A New Maximal Subgroup of E_{8} in Characteristic 3

David A. Craven, David I. Stewart and Adam R. Thomas

March 22, 2021

Abstract

We prove the existence and uniqueness of a new maximal subgroup of the algebraic group of type E_{8} in characteristic 3. This has type F_{4}, and was missing from previous lists of maximal subgroups produced by Seitz and Liebeck-Seitz. We also prove a result about the finite group $H={ }^{3} D_{4}(2)$, that if H embeds in E_{8} (in any characteristic p) and has two composition factors on the adjoint module then $p=3$ and H lies in this new maximal F_{4} subgroup.

1 Introduction

The classification of the maximal subgroups of positive dimension of exceptional algebraic groups [13] is a cornerstone of group theory. In the course of understanding subgroups of the finite groups $E_{8}(q)$ in [3], the first author ran into a configuration that should not occur according to the tables in [13.

We elicit a previously undiscovered maximal subgroup of type F_{4} of the algebraic group E_{8} over an algebraically closed field of characteristic 3 . This discovery corrects the tables in [13], and the original source [17] on which it depends.
Theorem 1.1. Let \mathbf{G} be a simple algebraic group of type E_{8} over an algebraically closed field of characteristic 3. Then \mathbf{G} contains a unique conjugacy class of simple maximal subgroups of type F_{4}.

If \mathbf{X} is in this class, then the restriction of the adjoint module $L\left(E_{8}\right)$ to \mathbf{X} is isomorphic to $L_{\mathbf{X}}(1000) \oplus$ $L_{\mathbf{X}}(0010)$, where the first factor is the adjoint module for \mathbf{X} of dimension 52 and the second is a simple module of dimension 196 for \mathbf{X}.

The classification from [13] states that the maximal subgroups are maximal-rank or parabolic subgroups, or one of a short list of reductive subgroups that exist for all but a few small primes, together with G_{2} inside F_{4} for $p=7$. This last case arises from a generic embedding of G_{2} in E_{6}, which falls into F_{4} on reduction modulo the prime $p=7$ only. This new E_{8} subgroup is therefore the only example of a maximal subgroup that exists for a single prime, whose embedding cannot be explained using generic phenomena.

The structure of this note is as follows. The existence and uniqueness up to conjugacy of a maximal Lie subalgebra $\mathfrak{f}_{4} \subset \mathfrak{e}_{8}$ is first established. From this we are able to write down the root elements of \mathfrak{f}_{4}; exponentiation gives expressions for the root groups of \mathbf{X} in terms of the root groups of E_{8}, providing an explicit construction of \mathbf{X}.

In the final section we determine various results providing extra details on this new class of maximal subgroups. For each unipotent class in \mathbf{X} we determine the corresponding unipotent class in E_{8} that contains it, and we do the same for nilpotent orbits of the corresponding Lie algebras. We also consider the maximal connected subgroups of \mathbf{X}. The maximal parabolic subgroups of \mathbf{X} will be contained in parabolic subgroups of E_{8} by the Borel-Tits Theorem. There are four classes of reductive maximal connected subgroups of \mathbf{X} when $p=3$ with types $B_{4}, A_{1} C_{3}, A_{1} G_{2}, A_{2} A_{2}$. We show that all of these classes are contained in other maximal connected subgroups of E_{8} and we specify such an overgroup. Moreover, we determine that the first three classes are E_{8}-irreducible but the last class is not. (A subgroup is G-irreducible if it is not contained in any proper parabolic subgroup of G.)

In establishing the existence of \mathbf{X}, we prove the following extra result, of use in the project to classify maximal subgroups of the finite exceptional groups of Lie type.

Proposition 1.2. Let H be the group ${ }^{3} D_{4}(2)$, let p be a prime, and suppose that H embeds in the algebraic group E_{8} in characteristic p. If the composition factors of the action of H on the adjoint module $L\left(E_{8}\right)$ have dimensions 52 and 196 , then $p=3$ and H is contained in a maximal subgroup \mathbf{X} of type F_{4}; furthermore, H and \mathbf{X} stabilize the same subspaces of $L\left(E_{8}\right)$.

2 From the Thompson group to F_{4}

One path to a construction of the F_{4} subgroup of E_{8} starts with the Thompson group, which contains a copy of $H \cong{ }^{3} D_{4}(2)$, acting on $L\left(E_{8}\right)$ with composition factors of dimensions 52 and 196 . In fact, every H-invariant alternating bilinear form on the 248 -dimensional module is invariant under a suitable copy of $F_{4} \leq \mathrm{GL}_{248}(k)$.

We cannot quite show this without a computer. Splitting $L\left(E_{8}\right)$ up as the sum of 52 and 196 fragments the space of alternating forms into six components. For five of these six we can show that the H-invariant maps are F_{4}-invariant, but for the sixth we cannot do so without a computer. With a computer we can check that this sixth component is at least $F_{4}(9)$-invariant, and thus every subgroup H of E_{8} is contained in a copy of $F_{4}(9)$. But $F_{4}(9)$ contains elements of order 6562 , and thus there is an F_{4} subgroup of E_{8} containing it, via [12, Proposition 2].

We then show that this F_{4} subgroup is unique up to E_{8}-conjugacy, obtaining as a by-product that H is unique up to E_{8}-conjugacy.

