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In this article we examine the two competing concepts of normal subsystem, and prove that

Aschbacher’s notion appears to have significant advantages over the definition of Puig.

1 Introduction

In recent years there has been some debate over which of the two (for now) notions of normal

subsystem is the ‘correct’ one. The original definition of a normal subsystem was defined by Puig,

but see also [6] for a description in the modern language. We will call this weakly normal. In [2],

Aschbacher provided an alternative, stronger definition for a normal subsystem, which we will call

strongly normal, and proved that it had a nice property that weak normality lacks: namely, that

for a constrained fusion system, the strongly normal subsystems are in one-to-one correspondence

with the normal subgroups of the (unique) model of the fusion system, but this is not true for weak

normality. Using this result, Aschbacher is able to produce a large corpus of results about fusion

systems, mimicking the local theory of finite groups; for example, he is able to define the generalized

Fitting subsystem of a fusion system, and show that it is the central product of the components

and Op(F). These results are in a long manuscript [1], which to the author’s knowledge has not

(yet) been published.

In this article we will attack the problem of which definition is best from another direction, by

examining direct and central products.

Theorem A Let F be a saturated fusion system on a finite p-group P . Let E1 and E2 and strongly

normal subsystems of F , with E1 based on Q1 and E2 based on Q2. If Q1 ∩ Q2 = 1, then there

exists a strongly normal subsystem E of F such that E ∼= E1×E2. If the Ei are weakly normal then

there need not be such a subsystem present.

What we are saying is that if one finds trivially intersecting normal subsystems in a fusion

system, then one wants their direct product to be in it: this is true for strong normality but false

for weak normality, a fact that appears to show that strong normality is superior.
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We now move on to central products. If E and F are fusion systems, a central product of

E and F is a fusion system of the form (E × F)/Z, where Z is a subgroup of Z(E × F) with

Z ∩ Z(E) = Z ∩ Z(F) = 1. The following theorem is proved in [1].

Theorem B (Aschbacher [1]) Let F be a saturated fusion system on a finite p-group P , and

let E1 and E2 be strongly normal subsystems of F , with E1 based on Q1 and E2 based on Q2. If

Q1 ∩Q2 6 Z(E1) ∩ Z(E2), then there exists a strongly normal subsystem E of F containing E1 and

E2, such that E is isomorphic to a central product of E1 and E2.

Using this theorem, Aschbacher goes on to provide an analogue of the generalized Fitting

subsystem: a quasisimple fusion system F is one for which F/Z(F) is simple and Op(F) = F , and

a component is a subnormal quasisimpe subsystem. Denote by Comp(F) the set of components of

F .

Theorem C (Aschbacher [1]) Let F be a saturated fusion system on a finite p-group P , and let

E(F) denote the subsystem generated by Comp(F). Each element of Comp(F) is strongly normal

in E(F), and E(F) is the central product of the elements of Comp(F). If F ∗(F) denotes the

subsystem generated by E(F) and Op(F), then F ∗(F) is a central product of E(F) and Op(F).

We will prove that there is no way to define E(F) for weak normality that gives it analogous

properties to E(G) for a finite group G, which are given here.

In this article, we will prove very few new things; our examples are considerably easier tto

construct and analyze, however.

The next section will recall the various definitions that we need, and construct the direct product

of two fusion systems. We prove here that if E1 and E2 are strongly normal subsystems of a fusion

system whose subgroups intersect trivially, then the direct product of E1 and E2 is also a strongly

normal subsystem of the fusion system. In the succeeding section we provide examples to show

how, using weak normality, we fail to get the nice results mentioned earlier in this section. In the

final section we mention some open questions regarding both kinds of normality.

2 Definitions and Strong Normality

We assume that the reader is familiar with the definitions of fusion systems, saturated subsystems,

and so on.

Definition 2.1 Let F be a fusion system on a finite p-group P , and let E be a subsystem on a

subgroupQ of P , whereQ is strongly F-closed. We say that E is F-invariant if, for each R 6 S 6 Q,

φ ∈ HomE(R,S), and ψ ∈ HomF (S, P ), we have that ψ−1φψ is a morphism in HomE(Rψ,Q). If in

addition E is saturated, we say that E is weakly normal in F . We denote weak normality by E ≺ F .

