xij , then j is the leg length of the corresponding

d-hook added to λ.

Label the unipotent characters χ1, . . . , χd in B by χj having partition with xij incremented by d. By

[14], the Brauer tree of a block B, with d-core λ, is a line, with the exceptional vertex at the end, χd adjacent

to it, and χi adjacent to χi+1, as in the following diagram.
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χ1χ2χ3χ4χd

We first want to prove that the πκ/d-function increases towards the exceptional node, using Proposition

9.4.

Proposition 11.1 We have that aA(χj+1) > aA(χj).

Proof: Write xij = xα and xij+1
= xβ , so that α < β. We have, using (10.1),

χj+1(1)

χj(1)
=

xα+d∏
i=xα+1

(qi − 1)

xβ+d∏
i=xβ+1

(qi − 1)

·

a∏
i=1
i 6=β

(qxβ+d − qxi)

a∏
i=1
i 6=β

(qxβ − qxi)
·

a∏
i=1
i 6=α

(qxα − qxi)

a∏
i=1
i6=α

(qxα+d − qxi)
.

Clearly, evaluating aA(−) on the first quotient yields d(xα − xβ), and evaluating it on the second and third

terms give (a− 1)d and −(a− 1)d respectively, so that

aA(χj+1)− aA(χj) = d(xα − xβ) > 0,

as needed.

We now consider the unipotent character with minimal πκ/d-function; by Proposition 11.1 this must be

χ1. We have, using (10.1),

χ1(1)

χλ(1)
=

n+d∏
i=n+1

(qi − 1)

x1+d∏
i=x1+1

(qi − 1)

·

a∏
i=2

(qx1+d − qxi)

a∏
i=2

(qx1 − qxi)
.

Applying the πκ/d-function to the first quotient yields 2κ(n − x1) by Proposition 8.4, and to the second

quotient yields 2κ(a− 1) by Proposition 8.2. Hence

πκ/d(χ1) = 2κ(n− λ1),

as λ1 = x1 − a+ 1. On the other hand,

aA(χ1) = (n− x1)d+ (a− 1)d = (n− λ1)d,

so that πκ/d(χ1) = 2κaA(χ1)/d, as claimed by Theorem 7.3.

11.2 Unitary Groups

Let n be a positive integer, let q be a prime power, let ` | |G| be a prime, and write d and e for the

multiplicative orders of q and −q respectively modulo `; then e = d if 4 | d, e = 2d if d is odd and e = d/2

otherwise. Let G = GUn+e(q), and let B be an `-block of G with cyclic defect group.

We use the description of the Brauer trees from [15]. Let λ be an e-core of size n and let X be a β-set

corresponding to λ. Let X ′ denote the subset of X consisting of all x ∈ X such that x + e /∈ X, as in

the case of GLn(q). By replacing X with an equivalent β-set, we have |X ′| = e. Divide X ′ into Y and Z,
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where Y consists of all even elements of X ′, and Z consists of all odd elements of X ′, with the ordering on

Y = {y1, . . . , ya} and Z = {z1, . . . , zb} given by yi > yi+1 and zi > zi+1, as with X. Let σi be the character

of GUn+e(q) obtained by replacing yi with yi + e, and similarly let τi be the character obtained by replacing

zi with zi + e. The Brauer tree is as follows.

σ1σ2σ3σaτ1 τ2 τ3 τb

Notice that if e is even then the two branches of the tree have the same length.

As in the previous section, we firstly prove that the πκ/d-function increases towards the exceptional node,

again using Proposition 9.4.

Proposition 11.2 We have that aA(σj+1) > aA(σj) and aA(τj+1) > aA(τj).

Proof: Write yj = xα and yj+1 = xβ , so that α < β. The degrees σj(1) and σj+1(1) are obtained from

(10.1) by replacing q with −q and d with e; this does not affect the aA-function, and so the exact same proof

as in Proposition 11.1 holds. The case of the τj is identical.

Since there are now two unipotent characters, σ1 and τ1, on the boundary of the Brauer tree, these are

the two possibilities for a unipotent character with minimal πκ/d-function. We may suppose without loss of

generality that x1 = y1 is even, and so σ1 corresponds to adding an e-hook of leg length 1 to λ. We can

calculate its πκ/d-function exactly as in the previous subsection, to get firstly (via (10.1) with −q instead of

q)

σ1(1)

χλ(1)
=

n+e∏
i=n+1

((−q)i − 1)

x1+e∏
i=x1+1

((−q)i − 1)

·

a∏
i=2

((−q)x1+e − (−q)xi)

a∏
i=2

((−q)x1 − (−q)xi)
.

Applying the πκ/d-function to the first quotient yields 2κ(n− x1)e/d by Proposition 8.4, and to the second

quotient yields 2κ(a− 1)e/d by Proposition 8.3. Hence

πκ/d(σ1) = 2κ(n− λ1)
e

d
,

as λ1 = x1 − a+ 1. On the other hand,

aA(σ1) = (n− x1)e+ (a− 1)e = (n− λ1)e,

so that again πκ/d(σ1) = 2κaA(σ1)/d, as claimed by Theorem 7.3.

It remains to check that the other unipotent character, τ1, has a larger πκ/d-value than σ1. We get that

z1 = xα for some α > 1, and in this case

τ1(1)

χλ(1)
=

n+e∏
i=n+1

((−q)i − 1)

xα+e∏
i=xα+1

((−q)i − 1)

·

a∏
i=1
i 6=α

((−q)xα+e − (−q)xi)

a∏
i=1
i 6=α

((−q)xα − (−q)xi)
.

As before, applying the πκ/d-function to the first term yields 2κ(n− xα)e/d, and applying it to the second

quotient yields at least 2κ(a− α)e/d (for each of the xi with i > α), so we have

πκ/d(τ1) > 2κ(n− xα + a− α)
e

d
= 2κ(n− λα)

e

d
.
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The only way that πκ/d(τ1) can equal πκ/d(σ1) is if λ1 = λα: since xα = z1 is the largest odd β-number, we

must have α = 2 and xα = x1 − 1: in this case, if d = 1 then B is the principal block and the result is clear,

and if d > 1 we have

πκ/d(τ1) = 2κ(n− x1 + a− 1)
e

d
+

(
πκ/d

(
((−q)x2+e − qx1)

qx1 + qx1−1

))
.

The first term is simply πκ/d(σ1), and the last term is πκ/d (((−q)e − q)/(q + 1)), which is positive by

Proposition 8.3. Hence πκ/d(τ1) > πκ/d(σ1), and this completes the proof of Theorem 7.3 for unitary groups.

11.3 Symplectic and Odd-Dimensional Orthogonal Groups

If d is even, we write d′ = d/2. Let Gn be one of the groups SO2n+1(q) and CSp2n(q). Let Λ = {X,Y } be a

symbol of rank n and odd defect δ, with X = {x1, . . . , xa} and Y = {y1, . . . , yb}, ordered so that xi > xi+1

and yi > yi+1. Assume that Λ is a d-core if d is odd, and a d′-cocore if d is even.

We start with the case d is odd. Recall that we view Λ as a pair of β-sets: let X ′ denote the beads of X

on the end of their runners of the d-abacus, and let Y ′ denote the beads of Y on the end of their runners of

the d-abacus. By choosing Λ suitably, |X ′| = |Y ′| = d. Write X ′ = {x′1, . . . , x′d} and Y ′ = {y′1, . . . , y′d}, with

x′i > x′i+1 and y′i > y′i+1.