We start with a copy J of the Thompson sporadic simple group. This has a 248 -dimensional simple module M over \mathbb{C}, and it remains simple upon reduction modulo all primes. From [1] p.176], we see that there are elements of order 9 with Brauer character value 5 on M. The only integers that are the traces of semisimple elements of order 9 in E_{8} (on the adjoint module) are $-1,2,8$ and 29 . Thus these elements cannot be semisimple, and in particular, $p \mid 9$. Thus we see that if J embeds in the algebraic group E_{8} in any characteristic p, then $p=3$. It is a famous result that J does indeed embed in $E_{8}(3)$, and is unique up to conjugacy.

It is well known that J contains a subgroup H isomorphic to ${ }^{3} D_{4}(2)$. From [1, p.90] and [6] pp.251-253], we see that in characteristic not 2 , the restriction of M to H is the direct sum of a 52-dimensional simple module M_{1} and a 196-dimensional simple module M_{2}. However, all elements of order 9 in H act on $M_{1} \oplus M_{2}$ with trace 2 , so we cannot use the previous method to show that H cannot embed in E_{8} in characteristic $p \neq 2,3$ acting on $L\left(E_{8}\right)$ as $M_{1} \oplus M_{2}$.

Lemma 2.1. Let p be an odd prime, let H denote the group ${ }^{3} D_{4}(2)$, and suppose that H embeds in the algebraic group E_{8} in characteristic p, acting on the adjoint module with composition factors of dimensions 52 and 196. Then the submodule 52 carries the structure of a Lie algebra of type \mathfrak{f}_{4}, and in particular $p=3$. Furthermore, such an \mathfrak{f}_{4} subalgebra of \mathfrak{e}_{8} does exist for $p=3$.

Proof. Let M_{1} denote the 52 -dimensional kH -submodule of the adjoint and M_{2} the 196 -dimensional submodule. Note that $|H|=2^{12} \cdot 3^{4} \cdot 7^{2} \cdot 13$, so either $p \nmid|H|$ and we are essentially in characteristic 0 , or $p=7,13$, or $p=3$.

From [4], there is a unique conjugacy class of subgroups H in F_{4} for any odd characteristic p, acting irreducibly on the minimal and adjoint modules. In particular, we see from [4] that $\operatorname{Hom}_{k H}\left(\Lambda^{2}\left(M_{1}\right), M_{1}\right)$ is 1-dimensional for all odd primes p. From an ordinary character calculation, we see that

$$
\Lambda^{2}\left(\chi_{52}\right)=\chi_{52}+\chi_{1274}
$$

where χ_{i} is the irreducible character of degree i. For both 7 and 13 , the reduction modulo p of χ_{1274} is irreducible, hence the reduction modulo p is irreducible modulo p for all $p>3$ (see [6] pp.252-253]). If $p=3$ then χ_{1274} has Brauer character constituents of degrees 52 and 1222 from [6 p.251]. Since
$\operatorname{Hom}_{k H}\left(\Lambda^{2}\left(M_{1}\right), M_{1}\right)=k$, we see that the exterior square is uniserial, with layers of dimensions 52,1222 and 52. Moreover,

$$
\operatorname{Hom}_{k H}\left(\Lambda^{2}\left(M_{1}\right), M_{2}\right)=0
$$

Thus M_{1} forms an H-invariant subalgebra, which must be non-zero, since \mathfrak{e}_{8} contains no abelian subspace of dimension 52 by [5] Proposition 2.3]. Furthermore, as M_{1} is irreducible for H, the restriction of the Lie bracket to M_{1} furnishes it with the structure of a semisimple Lie algebra. Since $\operatorname{Hom}_{k H}\left(\Lambda^{2}\left(M_{1}\right), M_{1}\right)=k$, there is at most one isomorphism class of such, but as the algebraic k-group F_{4} does contain a subgroup isomorphic to H, acting as χ_{52} on its adjoint module, it follows that $M_{1} \cong \mathfrak{f}_{4}$. In particular, this means that the \mathfrak{f}_{4} Lie algebra must have a simple module of dimension 196 , as it acts H-equivariantly on $L\left(E_{8}\right)$.
Such a simple module must be restricted: if not the p-closure L_{p} of the image L of \mathfrak{f}_{4} in \mathfrak{e}_{8} will contain a centre [19, 2.5.8(2)]; but L has no 1 -dimensional submodules on M. By Curtis's theorem, M_{2} arises by differentiation of a restricted representation for the algebraic group F_{4}, whence $p=3$, from the tables in (14.

The embedding and subalgebra do exist for $p=3$ via the Thompson group, as seen above.
We will prove that the \mathfrak{f}_{4}-subalgebra is the Lie algebra of an F_{4} algebraic subgroup of E_{8}. To do so, we will actually prove that every H-invariant alternating product on the $k H$-module $M=M_{1} \oplus M_{2}$ for $p=3$ is also F_{4}-invariant, for the unique $F_{4} \leq \mathrm{GL}_{52}(k)$ containing H. To do so, we need to understand the space

$$
\operatorname{Hom}_{k H}\left(\Lambda^{2}(M), M\right)
$$

of alternating products on M. Using $M=M_{1} \oplus M_{2}$, and the formula

$$
\Lambda^{2}(A \oplus B) \cong \Lambda^{2}(A) \oplus \Lambda^{2}(B) \oplus A \otimes B
$$