This definition of normality seems to be the most natural, but it suffers from certain problems,

such as the following: if one takes a constrained fusion system F , then it has a model (i.e., a group

2



G for which F = FP (G)) that is essentially unique (G is unique subjected to being p-constrained

and satisfying Op′(G) = 1). To any normal subgroup of G there is a corresponding weakly normal

subsystem, but not vice versa.

Definition 2.2 Let F be a saturated fusion system on a finite p-group P , and let E be a subsystem

of F on the subgroup Q. We say that E is strongly normal if E is weakly normal, and each

φ ∈ AutE(Q) extends to φ̄ ∈ AutF (QCP (Q)) such that [φ̄,CP (Q)] 6 Z(Q). Write E ≺≺ F if E is a

strongly normal subsystem of F . (This extra condition on weakly normal subsystems will be called

the (N1) property.)

Let us prove that normal subgroups yield strongly normal subsystems. It is obvious that they

yield saturated subsystems, and F-invariance is easy, and so they yield weakly normal subsystems.

Lemma 2.3 Let G be a finite group with Sylow p-subgroup P . Let H be a normal subgroup of G

with Sylow p-subgroup Q = P ∩H. If φ ∈ AutH(Q) then there is an h ∈ NH(Q) inducing φ and

normalizing QCP (Q), such that

[h,CP (Q)] 6 Z(Q).

Proof: Let x be any element of NH(Q); then CH(Q) P NH(Q), and since CP (Q) is a Sylow

p-subgroup of CH(Q), the Frattini argument gives

NH(Q) = CH(Q) NNH(Q)(CP (Q)).

Thus x may be written as gh, where g ∈ CH(Q) and h normalizes CP (Q). Since h differs from x

by an element centralizing Q, h normalizes Q and induces the automorphism φ on Q. It remains

to show that [h,CP (Q)] 6 Z(Q). Since h normalizes CP (Q), we have that [h,CP (Q)] 6 CP (Q),

and since H P G it lies in H ∩ CP (Q) = Z(Q).

For constrained fusion systems, this correspondence is bijective.

Theorem 2.4 (Aschbacher [2, Theorem 1]) Let F be a constrained, saturated fusion system

on a finite p-group P , and let G denote its unique model. There is a one-to-one correspondence

between the normal subgroups of G and the strongly normal subsystems of F .

If G is not the model of F but some other group with the same fusion system (e.g., F = FV4(A4)

and G = A5) then there need not be a one-to-one correspondence (and in this case, it is obviously

not so). Moreover, if F is not constrained then there need not be a correspondence; for example,

the fusion system of J4 at the prime 3 has a strongly normal subsystem on the same 3-group as

the fusion system, but since J4 is simple there is no corresponding normal subgroup.

Next, we need the definition of direct and central products of fusion systems.

Definition 2.5 Let E and F be saturated fusion systems on the finite p-groups Q and R respec-

tively. By the direct product, E × F , of E and F , we mean the fusion system on the p-group
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P = Q×R given by all maps (φ, ψ)|S such that φ is a map in E with domain S1 and ψ is a map in

F with domain S2, and S 6 S1 × S2. A central product of E and F is a fusion system of the form

(E × F)/Z, where Z is a central subgroup of E × F such that Z 66 Q and Z 66 R.

Central products (and in particular direct products) are saturated fusion systems by [3, Lemma

1.5]. We clearly have that FP (G)×FQ(H) ∼= FP×Q(G×H).

We now prove the following result.

Theorem 2.6 Let F be a saturated fusion system on a finite p-group P , let Q1 and Q2 be strongly

F-closed subgroups with Q1 ∩Q2 = 1, and write Q = Q1Q2. If Ei is a strongly normal subsystem

on Qi, then there is a strongly normal subsystem E on Q such that E ∼= E1 × E2.

Proof: Firstly, Q is strongly F-closed by [1] (see also [5]). We will show that if φ1 is a morphism

in E1 and φ2 is a morphism in E2, then (φ1, φ2) is in F . If we can show that (φ1, idQ2) and (idQ1 , φ2)

are in F then we are done. Since E1 and E2 are saturated, the morphisms φi may be written as

(the restriction of) a product of automorphisms of Ei-centric subgroups, so to show that (φ1, idQ2)

(which we will abbreviate to (φ1, id)) is in F it will suffice to assume that φ1 is an automorphism

of an E1-centric subgroup.