Let σ1, . . . , σd be the unipotent characters of G = Gn+d corresponding to adding d to the elements of X ′,

with σi coming from x′i; similarly, let τ1, . . . , τd be the unipotent characters of G corresponding to adding d

to the elements of Y ′, with τi coming from y′i. In this case the Brauer tree is as follows.

σ1σ2σ3σdτ1 τ2 τ3 τd

We now need to prove, as in the last two sections, that the aA-function increases towards the exceptional

node.

Proposition 11.3 We have that aA(σj+1) > aA(σj) and aA(τj+1) > aA(τj).

The proof is almost identical to that of Proposition 11.1, and is safely left to the reader.

As with the previous cases, the minimal πκ/d-value must come from either σ1 or τ1. Without loss of

generality, x1 > y1. This time we get, using (10.2)

σ1(1)

χΛ(1)
=

n+d∏
i=n+1

(q2i − 1)

x1+d∏
i=x1+1

(q2i − 1)

a∏
i=2

(qx1+d − qxi)

a∏
i=2

(qx1 − qxi)

b∏
i=1

(qx1+d + qyi)

b∏
i=1

(qx1 + qyi)

.

Applying the πκ/d-function to the first quotient yields 4κ(n−x1) by Proposition 8.5, to the second quotient

yields 2κ(a− 1) as in the case of GLn(q), and to the third quotient yields 2κb by Proposition 8.2. Hence

πκ/d(σ1) = 2κ(2n− 2x1 + a+ b− 1).

We now wish to evaluate aA(σ1): we get

aA(σ1) = 2d(n− x1) + d(a− 1) + db = (2n− 2x1 + a+ b− 1)d,
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so that πκ/d(σ1) = 2κaA(σ1)/d, again in line with Theorem 7.3. As with the previous case of the unitary

groups, we need to evaluate πκ/d(τ1) as well: in this case,

τ1(1)

χΛ(1)
=

n+d∏
i=n+1

(q2i − 1)

y1+d∏
i=y1+1

(q2i − 1)

a∏
i=1

(qy1+d + qxi)

a∏
i=1

(qy1 + qxi)

b∏
i=2

(qy1+d − qyi)

b∏
i=2

(qy1 − qyi)

.

We apply the πκ/d-function to get 4κ(n− y1) and 2κ(b− 1) for the first and third quotients: if y1 > xα but

y1 < xα−1, then the second quotient yields at least 2κ(a− α+ 1); as x1 − xα > α− 1, we get

πκ/d(τ1) > 2κ(2n− 2y1 + a− α+ 1 + b− 1) > 2κ(2n− 2x1 + α+ a+ b− 2),

which can only equal πκ/d(σ1) if α = 1, i.e., x1 = y1. In this case πκ/d(σ1) is actually equal to πκ/d(τ1), and

indeed aA(σ1) = aA(τ1), so Theorem 7.3 is verified when d is odd.

If d is even, the description of the Brauer tree is very similar to the case where d is odd: let Λ = {X,Y }
be a d′-cocore of odd defect δ and rank n, and let X ′ and Y ′ denote the subsets of X and Y given by

X ′ = {x ∈ X : x+ d′ /∈ Y }, Y ′ = {y ∈ Y : y + d′ /∈ X}.

Assume that |X| > |Y |, so that |X| − |Y | = δ. By [15, (3E)], we have that |X ′| = d′ + δ and |Y ′| = d′ − δ.
Write X ′ = {x′1, . . . , x′d′+δ}, ordered so that x′i > x′i+1, and similarly for Y ′. If σi is the unipotent character

corresponding to the symbol obtained by adding d′-cohook to x′i, and similarly for τi and y′i, then the Brauer

tree is as follows.

σ1σ2σ3σd′+δτ1 τ2 τ3 τd′−δ

The proof that the aA-function increases towards the exceptional node is essentially identical to that for odd

d, and is again omitted.

Again, the minimal πκ/d-value must come from either σ1 or τ1. We have

σ1(1)

χΛ(1)
=

n+d′∏
i=n+1

(q2i − 1)

x1+d′∏
i=x1+1

(q2i − 1)

a∏
i=2

(qx1+d′ + qxi)

a∏
i=2

(qx1 − qxi)

b∏
i=1

(qx1+d′ − qyi)

b∏
i=1

(qx1 + qyi)

.

If x1 > y1 then we can use Propositions 8.5 and 8.6 to get

πκ/d(σ1) = 2κ(n− x1) + κ(a− 1) + κb = κ(2n− 2x1 + a+ b− 1), aA(σ1) = (n− x1 + (a+ b− 1)/2)d,

with a similar statement holding for τ1 in the case where y1 > x1. In particular, this character satisfies

Theorem 7.3.

It remains to check that πκ/d(σ1) > πκ/d(τ1) if and only if x1 < y1. Hence we assume that x1 < y1 and

compute πκ/d(σ1) using the above equation. Let α be such that x1 > yα but x1 < yα−1. Since y1−yα > α−1

(as in the odd case), we get

πκ/d(σ1) > 2κ(n− x1) + κ(a− 1) + κ(b− α+ 1) > κ(2n− 2y1 + α+ a+ b− 2) = πκ/d(τ1)− 1 + α,

and so we can only equality between πκ/d(σ1) and πκ/d(τ1) when α = 1, i.e., x1 = y1, as seen before. This

completes the proof of Theorem 7.3 for types Bn and Cn.
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11.4 Even-Dimensional Orthogonal Groups

If d is even, we write d′ = d/2. Let G be one of the groups (CSO±2n)0(q) (see Section 2). Let Λ = {X,Y } be a

symbol of rank n and even defect δ, with X = {x1, . . . , xa} and Y = {y1, . . . , yb}, ordered so that xi > xi+1

and yi > yi+1. Assume that Λ is a d-core if d is odd, and a d′-cocore if d is even.

Notice that a degenerate symbol cannot have weight 1, so all unipotent characters in blocks of weight

1 are labelled by non-degenerate symbols. Constructing the sets X ′ and Y ′ as in the previous section, if Λ

is non-degenerate then the Brauer tree of the block B is exactly the same as that of the previous section,

whereas if Λ is degenerate then only one branch of this Brauer tree exists, and there are half as many

unipotent characters in B as expected.

Adding a d-hook does not alter the defect of a symbol, but adding a d′-cohook to a symbol adds or

subtracts 2 from the defect: hence when we add a d-cohook we move from a symbol labelling a unipotent

character of εDn to one labelling −εDn+d′ . This will of course be relevant when comparing the character

degree χΛ with that obtained by adding a d′-cohook. Recall that σ1 is the character obtained by adding a

d-hook or d′-cohook to x1, and similarly for τ1 and y1.

Firstly, since the equations for character degrees are so similar between types Bn/Cn, Dn and 2Dn, the

proof that the aA-function increases towards the exceptional node is the same, so omitted; it remains to

discuss the minimal πκ/d-function. In the case where d is odd, we get, using (10.3) and (10.4)

σ1(1)

χΛ(1)
=
qn+d ± 1

qn ± 1

n+d−1∏
i=n

(q2i − 1)

x1+d∏
i=x1+1

(q2i − 1)

a∏
i=2

(qx1+d − qxi)

a∏
i=2

(qx1 − qxi)

b∏
i=1

(qx1+d + qyi)

b∏
i=1

(qx1 + qyi)

.