we split the space of products up into six components. The next result gives the dimensions of these components.
Proposition 2.2. We have

$$
\begin{array}{cl}
\operatorname{Hom}_{k H}\left(\Lambda^{2}\left(M_{1}\right), M_{1}\right)=k, & \operatorname{Hom}_{k H}\left(\Lambda^{2}\left(M_{1}\right), M_{2}\right)=0 \\
\operatorname{Hom}_{k H}\left(\Lambda^{2}\left(M_{2}\right), M_{1}\right)=k, & \operatorname{Hom}_{k H}\left(\Lambda^{2}\left(M_{2}\right), M_{2}\right)=k \\
\operatorname{Hom}_{k H}\left(M_{1} \otimes M_{2}, M_{1}\right)=0, & \operatorname{Hom}_{k H}\left(M_{1} \otimes M_{2}, M_{2}\right)=k
\end{array}
$$

Proof. One may use a computer to check these with ease. Some may be checked easily by hand as well, using the ordinary character table and the 3-decomposition matrix for H. For example, using those two tables, $M_{1} \otimes M_{2}$ does not possess a composition factor M_{1}, and thus

$$
\operatorname{Hom}_{k H}\left(M_{1} \otimes M_{2}, M_{1}\right)=\operatorname{Hom}_{k H}\left(\Lambda^{2}\left(M_{1}\right), M_{2}\right)=0
$$

The statement that $\operatorname{Hom}_{k H}\left(\Lambda^{2}\left(M_{1}\right), M_{1}\right)=k$ appears in [4, Section 4.3.4] (where it is proved by computer).

At least the existence of two of the three remaining maps is clear from the fact that H embeds in $E_{8}(3)$ with representation $M_{1} \oplus M_{2}$. If $\operatorname{Hom}_{k H}\left(M_{1} \otimes M_{2}, M_{2}\right)=0$ then M_{1} would be an ideal of the Lie algebra, which is not possible. A character calculation shows that $S^{2}\left(M_{2}\right)$ does not have a composition factor M_{1}, so

$$
\operatorname{Hom}_{k H}\left(\Lambda^{2}\left(M_{2}\right), M_{1}\right)=\operatorname{Hom}_{k H}\left(M_{1} \otimes M_{2}, M_{2}\right)
$$

It is only $\operatorname{Hom}_{k H}\left(\Lambda^{2}\left(M_{2}\right), M_{2}\right)$ that cannot easily be seen. Indeed, this space will cause us a problem later on.

We now prove that five of the six Hom-spaces extend to the algebraic group $\mathbf{X}=F_{4}$, with only $\operatorname{Hom}_{k H}\left(\Lambda^{2}\left(M_{2}\right), M_{2}\right)$ missing. If one is happy to use a computer for all of this, one simply checks that all H-invariant maps are $F_{4}(3)$ - and even $F_{4}(9)$-invariant, and thus one does not need to prove the next proposition.

Proposition 2.3. Let \mathbf{X} be an algebraic k-group of type F_{4}. We have

$$
\begin{gathered}
\operatorname{Hom}_{\mathbf{X}}\left(\Lambda^{2}(L(1000)), L(1000)\right)=k \\
\operatorname{Hom}_{\mathbf{X}}\left(\Lambda^{2}(L(1000)), L(0010)\right)=\operatorname{Hom}_{\mathbf{X}}(L(1000) \otimes L(0010), L(1000))=0, \text { and } \\
\operatorname{Hom}_{\mathbf{X}}\left(\Lambda^{2}(L(0010)), L(1000)\right)=\operatorname{Hom}_{\mathbf{X}}(L(1000) \otimes L(0010), L(0010))=k
\end{gathered}
$$

Proof. Note that each of these spaces must have dimension at most the dimension of the corresponding space for H. This yields the two 0-dimensional spaces, and that the other spaces have dimension at most 1. The first statement holds because \mathbf{X} is a non-abelian Lie algebra, and therefore the space is non-zero.

For the last statement, since $S^{2}\left(M_{2}\right)$ has no composition factor isomorphic to M_{1}, certainly $S^{2}(L(0010))$ has no composition factor isomorphic to $L(1000)$. Thus the two Hom-spaces are isomorphic, so it remains to find a non-zero map in the latter space.

The composition factors of the kH -module $M_{1} \otimes M_{2}$ are of dimensions

$$
25,196,196,441,1963,2457,2457,2457 .
$$

The highest-weight module $L(1010)$, which must appear as a composition factor in $L(1000) \otimes L(0010)$, has dimension 7371, and must restrict to $k H$ to be the sum of the three (non-isomorphic) modules of dimension 2457. The rest of the composition factors, in total, have dimension 2821, so there must be a composition factor of dimension between 1963 and 2821. Consulting [14, Appendix A.50], we find exactly one such module: $L(0011)$ of dimension $2404=1963+441$. The remaining $k H$-modules, 25,196 and 196 , must be the other composition factors for F_{4}, because F_{4} has no simple modules of dimension $25+196,196+196$, or $25+196+196$.

Thus the composition factors of $L(1000) \otimes L(0010)$ have dimensions $25,196,196,2404$ and 7371 . Since $L(0010)$ is the unique module to appear more than once, and the tensor product is self-dual, $L(0010)$ must be a submodule, and the maps in $\operatorname{Hom}_{k H}\left(M_{1} \otimes M_{2}, M_{2}\right)$ extend to \mathbf{X}.