By [2, Lemma 8.10(3)], there is an extension φ̄1 of φ1 to R1Q2 in F such that φ̄1 acts trivially

on Q2, and so (φ1, id) lies in F , and so indeed we have that E = E1 × E2 6 F .

We know that E is saturated by the remark before the statement of this theorem, and so it

remains to show that it is F-invariant and satisfies the (N1) property. It is clearly F-invariant

since both E1 and E2 are, and so E ≺ F . To check the (N1) property, suppose that φ ∈ AutE(Q);

then φ = (φ1, φ2), with φi ∈ AutEi(Qi). Since Ei ≺≺ F , we have that φi extends to a map

φ̄i ∈ AutF (Qi CP (Qi)) such that [φ̄i,CP (Qi)] 6 Z(Qi).

If Qi is strongly F-closed then Qi CP (Qi) is strongly F-closed for each i. Since Q1 and Q2

commute, we see that QCP (Q) 6 Qi(CP (Qi) and so we have that

φ̂i = φ̄i|Q CP (Q) ∈ AutP (QCP (Q).

Since [φ̄i,CP (Qi)] 6 Z(Qi), we see that [φ̄1φ̄2,CP (Q)] 6 Z(Q1)Z(Q2) = Z(Q). Lastly, we need to

show that φ̄1φ̄2 is an extension of φ, but for this we simply note that [φ̄i, Q3−i] 6 Z(Qi)∩Q3−i = 1,

so that φ̄i acts trivially on Q3−1, as needed.

This is enough for our purposes, but it is possible with some more careful choices to construct

a strongly normal subsystem with the condition being that [Q1, Q2] = 1, rather than Q1 ∩Q2 = 1

as we have used here.

3 Examples of Bad Behaviour

Our first example of bad behaviour is a very small group, of order only 18.
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Example 3.1 Let G be the group generated by x = (1, 2, 3), y = (4, 5, 6), and (1, 2)(4, 5). This is

really an elementary abelian group of order 9 with a diagonal action of C2 on the two factors, making

each into an S3. Let F = FP (G), where P is the Sylow 3-subgroup. Let E1 denote the subsystem

on X = 〈x〉 consisting of idX and the map ψx : x 7→ x−1, and let E2 denote the corresponding

subsystem on Y = 〈y〉 (with ψy inverting the elements of Y ).

Firstly, we notice that E1 and E2 are both saturated subsystems, being the fusion system of S3.

Secondly, we have Ei ≺ F : to see this, consider what the elements of F are. There are identity

maps, the inversion maps on X and Y , and the map φ that inverts all elements of P . To prove

normality, we merely need to show that φ−1ψxφ = ψx, which it clearly is, and φ−1ψyφ = ψy, which

is similar.

However, we clearly do not have the entire direct product E1 × E2 inside F , since we do not

have the map that acts as ψx on X and the identity on Y , for example. The non-existence of this

map is the precise reason why E1 6≺≺ F : we would need an extension ψ̂ of ψx to X CP (X) = P

such that [ψ̂,CP (X)] = [ψ̂, P ] 6 Z(X) = X. However, since Y is strongly closed, we would have

[ψ̂, Y ] 6 Y ∩X = 1, and so ψ̂|Y = idY .

This example is a 2-soluble fusion system (in the sense of [5]), so in particular its generalized

Fitting subsystem is just O2(F). Therefore this example does not show that the generalized Fitting

subsystem cannot be defined for weakly normal subsystems. A very similar example will suffice,

however.

To construct this example, we need a simple group G whose fusion system, FP (G), is also

simple, where P is a Sylow p-subgroup of G. Furthermore, we need a p′-element φ of Out(G) that

induces an automorphism in Out(F). The finite group (G × G)〈φ〉, where φ acts diagonally on

both factors (as a subgroup of Aut(G) × Aut(G)), will produce the same type of example as the

previous one. An example of such a G and p is the Suzuki simple group at the prime 3.