We may assume that x1 > y1, in which case a very similar analysis to the symplectic case yields

πκ/d(σ1) = 2κ(2n− 2x1 + a+ b− 2), aA(σ1) = (2n− 2x1 + a+ b− 2)d,

and the same argument as in the last section proves that πκ/d(τ1) = πκ/d(σ1) if and only if y1 = x1, in which

case aA(σ1) = aA(τ1) and Theorem 7.3 follows for d odd.

For d even, we get

σ1(1)

χΛ(1)
=
qn+d′ ± 1

qn ∓ 1

n+d′−1∏
i=n

(q2i − 1)

x1+d′∏
i=x1+1

(q2i − 1)

a∏
i=2

(qx1+d′ + qxi)

a∏
i=2

(qx1 − qxi)

b∏
i=1

(qx1+d′ − qyi)

b∏
i=1

(qx1 + qyi)

and a similar expression for τ1. If x1 > y1 then we get

πκ/d = κ(2n− 2x1 + a+ b− 2), aA(σ1) = (2n− 2x1 + a+ b− 2)d′,

with a similar statement for τ1 if y1 > x1. If x1 < y1 then the same argument as the previous section applies,

and so Theorem 7.3 is true for the even-dimensional orthogonal groups.

In each section, it was proved that the aA-function increases towards the exceptional node, yielding

Theorem 7.2 for the classical groups; the rest of the calculations conclude the proof of Theorem 7.3 for the

classical groups.
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G d χ aA(χ)/d G d χ aA(χ)/d

F4 2 φ′2,4, φ′′2,4 2, 2 10 φ7,1, φ35,4 3/2, 3
2F4 2 2B2[ψ3]; 1, 2B2[ψ5]; 1 4, 4 E7 12 φ21,3 2

E6 2 φ64,4 6 E8 1 E7[i]; 1, E7[−i]; 1 42, 42

3 D4; 1 4 2 φ4096,11, φ4096,12 21, 21

4 φ20,2 3 3 φ567,6, φ1008,9, (φ1296,13, φ2268,10) 16, 18, 20

5 φ6,1 2 5 φ35,2, (φ210,4, φ160,7) 8, 12
2E6 1 2A5; 1 12 6 φ567,6, φ1008,9, (φ972,12, D4;φ9,2) 8, 9, 10

4 φ4,1 3 7 φ8,1 4

6 φ′8,3 2 8 φ8,1, (φ1344,8, D4;φ4,1) 3, 9

10 φ′2,4 1 φ84,4, D4;φ1,0, φ112,13, φ28,8 6, 6, 6, 6

E7 1 E6[θ]; 1, E6[θ2]; 1 18, 18 9 φ8,1, (φ28,8, φ112,3) 3, 6

2 E6[θ]; 1, E6[θ2]; 1 9, 9 10 φ35,2, (φ50,8, D4;φ′2,4) 4, 6

3 φ27,2, D4; 1, φ189,7 6, 8, 10 12 φ8,1, φ84,4, φ28,8, (φ448,9, E6[θi]; 1) 2, 4, 4, 6

5 φ7,1, (φ21,6, φ56,3) 3, 6 14 φ8,1 2

6 φ27,2, φ56,3, φ189,7 3, 4, 5 18 φ8,1, (φ84,4, D4;φ1,0) 3/2, 3

8 φ7,1, φ27,2, φ21,3 2, 3, 3

Table 11.1: Unipotent characters with minimal πκ/d-value for non-principal blocks with cyclic defect groups

for exceptional groups

11.5 Exceptional Groups

In Table 11.1 we give a complete list of the characters with the minimal πκ/d-value for each unipotent block

of each exceptional group; the character degrees are available in [4] or on GAP. Of course, if the block is the

principal block then the character with the smallest πκ/d-value is the trivial character and Theorem 7.3 is

obvious, so we need only consider non-principal blocks.

In [2, Table 6.1] a complete list of the non-principal unipotent blocks with cyclic defect groups for

exceptional groups is given along with the d-cuspidal pair involved, and the table afterwards gives the

unipotent characters in that block. If there is more than one unipotent character then these are listed in

brackets.

The easiest way to prove that each of the characters in Table 11.1 does satisfy the equation πκ/d(χ) =

2κaA(χ)/d is to find a set of polynomials f such that φκ/d(f) = κ for every d and κ < d, and then note

that each of the relative degrees is a product of such polynomials: for example, when d = 3, Φ2
1Φ5, Φ7, Φ9

and Φ14 have this property, and the product of these is the relative degree of D4, 1 for E7, so that character

satisfies Theorem 7.3. It is already interesting that there is a unipotent character in each block that has

the property that its degree f satisfies φκ/d(f) = κ, as it is obvious that not every product of cyclotomic

polynomials has this property. Of course, the condition that a(χ) = a(λ) for such a character is easy to

check by inspection, and so πκ/d(χ) = 2κaA(χ)/d for all κ, including those greater than d.

Either a hand calculation or the use of a computer (which might be wise for E8) verifies in each case that

the character in the table has the minimal πκ/d-value in the block and that it satisfies Theorem 7.3. With

these calculations, we conclude the proof of Theorem 7.3 for all unipotent blocks with cyclic defect groups

for all groups of Lie type.
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12 Perturbing the Cyclotomic Hecke Algebra

The aim of this section is to produce a method by which one (specialized) cyclotomic Hecke algebra can be

turned into another. This proceeds by perturbing the parameters, for example replacing qa by qa+d. The

eventual aim is to perturb all cyclotomic Hecke algebras into ones with specialized parameters very similar

to that of the Coxeter case, and then prove directly that there is a perverse equivalence in this case.

By replacing one parameter by another, we will alter both the πκ/d-function and the ordering on the

parameters: the aim is to show that the πκ/d-function reduces by 2 for a certain set of parameters, and that

they are cycled to reorder them in accordance with Theorem 6.14.

Before we define perturbations of cyclotomic Hecke algebras, we need to reduce to the case κ = 1. This

will be performed in the next lemma and proposition.

Lemma 12.1 Let f(x) ∈ C[x] be a polynomial. Let σ ∈ (0, 2), and let κ be a positive integer. We have

that |Argκσ(f(x))| = |Argσ(f(xκ))|.

Proof: Let ξ be any non-zero complex number with argument λ ∈ (0, 2π], and write ξ1, . . . , ξκ for the κth

roots of ξ: the elements of Argκσ(ξ) are λ+ 2πj for 0 6 j 6 α for some α, and the elements of the union of

the sets Argσ(ξi) for 1 6 i 6 κ are λ/κ+ 2π/κj for 0 6 j 6 α. Therefore

|Argκσ(ξ)| =
κ∑
i=1

|Argσ(ξi)|.

Since the roots of f(xk) are the ξi for ξ running over all roots of f(x), we see that |Argκσ(f(x))| =

|Argσ(f(xκ))|, as claimed.

Equipped this this easy lemma, we prove the next proposition.

Proposition 12.2 Let H1 = H(Ze,u) be a cyclotomic Hecke algebra with specialization of parameters

ui 7→ ωiq
vi , and let H2 be the same algebra with specialization of parameters ui 7→ ωiq

κvi . Let ζ0 = e2πi/d.

Let ρi be the relative degree associated to ui in H1, and σi the same for H2.

(i) We have πκ/d(ρi) = π1/d(σi).

(ii) For H1 and q 7→ ζ, and for H2 and q 7→ ζ0, the induced bijections between the parameters and the eth

roots of unity are identical.

Proof: By Lemma 12.1, |Arg2κ/d(ρi)| = |Arg2/d(σi)|, and clearly the multiplicities of 1 as a root of ρi and σi

are identical. Finally, we have a(σi) = κ·a(ρi) and A(σi) = κ·A(ρi), so we therefore have πκ/d(ρi) = π1/d(σi),

as needed.