The last remaining Hom-space to check is $\operatorname{Hom}_{\mathbf{X}}\left(\Lambda^{2}(L(0010)), L(0010)\right)$. This seems difficult to do by hand, and we resort to a computer. There are two ways to proceed. The first is to prove that that there is an $F_{4}(3)$-invariant map in the space (this takes a couple of minutes), and thus the H is contained in a copy of $F_{4}(3)$ in E_{8}. We then apply [3, Proposition 6.8], which states that $F_{4}(3)$ is contained in a positive-dimensional subgroup stabilizing the same subspaces of $L\left(E_{8}\right)$, which are M_{1} and M_{2}. This must be a copy of F_{4} (as it stabilizes an \mathfrak{f}_{4}-Lie subalgebra), and we are done. Alternatively, we prove the same statement for $F_{4}(9)$ (which contains elements of order $9^{4}+1=6562$, this takes about half an hour on one of the first author's computers) and then apply [12, Proposition 2], which yields the same positive-dimensional subgroup.
In either case, we obtain the following.
Proposition 2.4. Let $p=3$ and let H be a subgroup ${ }^{3} D_{4}(2)$ of E_{8}, acting on $L\left(E_{8}\right)$ with composition factors of dimensions 52 and 196. Then H is contained in a positive-dimensional subgroup of type F_{4}, stabilizing exactly the same subspaces of $L\left(E_{8}\right)$ that are stabilized by H.
It suffices to ascertain the uniqueness up to conjugacy of the hypothesized subgroup of type F_{4}, and as a by-product we also obtain uniqueness of H up to conjugacy.

Let t be an involution in $\mathbf{X}=F_{4}$ with centralizer B_{4}. The trace of t on $L\left(E_{8}\right)$ is -8 , and so the centralizer of t in E_{8} is D_{8}, which acts with composition factors $L\left(\lambda_{2}\right)$ and $L\left(\lambda_{7}\right)$, of dimensions 120 and 128 respectively. The restriction of the $k \mathbf{X}$-module $L(1000)$ to B_{4} is $L(0001) \oplus L(0100)$, with dimensions 16 and 36 respectively. The restriction of $L(0010)$ to B_{4} is $L(0010) \oplus L(1001)$, of dimensions 84 and 112 respectively. (This can be checked using weights or quickly on a computer for $F_{4}(3)$.) From [20, Table 60] we see that this B_{4} is subgroup $E_{8}(\# 45)$ and is unique up to conjugacy. But clearly there is a unique way to assemble the numbers $16,36,84$ and 112 to make 52 and 196 . Thus given any subgroup of type B_{4} there exists at most one F_{4} containing it, which must stabilize the submodule $L(0001) \oplus L(0100)$. Thus we obtain the result that \mathbf{X} is unique up to conjugacy.

This completes the proof of uniqueness of \mathbf{X}, and thus Theorem 1.1 is proved.

3 Presentation of F_{4}

For their application to future explicit computations, we give expressions for the root elements $x_{ \pm \beta_{i}}(t)$ for β_{i} a root of the maximal subgroup F_{4} as products of root elements of E_{8}; see [2, §4.4] for notation. We also provide the elements $h_{\beta_{i}}(t)$ written in terms of those of E_{8}. Note that since the coefficients t_{j} we exhibit are elements of $\mathrm{GF}(3)$, it follows that the subgroup \mathbf{Y} we produce is defined over $\mathrm{GF}(3)$. As the factors of $x_{\beta_{i}}(t)=\prod_{j} x_{\alpha_{j}}\left(c_{j} t\right)$ commute we get easily that $x_{-\beta_{i}}(t)=\prod_{j} x_{-\alpha_{j}}\left(c_{j} t\right)$. For this reason we only list the root group elements for positive roots. Note also that the element $e_{\beta_{i}}$ of a Chevalley basis for \mathfrak{h} is recovered from such an expression as $\sum c_{j} e_{\alpha_{j}}$.

```
\(x_{1000}(t)=x_{00010000}(t) x_{00000100}(t)\)
\(x_{0100}(t)=x_{00100000}(-t) x_{00000010}(t)\)
\(x_{0010}(t)=x_{10000000}(-t) x_{00000001}(t) x_{00011000}(-t) x_{00001100}(-t)\)
\(x_{0001}(t)=x_{11110000}(t) x_{01121000}(-t) x_{01111100}(-t) x_{01011110}(t)\)
\(x_{1100}(t)=x_{00110000}(-t) x_{00000110}(-t)\)
\(x_{0110}(t)=x_{10100000}(t) x_{00000011}(-t) x_{00111000}(-t) x_{00001110}(-t)\)
\(x_{0011}(t)=x_{11121000}(t) x_{11111100}(t) x_{01011111}(t) x_{01122100}(-t)\)
\(x_{1110}(t)=x_{10110000}(t) x_{00000111}(t) x_{00111100}(-t) x_{00011110}(t)\)
\(x_{0120}(t)=x_{10111000}(-t) x_{00001111}(-t)\)
\(x_{0111}(t)=x_{11221000}(t) x_{11111110}(t) x_{01111111}(t) x_{01122110}(-t)\)
\(x_{1120}(t)=x_{10111100}(-t) x_{00011111}(t)\)
\(x_{1111}(t)=x_{11221100}(t) x_{11121110}(-t) x_{01121111}(-t) x_{01122210}(t)\)
\(x_{0121}(t)=x_{11111111}(-t) x_{11222100}(-t) x_{11122110}(t) x_{01122111}(t)\)
\(x_{1220}(t)=x_{10111110}(t) x_{00111111}(-t)\)
\(x_{1121}(t)=x_{11121111}(t) x_{11232100}(t) x_{11122210}(-t) x_{01122211}(-t)\)
\(x_{0122}(t)=x_{12232111}(-t) x_{12233210}(t)\)
\(x_{1221}(t)=x_{11221111}(-t) x_{11232110}(-t) x_{11222210}(t) x_{01122221}(-t)\)
\(x_{1122}(t)=x_{12232211}(t) x_{12243210}(-t)\)
\(x_{1231}(t)=x_{11232111}(t) x_{11222211}(-t) x_{11122221}(-t) x_{11233210}(t)\)
\(x_{1222}(t)=x_{12232221}(t) x_{12343210}(t)\)
\(x_{1232}(t)=x_{22343210}(t) x_{12343211}(t) x_{12243221}(t) x_{12233321}(-t)\)
\(x_{1242}(t)=x_{22343211}(t) x_{12244321}(t)\)
\(x_{1342}(t)=x_{22343221}(-t) x_{12344321}(t)\)
\(x_{2342}(t)=x_{22343321}(t) x_{12354321}(-t)\)
\(h_{1000}(t)=h_{00010000}(t) h_{00000100}(t)\)
\(h_{0100}(t)=h_{00100000}(t) h_{00000010}(t)\)
\(h_{0010}(t)=h_{10000000}(t) h_{00010000}(t) h_{00001000}\left(t^{2}\right) h_{00000100}(t) h_{00000001}(t)\)
\(h_{0001}(t)=h_{1000000}(t) h_{01000000}\left(t^{4}\right) h_{00100000}\left(t^{3}\right) h_{00010000}\left(t^{5}\right) h_{00001000}\left(t^{3}\right) h_{00000100}\left(t^{2}\right) h_{00000010}(t)\)
```