Example 3.2 Let G be the Suzuki simple group. From the ATLAS [4] one can see that G has

two conjugacy classes of elements of order 9, has a Sylow 3-subgroup P of order 37, and an outer

automorphism group of order 2. The group Aut(G) has only one conjugacy class of elements of

order 9, and so FP (G) 6= FP (Aut(G)). Therefore the outer automorphism of G induces an outer

automorphism of F = FP (G). Let H be the subgroup of index 2 in Aut(G)× Aut(G) that is not

isomorphic with Aut(G)×G (i.e., the ‘diagonal’ subgroup). The fusion system FP×P (H) has the

same properties as before; i.e., that there are two trivially intersecting, weakly normal subsystems

F1 and F2 (both isomorphic with F) that are not strongly normal. As before, the direct product

of the two subsystems is not inside FP×P (H), and so the generalized Fitting subsystem cannot be

defined in a standard way for weak normality, since it could not contain F1 ×F2.

In other words, if one tries to define the generalized Fitting subsystem for weak normality, one

does not get that it is the central product of its components, even in the case where they are simple

and trivially intersecting.
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[I have used here without proof the fact that FP (G) is simple. It is.]

4 Open Problems

The area is still ripe for exploration, since most of what we should know we do not know. Here are

some of the things that I at least do not know.

Question 4.1 Let F be a saturated fusion system on a finite p-group P , and let Q be a strongly

F-closed subgroup. Is there a weakly normal subsystem on Q?

The corresponding question for strongly normal subsystems has a negative answer in general;

I believe that the answer to this question is also negative, although the method of proof will have

to change, since the counterexample for strongly normal subsystems went via a constrained fusion

system and the bijection between strongly normal subsystems and normal subgroups.

Question 4.2 Let F be a saturated fusion system on a finite p-group P , and let E1 and E2 be

saturated subsystems on Q1 and Q2 respectively. If Ei ≺ F , is there a weakly normal subsystem E
on Q1Q2, containing E1 and E2? What if weak normality is replaced by strong normality?

This question has a positive answer for strong normality if the subgroups Q1 and Q2 commute,

but as far as I know in general nothing is known. (Since the product of two strongly closed subgroups

is strongly closed, at least the most obvious requirement is satisfied.)

Question 4.3 Let F be a saturated fusion system on a finite p-group P , and let E1 and E2 be

weakly normal subsystems on Q1 and Q2 respectively. Is there a weakly normal subsystem E on

Q1 ∩Q2 contained within E1 ∩ E2?

This is true for strongly normal subsystems [1, Theorem 1]; with this there is a theory of minimal

normal subsystems, and without it one may do nothing. If this has a positive answer then some

of the benefits of working with strongly normal subsystems disappear. For example, we have the

following result.

Lemma 4.4 Let F be a saturated fusion system on a finite p-group P . A minimal strongly normal

subsystem is either FQ(Q) for some elementary abelian p-group Q or a direct product of isomorphic

simple (i.e., no strongly normal subsystems) fusion systems.

The proof is the same as for finite groups. It relies entirely on the positive answer to Question

4.3 for strongly normal subsystems. Whether there is a nice theory of minimal normal subsystems

mirroring that of finite groups remains to be seen, although since p-soluble fusion systems all come

from finite groups, in this case something might be done.

It is also known that in general, if Q is a strongly F-closed subgroup of a saturated fusion system

F , there is in general no one-to-one correspondence between the strongly normal subsystems of F/Q
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and the normal subsystems of F containing FQ(Q) (we restrict here to the case where F = NF (Q),

since F/Q = NF (Q)/Q). A notable exception to this fact is that if Q is central then there is

a one-to-one correspondence for both weakly normal and strongly normal. In [5], we prove that

the image of a saturated subsystem is saturated via the second isomorphism theorem for fusion

systems.

Question 4.5 Let F be a saturated fusion system on a finite p-group P , and let Q be a subgroup

such that F = NF (Q). Suppose that E is a saturated subsystem of F/Q. Is there a saturated

subsystem E ′ such that the image of E ′ in F/Q is exactly E?

The full preimage of E might well not be the correct object to consider in this case.
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