The second part is clear.

As an aside, the appropriate analogue of this proposition holds for all cyclotomic Hecke algebras: the

notion of perturbing cyclotomic Hecke algebras can be extended to the non-cyclic case, and will be dealt

with in a later paper in this series.

Hence if we can show, for an arbitrary cyclotomic Hecke algebra and κ = 1, that the corresponding

bijection is that of Theorem 6.15, then it is true for all κ. From now on in the proof for classical groups we

will assume that κ = 1.

We will take an arbitrary cyclotomic Hecke algebra of type (s, t) and ambiance d and perform one of

three operations on the parameters:

44



(i) replace qas by qas+d and rearrange parameters as required (called a +-type perturbation);

(ii) replace −qbt by −qbt+d and rearrange parameters as required (called a −-type perturbation);

(iii) replace qas by −qas+d/2 and −qbt by qas+d/2 and rearrange parameters as required (called a ±-type

perturbation).

It is clear that these replacements preserve the property of being a cyclotomic Hecke algebra of type (s, t)

and ambiance d.

A +-type perturbation is only allowed if as+d/2 < bt, a −-type perturbation is only allowed if bt+d/2 <

as, and a ±-type perturbation is only allowed if neither a +-type nor a −-type perturbation is allowed;

notice that this means that there is exactly one way to perturb a given cyclotomic Hecke algebra. Since

we have defined a canonical ordering on the parameters of a cyclotomic Hecke algebra of type (s, t), we see

that a perturbation permutes some of the parameters. The set of permuted parameters is a subset of the

parameters of the cyclotomic Hecke algebra, and can also be thought of as a subset of the χi and ψi: because

of the canonical ordering on the parameters, we may compare the sets of permuted parameters for different

cyclotomic Hecke algebras of the same type, even though their parameters might be different.

To evaluate the difference in the πκ/d-function between two cyclotomic Hecke algebras with different

parameters, we will have normalize the relative degrees in some way; choose a parameter that is not permuted

for this, noting that one always exists unless the perturbation permutes all parameters, which we will prove

in Theorem 13.4 results in an isomorphic algebra.

If the ai and bi are all integers then we know how to evaluate the πκ/d-function on polynomials of the

form qai − qaj and qai + qbj , so firstly we also need to reduce to the case where all of the ai and bi are

integers, and secondly if d is odd then a ±-perturbation will reintroduce fractional parameters, so we will

need to know that we do not need ±-type perturbations if d is odd, i.e., the exceptional node has valency 1

in such cases.

From Section 11 we know the structure of the Brauer tree for classical groups, and we know that one of

the following holds:

(i) d = e is arbitrary, t = 0 (GLn, all d; Sp2n and (CSO±2n)0, d odd, Λ degenerate);

(ii) d is odd, e = 2d, s = t = e (GUn, d odd; Sp2n and (CSO±2n)0, d odd, Λ non-degenerate);

(iii) d is even, e = d/2 (GUn, d/2 odd; Sp2n and (CSO±2n)0, d even, Λ degenerate);

(iv) d is even, e = d (GUn, 4 | d, Sp2n and (CSO±2n)0, d even, Λ non-degenerate).

Since πκ/d(χ) is an integer, and differs from (a(χ) + A(χ))/d by a semi-integer, unless e = 2d we must

have that (a(χ) + A(χ))/e is a semi-integer. If d is odd, (a(χ) + A(χ))/d is a semi-integer so must be an

integer, and again (a(χ) +A(χ))/e is a semi-integer. (Notice that in the case where d is odd and d = e this

proves that (a(χ) +A(χ))/d is an integer.)

Lemma 12.1 allows us to move from semi-integers to integers, and from d odd to d even, easily.

Proposition 12.3 Let H1 = H(Ze,u) be a cyclotomic Hecke algebra with specialization of parameters

ui 7→ ωiq
vi , and let H2 be the same algebra with specialization of parameters ui 7→ ωiq

2vi . Let ζ1 = e2πi/d

and ζ2 = eπi/d. Let ρi be the relative degree associated to ui in H1, and σi the same for H2.

(i) We have π1/d(ρi) = π1/2d(σi).
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(ii) For H1 and q 7→ ζ1, and for H2 and q 7→ ζ2, the induced bijections between the parameters and the

eth roots of unity are identical.

The proof is the same as that of Proposition 12.2, and omitted. Using this proposition in the same way

as Proposition 12.2, we may assume that all of the ai and bi are integers, and that if we have to make a

±-type perturbation then d is even. For the rest of this section we will do this without further comment.

Proposition 12.4 Suppose that κ = 1. Let H′ be the cyclotomic Hecke algebra obtained from H by

applying a +-type perturbation that does not permute all parameters. Let α be the number of i < s such

that as < ai < as + d, so that as−α−1 > as + d > as−α. Write χi and ψi for the characters of H, and χ′i and

ψ′i for the characters of H′.

(i) We have that πκ/d(ψ
′
i) = πκ/d(ψi) for all i, πκ/d(χ

′
i) = πκ/d(χi) for 1 6 i 6 s− α− 1, and πκ/d(χ

′
i) =

πκ/d(χi)− 2 otherwise (when the πκ/d-function is suitably normalized by an unpermuted parameter).

(ii) Using the ordering on the permuted parameters inherited from the ordering on all parameters, they

are permuted so that the ith permuted parameter of H′ is the (i− 1)th permuted parameter of H.

Proof: As usual, χi and ψi are the characters of H, and write χ′i and ψ′i for the characters of H′, ordered

in the standard way. We choose ψ1 to normalize our πκ/d-functions, noting that if there are no negative

parameters then our statement about ψi is vacuous anyway.

We have
ψ′i(1)

ψ′1(1)

/
ψi(1)

ψ1(1)
=

(qb1 + qas+d)

(qb1 + qas)
· (qbi + qas)

(qbi + qas+d)
.

Applying the πκ/d-function to this expression yields 0 as as+d/2 < bt, by Proposition 8.2, and so πκ/d(ψ
′
i) =

πκ/d(ψi) (suitably normalized), as claimed. For χi (i < s− α), we have

χ′i(1)

ψ′1(1)

/
χi(1)

ψ1(1)
=

(qb1 − qas+d)
(qb1 − qas)

· (qai − qas)
(qai − qas+d)

.

Applying the πκ/d-function to this expression yields 0 if ai > as + d, again by Proposition 8.2, and so we get

πκ/d(χ
′
i) = πκ/d(χi) in this case. (If there are no negative parameters, we can simply use χ1 to normalize

instead, with the same outcome.)

If s − α < i 6 s, then (χ′i(1)/ψ1(1))/(χi−1(1)/ψ1(1)) satisfies the same equation as above, except this

time ai < as+d, so that term contributes −1. We therefore see that πκ/d(χ
′
i) = πκ/d(χi−1)−1 for i > s−α.

Finally, we have

χ′s−α(1)

χs(1)
=

qas

qas+d

s−1∏
j=2

(qas − qaj )
(qas+d − qaj )

t∏
j=1

(qas + qbj )

(qas+d + qbj )

The first quotient contributes −2, the third quotient contributes 0, and the second quotient contributes −1

for each i with as < ai < as + d; therefore π(χ′s−α) = π(χs)− α− 2.