Remark 3.1. We note that the 24-dimensional unipotent subgroup generated by the positive root elements of F_{4} is contained in the 120-dimensional unipotent subgroup generated by the positive roots of E_{8}. The given presentation has the slightly unfortunate property that the structure constants are not the same as those used in Magma, a standard choice. However, one can if one wishes rectify this by choosing a
different base: let $\tilde{x}_{\alpha_{1}}(t)=x_{-0100}(t), \tilde{x}_{\alpha_{2}}(t)=x_{-1242}(t), \tilde{x}_{\alpha_{3}}(t)=x_{1232}(t), \tilde{x}_{\alpha_{4}}(t)=x_{-0001}(t)$. Then we generate the same maximal subgroup F_{4} but this time the structure constants do agree with those in Magma.

3.1 How did we find this presentation?

We start with the 248 -dimensional module M for $H \cong{ }^{3} D_{4}(2)$. We use the Ryba space, as used in [4] (see also the description as the 'Lie product method' in [5]), to construct an explicit Lie product on M that turns M into a copy of \mathfrak{e}_{8}. This gives us explicit structure constants. The module M splits as the sum of 52- and 196-dimensional H-stable submodules. As explained above, the first of these subspaces is forced to be a subalgebra \mathfrak{h} of \mathfrak{e}_{8} isomorphic to \mathfrak{f}_{4} and so Magma could write down a basis for it in terms of a Chevalley basis of \mathfrak{e}_{8}. However, this process left us with basis elements for \mathfrak{h} with around 120 non-zero coefficients in terms of a basis of \mathfrak{e}_{8}.
We found that four of the basis vectors for \mathfrak{h} were toral and commuted with each other, thus spanning a maximal toral subalgebra \mathfrak{t}. We then searched for a G-conjugate of \mathfrak{h} such that the corresponding conjugate of \mathfrak{t} was contained in the standard toral subalgebra of \mathfrak{g}. To do this we used the inbuilt InnerAutomorphism function to construct the automorphisms of \mathfrak{g} corresponding to $x_{\gamma}(\pm 1)$ for all roots γ in the root system of E_{8}.
Our strategy was to implement a naive hill climb for the first basis element t_{1} of \mathfrak{t}. Indeed, we searched through all 480 possible conjugating elements and selected the one that yielded the largest number of zero coefficients when expressing t_{1}^{g} in terms of the basis of \mathfrak{g}. We remembered the elements we used at each step. This meant that when we could no longer increase the number of zero coefficients we could trace our steps back and take the next best conjugating element and continue the process. This lead to a significant increase in the number of zero coefficients but nowhere near the 240 we needed.