Finally, by Proposition 9.4, we must have that πκ/d(χ
′
s−α) < πκ/d(χ

′
s−α+1), i.e., πκ/d(χs)−πκ/d(χs−α) <

α + 1. However, since πκ/d(χi) − πκ/d(χi−1) > 1, we must have that πκ/d(χs) − πκ/d(χs−α) = α, and for

s− α 6 i < s, πκ/d(χi)− πκ/d(χi−1) = 1. Thus πκ/d(χi)− πκ/d(χ′i) = 2 for s− α 6 i 6 s, as claimed.

Notice that the permutation of the parameters and change in πκ/d-function is exactly that of Theorem

6.14.

By multiplying all parameters by −1 we change a +-type perturbation into a −-type perturbation, and

so the same result – that the change in πκ/d-function and bijection is compatible with Theorem 6.14 – holds.

The last of the perturbations is the ±-type one, where we alter both halves of the Brauer tree.
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Proposition 12.5 Suppose that κ = 1. Let H′ be the cyclotomic Hecke algebra obtained from H by

applying a ±-type perturbation that does not permute all parameters. Let α be the number of i < s such

that ai < bt+d/2, so that as−α−1 > bt+d/2 > as−α, and let β be the number of i < t such that bi < as+d/2,

so that bt−β−1 > as + d/2 > bt−β . Write χi and ψi for the characters of H, and χ′i and ψ′i for the characters

of H′.

(i) We have that πκ/d(χ
′
i) = πκ/d(χi) for 1 6 i 6 s−α−1 and πκ/d(ψ

′
i) = πκ/d(ψi) for all 1 6 i 6 t−β−1.

We have πκ/d(χ
′
i) = πκ/d(χi)− 2 and πκ/d(ψ

′
i) = πκ/d(ψi)− 2 otherwise.

(ii) Using the ordering on the permuted parameters inherited from the ordering on all parameters, they

are permuted so that the ith permuted parameter of H′ is the (i− 1)th permuted parameter of H.

Proof: As in the previous case, χi and ψi are the characters of H, and write χ′i and ψ′i for the characters

of H′, ordered in the standard way. We choose χ1 to normalize our πκ/d-functions, noting that not all

parameters are permuted, so by changing sign if necessary we may assume that qa1 is not moved.

If i < s− α then we have

χ′i(1)

χ′1(1)

/
χi(1)

χ1(1)
=

(qa1 + qas+d/2)

(qa1 − qas)
· (qas − qai)

(qas+d/2 + qai)
· (qbt+d/2 − qa1)

(qbt + qa1)
· (qbt + qai)

(qbt+d/2 − qai)
.

By Proposition 8.6, since ai > bt + d/2 (and hence certainly a1 > bt + d/2) the third and fourth terms

contribute 0 to the πκ/d-function, and as κ = 1 we also see that the first two terms contribute 0 as well.

Hence (i) holds for these characters. The proof of (i) for ψi with 1 6 i 6 t− β − 1 is similar.

We now assume that s − α < i 6 s, and compare χ′i(1) with χi−1(1). The exact same formula for the

quotient as above holds, but this time the πκ/d-function will not evaluate to 0. It still will on the first two

terms, since ai > as and a1 > as, and as a1 > bt + d/2, the third term still evaluates to 0. However, the

fourth term evaluates to −1, so that πκ/d(χ
′
i) = πκ/d(χi−1) − 1, as in Proposition 12.4. As in the previous

paragraph, the proof that πκ/d(ψ
′
i) = πκ/d(ψi−1)− 1 for t− β < i 6 t is similar.

It remains to compare χs with ψ′t−β , and ψt with χ′s−α; we obtain

ψ′t−β(1)

χ′1(1)

/
χs(1)

χ1(1)
=

qas

qas+d/2
· (q

a1 − qbt+d/2)

(qa1 + qbt)
· (qas + qbt)

(qas+d/2 + qbt+d/2)
·
s−1∏
j=2

(qas − qaj )
(qas+d/2 + qaj )

·
t−1∏
j=1

(qas + qbj )

(qas+d/2 − qbj )
.

Evaluating this quotient with the πκ/d-function, and again using Proposition 8.6, we get a contribution

of −1 from the first and third quotients, 0 from the second and fourth quotients, and a contribution of −1

from each j < t such that as + d/2 > bj , i.e., β. Therefore πκ/d(ψ
′
t−β) = πκ/d(χs) − β − 2, and similarly

πκ/d(χ
′
s−α) = πκ/d(ψt)− α− 2.

We now combine these inequalities, together with the obvious inequalities πκ/d(χs−α) 6 πκ/d(χs) − α
and πκ/d(ψt−β) 6 πκ/d(ψt)− β, to get

πκ/d(ψt)− α− 1 = πκ/d(χ
′
s−α) + 1 < πκ/d(χ

′
s−α+1) + 1 = πκ/d(χs−α) 6 πκ/d(χs)− α,

so that πκ/d(ψt) 6 πκ/d(χs). Using the other inequalities we get πκ/d(χs) 6 πκ/d(ψt), and so πκ/d(χs) =

πκ/d(ψt), and as in Proposition 12.4, πκ/d(χs)−πκ/d(χs−α) = α and for s−α 6 i < s, πκ/d(χi)−πκ/d(χi−1) =

1, with similar statements for the ψi. Thus πκ/d(χi) − πκ/d(χ′i) = 2 for s − α 6 i 6 s, as claimed, and

similarly for ψi, completing the proof of (i).

To see (ii), we must prove that the permuted parameters of H are, upon evaluation q 7→ ζ, in sequence

qas−α , . . . , qas−1 , qas ,−qbt−β , . . . ,−qbt−1 ,−qbt ,
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for moving from H to H′ results in cycling these parameters, as required by (ii). Clearly the sequence is

correct on the qai and −qbi , so we must show that when we evaluate q 7→ ζ, none of the −qbi evaluates to

roots of unity in between qaj and qaj+1 for some s−α 6 j 6 s− 1, in other words, that we cannot have that

aj < bi ± d/2 < aj+1. However, bi + d/2 > bt + d/2 > as−α > aj+1, and aj > as > bt−α − d/2 > bi − d/2,

so this set of inequalities cannot occur, and the sequence is correct. This proves (ii), and completes the

proposition.

Again, the permutation of the parameters and change in πκ/d-function is exactly that of Theorem 6.14.

In the next section we will compose these perturbations, and the stage at which no more perturbations are

possible will be called a Coxeter Hecke algebra, since it resembles the cyclotomic Hecke algebra corresponding

to the Coxeter torus. It will be easy to prove that the πκ/d-function and bijection are the canonical perversity

function and bijection in the Coxeter case, and since repeated perturbations of parameters produce changes

as described in Theorem 6.14, the bijection implied by specialization of parameters q 7→ ζ will be the bijection

required by Theorem 6.15.

13 Coxeter Hecke Algebras

We continue to use our reductions of the previous section, namely that κ = 1, that d is even, and that d/e

is an integer. In cyclotomic Hecke algebras of finite groups of Lie type associated with the Coxeter number

and κ = 1, the eigenvalues are consecutive roots of unity. The next definition is the natural generalization

of this.

Definition 13.1 The Coxeter Hecke algebra Hc of type (s, t) and ambiance d is the cyclotomic Hecke algebra

of type (s, t) and ambiance d with the specialization of parameters

1, q−ε, . . . , q−(s−1)ε,−q−(s−t)ε/2,−q−(s−t)ε/2−ε, . . . ,−q−(s+t)ε/2+ε,

where ε = d/e with s+ t = e.

In other words, a Coxeter Hecke algebra – since the parameters are defined only up to global shift –

consists of parameters whose exponents are in arithmetic progression with difference ε, and such that the

exponents of the positive and negative powers have the same arithmetic mean. This definition can be made

without our restrictions on d and d/e; however if d/e is an integer and d is even then all of the ai and bi in

this definition are integers.

We now find the πκ/d-function associated to a Coxeter Hecke algebra. We will assume that s > t, simply

so we can take the πκ/d-function relative to χ1; of course, we can take the πκ/d-function relative to ψ1 if

t > s.

Proposition 13.2 Let H be the Coxeter Hecke algebra of type (s, t) and ambiance d, and assume that

s > t. The πκ/d-function on the characters of H is the canonical perversity function on the Brauer tree of

the line with exceptional node so that the two branches have lengths s and t; in other words, πκ/d(χi) = i−1

and πκ/d(ψi) = s− t− 1 + i.

Proof: Multiply the parameters by q(s−1)ε so that all powers are non-negative. All terms involved are of

the form qα − qβ , where α and β lie in the range {0, . . . , ε(s− 1)}, and qα + qβ , where α ∈ {0, . . . , ε(s− 1)}
and β ∈ {ε(s − t)/2, . . . , ε(s + t)/2 − ε}. In either case, all cyclotomic polynomials Φx that appear satisfy
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x < d, so that πκ/d(Φx) = deg(Φx)/d. In particular, this means that πκ/d(χi) is simply (A(χi) + a(χi))/d

plus half the multiplicity of 1 as a zero of χi, and similarly for ψi. Since a(qα ± qβ) + A(qα ± qβ) = α + β,

it is easy to evaluate this for a relative degree.

Normalize with respect to χ1. We have, writing γ = e/2,

χi(1)

χ1(1)
=
qε(s−1)

qε(s−i)
·

s∏
j=2

(qε(s−1) − qε(s−j))

s∏
j=1

j 6=i

(qε(s−i) − qε(s−j))
·

t∏
j=1

(qε(s−1) + qε(γ−j))

t∏
j=1

(qε(s−i) + qε(γ−j))

.

Using the above observation, the sum of the a- and A-functions on each of these quotients is 2ε(i − 1),

ε(i− 1)(s− 2) and ε(i− 1)t, yielding (i− 1)d. Since there are equal numbers of Φ1-terms on top and bottom

of the quotient, we get that πκ/d(χi) = (i− 1), as claimed.

For ψi, we get

ψi(1)

χ1(1)
=
qε(s−1)

qε(γ−i)
·

s∏
j=2

(qε(s−1) − qε(s−j))

s∏
j=1

(qε(γ−i) + qε(s−j))

·

t∏
j=1

(qε(s−1) + qε(γ−j))

t∏
j=1

j 6=i

(qε(γ−i) − qε(γ−j))
.

This time there are (s − 1) copies of Φ1 on the top and (t − 1) copies of Φ1 on the bottom, contributing

(s− t)/2 = s− γ to πκ/d(ψi). The a- and A-functions yield 2ε(s− 1) + 2ε(i− γ), ε(s− 1)(s− 2) + sε(i− γ)

and tε(s− 1) + ε(t− 2)(i− γ), whose sum is d(s− 1 + i− γ), and so

πκ/d(ψi) = (s− 1 + i− γ) + s− γ = s− t− 1 + i,

as needed.

It is easy to see that the ordering on the simple modules in the Coxeter Hecke algebra is the canonical

ordering, and so the πκ/d-function and ordering are compatible in this case.

Our main result is that, given an arbitrary cyclotomic Hecke algebra with our restrictions on κ, d and

d/e, repeated perturbation of the parameters eventually reduces it to a Coxeter Hecke algebra. The next

result shows that perturbations are nested, i.e., the set of parameters that they permute gets larger: these

will become the cohomologically closed sets Ij that we used in the proof of Theorem 6.15. Recall that we

have no choice about the perturbations that we apply, and so we will simply say ‘apply a perturbation’.

Proposition 13.3 Let H be a cyclotomic Hecke algebra of type (s, t) and ambiance d, with parameters

qa1 , . . . , aas and −qb1 , . . . ,−qbt . Apply a perturbation on H to produce the algebra H′, with the set I of

parameters being permuted. Apply a perturbation to H′ to get H′′, with set I ′ of permuted parameters. We

have I ⊆ I ′.

This proposition is a trivial consequence of the definition of perturbations, together with the observation

that, if the first perturbation applied is of ±-type then so is the second one.

The main aim of all of the definitions and results of the last section is the following theorem.

Theorem 13.4 Let H0 be a cyclotomic Hecke algebra of type (s, t) and ambiance d. Write e = s + t and

ε = d/e. Inductively we perturb the algebra Hi to produce a new algebra Hi+1. Assume that s > t.
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(i) There exists n such that Hn and Hn+1 have the same parameters (recall that parameters are only

defined up to a global shift by a power of q). The algebra Hn is a Coxeter Hecke algebra.

Let n denote the smallest such number.

(ii) Write Ij for the set of permuted parameters of Hj . We have a chain

I1 ⊆ I2 ⊆ · · · ⊆ In−1

of proper subsets of {1, . . . , e}. Let χi and ψi denote the relative degrees of H0, normalized by χ1.

For a given i, let f(χi) denote the largest j such that qai ∈ Ij , and similarly for f(ψi). We have that

πκ/d(χi) = 2f(χi) + (i− 1) and πκ/d(ψi) = 2f(ψi) + (s− t+ i− 1).

Proof: LetH be an arbitrary cyclotomic Hecke algebra with type (s, t) and ambiance d, and write qa1 , . . . , qas

and −qb1 , . . . ,−qbt for its parameters. Suppose firstly that perturbing H results in all parameters of H being

permuted; we will prove that H is a Coxeter Hecke algebra and is isomorphic to its perturbation.

Suppose that t > 0; since all parameters are permuted in the perturbation, we must have that −qas+d/2

is the largest negative parameter, so that as + d/2 > b1, and similarly bt + d/2 > a1. Clearly, since under

evaluation q 7→ ζ the parameters map to distinct eth roots of unity, we must have that ai > as+(s− i)ε, and

similary bi > bt+(t−i)ε, and since bt+d/2 and a1 must differ by a multiple of ε, we also get as+d/2 > b1 +ε

and bt + d/2 > a1 + ε. Combining these last four inequalities gives

as + d > b1 + d/2 + ε > bt + tε+ d/2 > a1 + (t+ 1)ε > as + eε = as + d.

Thus all of the inequalities are actually equalities, and so the ai and bi are consecutive multiples of ε; it

is easy to see that H is a Coxeter Hecke algebra, and after permutation of parameters the perturbation is

simply multiplying all entries by qε, hence an isomorphism. If t = 0 then the same argument, this time with

a +-type perturbation, proves that H is also a Coxeter Hecke algebra.

Thus we need to prove that there exists n such that In is the set of all parameters of Hn. For this,

we simply note that, if ±qx is some parameter of H0, then repeated perturbations increase the exponent

belonging to the smallest parameter, or parameters in the case of ±-type perturbations, so that eventually

the smallest parameter will be within d/2 of x, so that ±qx is permuted. Similarly, eventually all parameters

are permuted for some n, completing the proof of (i).

For (ii), the inclusion of subsets follows from Proposition 13.3, and the statement about the πκ/d-function

of the χi and ψi follows from the calculations of the πκ/d-functions in Propositions 12.4 and 12.5, together

with the computation of the πκ/d-function of the Coxeter Hecke algebra in Proposition 13.2.