We then slightly upgraded our hill climb algorithm to include using a random conjugating element at fixed intervals. Every 100 steps we chose a random conjugating element and used this, regardless of what it did to the number of zero coefficients. This method was not optimized; it could be that a better choice would have been every 5 steps, or 500 steps. But this hill climb was enough for us; it quickly led us to a conjugating element g_{0} which took t_{1} into the standard toral subalgebra of \mathfrak{g}. At this point, the remaining three basis elements t_{2}, t_{3} and t_{4} were not sent by g_{0} to something in the standard toral subalgebra of \mathfrak{g}, but they had significantly fewer non-zero coefficients. We then repeated the algorithm looking to increase the total number of zero coefficients in $t_{1}^{g}, \ldots, t_{4}^{g}$ and this quickly converged, yielding a conjugating element g_{1} which sent t_{1}, \ldots, t_{4} to the four toral elements corresponding to the generators of the maximal torus given in the presentation. From the toral subalgebra of $\mathfrak{h}^{g_{1}}$ it was then routine to take a Cartan decomposition and find the corresponding root elements.

It turned out that the root elements of \mathfrak{h} were expressed as a sum of commuting root elements of \mathfrak{e}_{8}; in fact long root elements of \mathfrak{h} were of type $2 A_{1}$ in \mathfrak{e}_{8}, whereas short root elements were of type $4 A_{1}$. For pairwise commuting root elements $e_{\alpha_{1}}, \ldots, e_{\alpha_{k}}$ of \mathfrak{e}_{8}, the operators ad $e_{\alpha_{i}}$ pairwise commute and so one has

$$
\exp \left(t_{1} \operatorname{ad} e_{\alpha_{1}}+\cdots+t_{j} \operatorname{ad} e_{\alpha_{k}}\right)=\exp \left(t_{1} e_{\alpha_{1}}\right) \ldots \exp \left(t_{k} e_{\alpha_{k}}\right)
$$

Thus if $e_{\beta_{i}}=\sum t_{j} e_{\alpha_{j}} \in \mathfrak{h}$ is of this form, then evidently the left-hand side of the displayed equation normalizes \mathfrak{h} in the group $\mathrm{GL}_{248}(k)$, and the right-hand side belongs to $E_{8}(k)$, hence for $t \in k$, the elements $x_{\beta_{i}}(t)$ generate a connected smooth subgroup \mathbf{Y} of E_{8} for which $\mathfrak{h} \subseteq \operatorname{Lie}(\mathbf{Y})$. But now maximality of \mathfrak{h} forces $\operatorname{Lie}(\mathbf{Y})=\mathfrak{h}$. The only connected smooth affine k-group whose Lie algebra is a simple Lie algebra of type F_{4} is a group of type F_{4} itself and using the maximality of \mathfrak{f}_{4} we conclude that \mathbf{Y} must be a maximal connected subgroup.

4 Consequences

We extend the results of 10 to this new maximal subgroup, determining which unipotent classes of E_{8} meet the F_{4} non-trivially.

Class in F_{4}	Class in E_{8}
A_{1}	$2 A_{1}$
\tilde{A}_{1}	$4 A_{1}$
$A_{1}+\tilde{A}_{1}$	$A_{2}+2 A_{1}$
A_{2}	$2 A_{2}$
\tilde{A}_{2}	$2 A_{2}$
$A_{2}+\tilde{A}_{1}$	$2 A_{2}+A_{1}$
$\tilde{A}_{2}+A_{1}$	$2 A_{2}+2 A_{1}$
B_{2}	$2 A_{3}$
$C_{3}\left(a_{1}\right)$	$A_{4}+2 A_{1}$
$F_{4}\left(a_{3}\right)$	$A_{4}+A_{2}$
B_{3}	A_{6}
C_{3}	$D_{6}\left(a_{1}\right)$
$F_{4}\left(a_{2}\right)$	$D_{5}+A_{2}$
$F_{4}\left(a_{1}\right)$	$E_{8}\left(b_{6}\right)$
F_{4}	$E_{8}\left(b_{4}\right)$

Table 4.1: Fusion of unipotent classes of maximal F_{4} into E_{8}. (Horizontal lines separate elements of different orders.)

Proposition 4.1. If u is a unipotent element of the maximal F_{4} subgroup of E_{8}, then the class of u in F_{4} and E_{8} is given in Table 4.1.

Proof. The proof is a fast computer check. Randomly generate elements u of orders 3,9 and 27 in $F_{4}(3)$ until we hit each class. (The class to which u belongs can be deduced from [8, Tables 3 and 4].) The Jordan blocks of the action of u on the sum of $L(1000)$ and $L(0010)$ are trivial to compute then. From [8] we obtain the class in E_{8} to which u belongs.
However, note that there is an error in [8], due to an error in [16], which leads to a single class having the wrong Jordan blocks in characteristic 3 . This is corrected in 9 , and it concerns exactly the class $E_{8}\left(b_{6}\right)$ in the table. It has Jordan blocks $9^{26}, 7,3^{2}, 1$ on $L\left(E_{8}\right)$, not $9^{25}, 8^{2}, 2^{2}, 1^{3}$ as stated in [8]. With this correction, the Jordan block structure of u on $L\left(E_{8}\right)$ determines the unipotent class to which u belongs, and thus we are done.

For completeness we do the same thing for nilpotent orbits of \mathfrak{f}_{4}.
Proposition 4.2. If x is a nilpotent element of the maximal \mathfrak{f}_{4} subalgebra of \mathfrak{e}_{8}, then the class of x in \mathfrak{f}_{4} and \mathfrak{e}_{8} is given in Table 4.2.

Proof. Using the root elements constructed for \mathfrak{f}_{4} we find a set of orbit representatives for $\mathfrak{f}_{4} \subset \mathfrak{e}_{8}$ using [18, Appendix]. For each representative x we use Magma to calculate the Jordan block structure for the adjoint action of x and the normalizer of each term of the derived series of $C_{\mathfrak{e}_{8}}(x)$. Using [7 Proposition $1.5]$, we then find the \mathfrak{e}_{8} class of x.

Proposition 4.3. If \mathbf{M} is a maximal connected reductive subgroup of the maximal F_{4} subgroup \mathbf{X} of the algebraic group \mathbf{G} of type E_{8}, then \mathbf{M} is conjugate to one of the following four subgroups.
(i) $\mathbf{M}_{1}=B_{4}<D_{8}$ embedded via the spin module $L_{B_{4}}(0001)$. There are two such conjugacy classes which, when p is odd, are distinguished by whether or not they are contained in a maximal subgroup of type A_{8}. This is the subgroup which is not contained in such an A_{8}. It is \mathbf{G}-irreducible and denoted $E_{8}(\# 45)$ in [20].
(ii) $\mathbf{M}_{2}=A_{1} C_{3}<D_{8}$ embedded via $L_{A_{1}}(2) \oplus L_{C_{3}}(010)$. This subgroup is \mathbf{G}-irreducible and denoted by $E_{8}(\# 774)$ in [20].
(iii) $\mathbf{M}_{3}=A_{1} G_{2}<A_{1} E_{7}$ embedded as follows: E_{7} has a maximal subgroup of type $A_{1} G_{2}$ (when $p \neq 2$). Therefore $A_{1} E_{7}$ has a maximal subgroup $A_{1} A_{1} G_{2}$ and M_{3} is embedded diagonally in this subgroup.

Class in \mathfrak{f}_{4}	Class in \mathfrak{e}_{8}
A_{1}	$2 A_{1}$
\tilde{A}_{1}	$4 A_{1}$
$A_{1}+\tilde{A}_{1}$	$A_{2}+2 A_{1}$
A_{2}	$2 A_{2}$
\tilde{A}_{2}	$A_{2}+3 A_{1}$
$A_{2}+\tilde{A}_{1}$	$2 A_{2}+A_{1}$
B_{2}	$2 A_{3}$
$\tilde{A}_{2}+A_{1}$	$2 A_{2}+A_{1}$
$C_{3}\left(a_{1}\right)$	$A_{4}+2 A_{1}$
$F_{4}\left(a_{3}\right)$	$A_{4}+A_{2}$
B_{3}	A_{6}
C_{3}	$D_{5}+A_{1}$
$F_{4}\left(a_{2}\right)$	$E_{7}\left(a_{4}\right)$
$F_{4}\left(a_{1}\right)$	$E_{6}\left(a_{1}\right)$
F_{4}	E_{6}

Table 4.2: Fusion of nilpotent classes of maximal \mathfrak{f}_{4} into \mathfrak{e}_{8}.

One has to twist the embedding in the first A_{1} factor by the Frobenius morphism. This subgroup is again \mathbf{G}-irreducible and denoted by $E_{8}\left(\# 967^{\{1,0\}}\right)$ in [20].
(iv) $\mathbf{M}_{4}=A_{2} A_{2}<\bar{A}_{2} E_{6}$ embedded as follows: E_{6} has a maximal subgroup $A_{2} G_{2}$, and G_{2} has a maximal subgroup \tilde{A}_{2} generated by short root subgroups of the G_{2} when $p=3$. Thus $\bar{A}_{2} E_{6}$ has a subgroup $H=\bar{A}_{2} A_{2} \tilde{A}_{2}$ (denoted $E_{8}(\# 1012)$ in [20]). The first A_{2} factor of \mathbf{M}_{4} is the the second A_{2} factor of H and the second A_{2} factor of \mathbf{M}_{4} is diagonally embedded in the first and third factors of H (with no twisting by field or graph automorphisms). Note that \mathbf{M}_{4} is not \mathbf{G}-irreducible.

Proof. By [13, Corollary 2], F_{4} has four conjugacy classes of maximal connected subgroups in characteristic 3, which are indeed of types $B_{4}, A_{1} C_{3}, A_{1} G_{2}$ and $A_{2} A_{2}$. The first two maximal subgroups are centralizers of involutions. It follows from the action of F_{4} on the Lie algebra of E_{8} that the centralizer in E_{8} of both of these involutions is D_{8}. Thus B_{4} and $A_{1} C_{3}$ are contained in a maximal subgroup of type D_{8}. By [11, Table 8.1], there are only three E_{8}-conjugacy classes of B_{4} subgroups in D_{8}. Calculating the composition factors of the action of $B_{4}<F_{4}$ on the Lie algebra of E_{8} yields that it is indeed conjugate to \mathbf{M}_{1}, which is \mathbf{G}-irreducible by [20, Theorem 1]. Calculating the composition factors of $A_{1} C_{3}<F_{4}$ on the Lie algebra of E_{8}, we find that it has no trivial composition factors. Therefore it must be G-irreducible (by [20, Corollary 3.8]) and we may use the classification of irreducible subgroups determined in [20]. In particular, the composition factors on the Lie algebra of E_{8} are enough to determine conjugacy and it follows that $A_{1} C_{3}$ is conjugate to \mathbf{M}_{2}, as required.