(As before, the restriction that s > t can be removed, with the πκ/d-function altered in the obvious way

if t > s.)

With the results that we have collated so far we are able to produce the proof of Theorem 1.1 for the

classical groups, and in fact any unipotent block whose Brauer tree is a line. By Theorems 7.2 and 6.15

there is a perverse equivalence between B and B′, and we must show that the bijection is as suggested in

Theorem 1.1. This bijection, up to a rotation of the Brauer tree of the Brauer correspondent B′, is correct

for the Coxeter case as we have seen in this section; by Theorem 13.4 every cyclotomic Hecke algebra of

type (s, t) can be perturbed into a Coxeter Hecke algebra, and by Propositions 12.4 and 12.5, the alterations

to the πκ/d-function and the bijection are consistent with that required from Theorem 6.14. Since any

unipotent block whose Brauer tree is a line has a cyclotomic Hecke algebra of type (s, t), this proves that
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the bijection given by combinatorial Broué’s conjecture is correct up to a rotation of the Brauer tree of

B′. Finally, we consider a unipotent character χ with minimal πκ/d-function: if S denotes the associated

simple B-module and M its Green correspondent in B′, then the simple B′-module in bijection with S in

the perverse equivalence is Ωπκ/d(χ)(M), which is at position ωχζ
aA(χ)/e, since M is in position ωχ. This

proves that the bijection suggested by combinatorial Broué’s conjecture agrees with the actual bijection at

a module, and hence they are the same. This completes the proof.

14 The Exceptional Groups

We consider four examples: d = 3 for G2(q), d = 12′′ for 2G2(q), d = 24′ for 2F4(q), and d = 14 for E7(q).

For exceptional groups of Lie type, the Brauer tree is nearly always either a line or a line with one pair of

non-real vertices. The first and last case we consider is of this latter type.

It is fairly easy to prove the combinatorial Broué conjecture for κ < d, but to prove it for all κ we need

to know something about the A-function. Let X>i denote the set of unipotent characters χ of B for which

A(χ) − A(λ) is at least i, and let c1, . . . , cn denote those integers for which |X>ci | > |X>ci+1|. By Lemma

4.1, when moving from κ to κ + d, one adds 2A(χ) to πκ/d(χ). If the parameters are ωiq
vi , and vi is an

integer, then the root of unity obtained by specialization q 7→ e2πiκ/d does not change upon replacement of

κ by κ+ d, so the bijections for the perverse equivalences with πκ/d and π(κ+d)/d are the same. (Recall that

the vi are semi-integers, and we give an example where they are not integers in E7 and d = 14.) Examining

Theorem 6.14, it is easy to see that if we add 2n to the π-function of exactly n of the simple modules, the

bijection stays the same, since the change in bijection is applying an n-cycle.

We now see what we need to know in order to prove that there is a perverse equivalence with π(κ+d)/d

as perversity function, given that there is one with πκ/d as one, and that they have the same bijection:

(i) the sets X>ci are cohomologically closed with respect to the canonical perversity function on the simple

B-modules, and there exists j such that

Jj ⊆ X>ci ⊆ Jj−1;

(ii) the size of X>ci must be divide ci − ci−1;

(iii) all powers of q in the parameters of the cyclotomic Hecke algebra are integral.

The first condition means that the sets Jj constructed in the proof of Theorem 6.15, applied to the function

π(κ+d)/d, are firstly cohomologically closed, and secondly are the same as those of πκ/d, together with ci−ci−1

copies of X>ci ; the second condition implies that the set X>ci appears a multiple of |X>ci | times, and so

the bijection remains unchanged; the third condition is trivial to check when it holds.

In each of the first three cases we give the A-function, and the reader may note that it does satisfy these

three conditions. The final example does not satisfy the third condition, but does satisfy the first. The

modification needed to the second condition to take account of the semi-integrality of the parameter powers

is intuitive, and we detail it in Section 14.4

14.1 G2(q), d = 3

Here there is a single unipotent block, the principal block, and it has six unipotent characters, so that the

cyclotomic Weyl group is Z6. Hence substituting ζ = e2κπi/3 to the parameters should produce the set of
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6th roots of unity. We give the table below, ordered so that substitution q 7→ e2πi/3 (i.e., κ = 1) gives the

6th roots of unity in order.

Character A(−) ωiq
aA/e κ = 1 κ = 2

φ1,0 0 q0 0 0

G2[θ2] 5 −θq 3 7

φ2,2 5 q 3 7

G2[θ] 5 −θ2q 3 7

φ1,6 6 q2 4 8

G2[1] 5 −q 4 6

We now give the Brauer tree of this block, taken from [23], with the πκ/d-function in the case κ = 1

attached.

φ1,0φ2,2G2[1]

G2[θ2]

φ1,6

G2[θ]

0344

3

3

The canonical ordering here is φ1,0, φ2,2, G2[θ], φ1,6, G2[1], G2[θ2], and all characters apart from the trivial

φ1,0 have had 2 added to them, so the new ordering should be φ1,0, G2[θ2], φ2,2, G2[θ], φ1,6, G2[1] according

to Theorem 6.14. This is the ordering given in the table, and so the combinatorial form of Broué’s conjecture

is verified in this case. The case κ = 2 is similar, but with more applications of Theorem 6.14.

14.2 2G2(q), d = 12′

The unipotent characters of 2G2(q) are given in [4], but here we use a slightly different notation according

to the eigenvalue of the Frobenius, and a different definition of Φ′12 consistent with the cases of Suzuki and

big Ree groups; Φ′12 here is defined as (q − ξ5)(q − ξ7) (this is Φ′′12 in [4]), where ξ = e2πi/12, so that this is

the case d = 12 and κ = 5, 7. Here there is a single unipotent block, the principal block, and it again has

six unipotent characters, so that the cyclotomic Weyl group is Z6. Hence substituting ζ = e2κπi/12 (with

κ = 5, 7) to the parameters should produce the set of 6th roots of unity. We give the table below, ordered

so that substitution q 7→ e5πi/6 (i.e., κ = 5) gives the 6th roots of unity in order.

Character A(−) ωiq
aA/e κ = 5 κ = 7

φ1,0 0 q0 0 0
2GII

2 [−i] 5 −iq 4 6
2G2[ξ7] 5 ξ11q 4 6
2G2[ξ5] 5 ξq 4 6
2GII

2 [i] 5 iq 4 6

φ1,2 6 q2 5 7

When ` | Φ′12 we get the following tree, determined in [17], with the πκ/d-function in the case κ = 5 attached.
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φ1,2 φ1,0

05

2G2[ξ5]2GII
2 [i]

2G2[ξ7]2GII
2 [−i]

44

44

The canonical ordering here is φ1,0,
2G2[ξ5], 2GII

2 [i], φ1,6,
2GII

2 [−i], 2G2[ξ7], and all characters apart from the

trivial φ1,0 have had 4 added to them, so the new ordering should be φ1,0,
2GII

2 [−i], 2G2[ξ7], 2G2[ξ5], 2GII
2 [i], φ1,6

according to Theorem 6.14. This is the ordering given in the table, and so the combinatorial form of Broué’s

conjecture is verified in this case. The case κ = 7 is similar, but with another application of Theorem 6.14.

14.3 2F4(q), d = 24′

To be consistent with the previous section, set Φ′′8 and Φ′′24 to be the factors of Φ8 and Φ24 (which are

reducible over Z[
√

2]) which take zero on e2πi/8 and e2πi/24 respectively. Because there are misprints in the

table of degrees in [4], we give the degrees of those characters for which Φ′24 does not divide their degree

here. Let ψ = e2πi/8.

Name Degree A(−) ωiq
aA/e κ = 5 κ = 11 κ = 13 κ = 19

φ1,0 1 0 1 0 0 0 0
2B2[ψ3], 1 qΦ1Φ2Φ2

4Φ12/
√

2 11 ψ7q 4 10 12 18
2F II

4 [−i] q4Φ2
1Φ2

2Φ2
4Φ12Φ′′24/4 20 −iq2 8 18 22 32

2F4[−θ2] q4Φ2
1Φ2

2Φ2
4Φ2

8/3 20 −θq2 8 18 22 32
2B2[ψ5], 1 qΦ1Φ2Φ2

4Φ12/
√

2 11 ψq 4 10 12 18

φ2,1 q4Φ2
4Φ′28 Φ12Φ′′24/4 20 q2 7 17 21 31

2B2[ψ3], ε q13Φ1Φ2Φ2
4Φ12/

√
2 23 ψ7q3 9 21 25 37

2F4[−θ] q4Φ2
1Φ2

2Φ2
4Φ2

8/3 20 −θ2q2 8 18 22 32
2F II

4 [i] q4Φ2
1Φ2

2Φ2
4Φ12Φ′′24/4 20 iq2 8 18 22 32

2B2[ψ5], ε q13Φ1Φ2Φ2
4Φ12/

√
2 23 ψq3 9 21 25 37

φ1,8 q24 24 q4 10 22 26 38
2F II

4 [−1] q4Φ2
1Φ2

2Φ′′28 Φ12Φ′′24/12 20 −q2 10 20 24 32

When ` | Φ′24 we get the following tree, determined in [17], with the πκ/d-function in the case κ = 5 attached.
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2B2[ψ5]; ε

2B2[ψ3]; ε

φ1,8 φ2,1 φ1,0
2F II

4 [−1]

2B2[ψ3]; 12F II
4 [−i]

2F4[−θ2]

2B2[ψ5]; 12F II
4 [i]

2F4[−θ]

071010

8

8

4

4

8

8

9

9

The canonical ordering here is

φ1,0, φ2,1,
2B2[ψ5]; 1, 2F4[−θ], 2F II

4 [i], 2B2[ψ5]; ε, φ1,8,
2F II

4 [−1], 2F II
4 [−i], 2F4[−θ2], 2B2[ψ3]; 1, 2B2[ψ3]; ε.

We add 4 to each non-trivial character, and the ordering changes to

φ1,0,
2B2[ψ3]; 1, 2B2[ψ3]; ε, φ2,1,

2B2[ψ5]; 1, 2F4[−θ], 2F II
4 [i], 2B2[ψ5]; ε, φ1,8,

2F II
4 [−1], 2F II

4 [−i], 2F4[−θ2].

At this point we have reached the correct πκ/d-function for 2B2[ψi], 1, but adding another 2 is needed for

φ2,1 to be in place. This yields

φ1,0,
2B2[ψ3]; 1, 2F4[−θ2], 2B2[ψ3]; ε, 2B2[ψ5]; 1, φ2,1,

2F4[−θ], 2F II
4 [i], 2B2[ψ5]; ε, φ1,8,

2F II
4 [−1], 2F II

4 [−i].

We now fix φ1,0, φ2,1, 2B2[ψ3], 1 and 2B2[ψ5], 1, and adding 2 to all remaining characters yields the correct

bijection, which is

φ1,0,
2B2[ψ3]; 1, 2F II

4 [−i], 2F4[−θ2], 2B2[ψ5]; 1, φ2,1,
2B2[ψ3]; ε, 2F4[−θ], 2F II

4 [i], 2B2[ψ5]; ε, φ1,8,
2F II

4 [−1].

14.4 E7(q), d = 14

This example is included because it is one of the few blocks of exceptional groups for which there are

parameters whose power of q is a semi-integer, and so replacing κ by κ+ d does alter the bijection.

Here there is a single unipotent block, the principal block, and it has fourteen unipotent characters, so

that the cyclotomic Weyl group is Z14. Hence substituting ζ = e2κπi/14 to the parameters should produce

the set of 14th roots of unity. We give the table below, ordered so that substitution q 7→ e2πi/14 (i.e., κ = 1)

gives the 14th roots of unity in order.
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Character A(−) ωiq
aA/e κ = 1 κ = 3 κ = 5 κ = 9 κ = 11 κ = 13

φ1,0 0 q0 0 0 0 0 0 0

E7[−i] 52 −iq9/2 8 22 38 66 82 96

φ27,2 26 q2 3 11 19 33 41 49

φ105,5 38 q3 4 16 26 50 60 72

φ189,10 48 q4 5 21 35 61 75 91

φ189,17 55 q5 6 24 40 70 86 104

φ105,26 59 q6 7 25 41 77 93 111

φ27,37 61 q7 8 26 44 78 96 114

E7[i] 52 iq9/2 8 22 38 66 82 96

φ1,63 63 q9 9 27 45 81 99 117

D4; ε1 38 −q3 6 16 28 48 60 70

D4; rε1 48 −q4 7 21 35 61 75 89

D4; rε2 55 −q5 8 24 40 70 86 102

D4; ε2 59 −q6 9 25 43 75 93 109

When ` | Φ14 we get the following tree, determined in as-yet unpublished work of Dudas, Rouquier and the

author, with the πκ/d-function in the case κ = 1 attached.

D4; ε1 D4; rε1 D4; rε2 D4; ε2 φ1,63 φ27,37 φ105,26 φ189,17 φ189,10 φ105,5 φ27,2 φ1,0

E7[i]

E7[−i]

6 7 8 9 9

8

8

8 7 6 5 4 3 0

The single application of Theorem 6.14 – as for the case of G2 – is easy, and omitted. What is of interest

here is the change from κ to κ+ d. The sizes of the sets X>i are

|X>26| = 13, |X>38| = 12, |X>48| = 10, |X>52| = 8, |X>55| = 6, |X>59| = 4, |X>61| = 2, |X>63| = 1.

Starting from X>63 = {φ1,63}, we see that all three conditions at the start of this section are satisfied until

we reach the jump between X>55 and X>52, and X>52 and X>48. We start with the list X>55, namely

φ189,17, φ105,26, φ27,37, φ1,63, D4; rε2, D4; ε2,

then rotate by three iterations of a 6-cycle (from X>55 to X>52) to get

φ1,63, D4; rε2, D4; ε2, φ189,17, φ105,26, φ27,37,

and then insert E7[±i] in their appropriate places, to get

E7[−i], φ1,63, D4; rε2, D4; ε2, E7[i], φ189,17, φ105,26, φ27,37,

finally rotating by four iterations of an 8-cycle (from X>52 to X>48) to get

E7[i], φ189,17, φ105,26, φ27,37, E7[−i], φ1,63, D4; rε2, D4; ε2.

We see that the relative positions of all characters other than E7[±i] are the same, and that the E7[±i] are

swapped. All subsequent differences in the sizes of the X>i satisfy the second condition, and so the change
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in the bijection when moving from κ to κ+ d is to swap E7[i] and E7[−i], consistent with the change upon

substitution q 7→ e2πiκ/d to q 7→ e2πi(κ+d)/d.

This completes the proof of the combinatorial form of Broué’s conjecture for a representative sample of

unipotent blocks with cyclic defect group in exceptional groups of Lie type.
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