Another calculation shows that $A_{1} G_{2}<F_{4}$ has no trivial composition factors on the Lie algebra of E_{8}. We can therefore use the same method as the previous case to deduce that it is conjugate to \mathbf{M}_{3}.
For $\mathbf{A B}=A_{2} A_{2}<F_{4}$ we start by considering the first A_{2} factor \mathbf{A}, which we define to be the A_{2} subgroup generated by long root subgroups of F_{4}. This is the derived subgroup of a long A_{2}-Levi subgroup, and is thus a subgroup of B_{4}. Since B_{4} is conjugate to \mathbf{M}_{1}, we find that \mathbf{A} is contained in a maximal subgroup of type A_{8} and acts as $L_{A_{2}}(10) \oplus L_{A_{2}}(01) \oplus L_{A_{2}}(00)^{\oplus 3}$ on the natural 9-dimensional module of A_{8}. Therefore, \mathbf{A} is a diagonal subgroup (without field or graph twists) of the derived subgroup of an $A_{2} A_{2^{-}}$ Levi subgroup of E_{8}. We now claim that the connected centralizer of \mathbf{A} in E_{8} is $\bar{A}_{2} G_{2}$. Indeed, we use [20, Theorem 1] to see that $\mathbf{C}=\mathbf{A} \bar{A}_{2} G_{2}$ is E_{8}-irreducible (denoted by $E_{8}(\# 978)$) and the only reductive connected overgroups of \mathbf{C} are the maximal subgroups $\bar{A}_{2} E_{6}$ and $G_{2} F_{4}$. Therefore $\bar{A}_{2} G_{2} \leq C_{E_{8}}(\mathbf{A})^{\circ}$ and it must be an equality since $\mathbf{A} C_{G}(\mathbf{A})^{\circ}$ is E_{8}-irreducible since \mathbf{C} is.
Therefore, $\mathbf{A B}$ is contained in $\bar{A}_{2} E_{6}$ with \mathbf{B} contained in $\bar{A}_{2} G_{2}$. It is straightforward to list all A_{2} subgroups of $\bar{A}_{2} G_{2}$, noting that G_{2} has precisely two classes of A_{2} subgroups when the characteristic is 3. Computing the composition factors of \mathbf{B} on the Lie algebra of E_{8} shows that \mathbf{B} is conjugate to the
subgroup claimed and hence $\mathbf{A B}$ is conjugate to \mathbf{M}_{4}. The fact that \mathbf{M}_{4} is \mathbf{G}-reducible follows from [20, Theorem 1].

References

[1] John Conway, Robert Curtis, Simon Norton, Richard Parker, and Robert Wilson, Atlas of finite groups, Oxford University Press, Eynsham, 1985.
[2] Roger W. Carter, Simple groups of Lie type, John Wiley \& Sons Inc., 1989.
[3] David A. Craven, On medium-rank Lie primitive and maximal subgroups of exceptional groups of Lie type, Mem. Amer. Math. Soc., to appear.
[4] , The maximal subgroups of the exceptional groups $F_{4}(q), E_{6}(q)$ and ${ }^{2} E_{6}(q)$ and related almost simple groups, preprint, 2020.
[5] _. The maximal subgroups of the exceptional groups $E_{7}(q)$ and related almost simple groups, preprint, 2021.
[6] Christoph Jansen, Klaus Lux, Richard Parker, and Robert Wilson, An atlas of Brauer characters, Oxford University Press, New York, 1995.
[7] Mikko Korhonen, David Stewart and Adam Thomas, Representatives for unipotent classes and nilpotent orbits, preprint.
[8] Ross Lawther, Jordan block sizes of unipotent elements in exceptional algebraic groups, Comm. Algebra 23 (1995), 4125-4156.
[9] , Correction to: "Jordan block sizes of unipotent elements in exceptional algebraic groups", Comm. Algebra 26 (1998), 2709.
[10] _ Unipotent classes in maximal subgroups of exceptional algebraic groups, J. Algebra 322 (2009), 270-293.
[11] Martin Liebeck and Gary Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 580 (1996), no. 580, vi+111.
[12] , On the subgroup structure of exceptional groups of Lie type, Trans. Amer. Math. Soc. 350 (1998), 3409-3482.
[13] , The maximal subgroups of positive dimension in exceptional algebraic groups, Mem. Amer. Math. Soc. 169 (2004).
[14] Frank Lübeck, Small degree representations of finite Chevalley groups in defining characteristic, LMS J. Comput. Math. 4 (2001), 135-169.
[15] Anatoly Mal'cev, Commutative subalgebras of semi-simple Lie algebras, Bull. Acad. Soc. URSS Ser. Math. 9 (1945), 291-300.
[16] Kenzo Mizuno, The conjugate classes of unipotent elements of the Chevalley groups E_{7} and E_{8}, Tokyo J. Math. 3 (1980), 391-461.
[17] Gary Seitz, Maximal subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 90 (1991), no. 441, iv+197.
[18] David Stewart, On the minimal modules for exceptional Lie algebras: Jordan blocks and stabilizers, LMS J. Comput. Math. 19 (2016), 235-258.
[19] Helmut Strade and Rolf Farnsteiner, Modular Lie algebras and their representations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 116, Marcel Dekker Inc., New York, 1988.
[20] Adam Thomas, The irreducible subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 268 (2021), no. 1307, vi+191.

