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Abstract. This article examines lower bounds for the representation growth of finitely gener-
ated (particularly profinite and pro-p) groups. It also considers the related question of under-
standing the maximal multiplicities of character degrees in finite groups, and in particular
simple groups.

1 Introduction

The representation growth of residually finite (particularly profinite) groups is a
relatively new area of research ([15], [11]), not yet as rich as the study of subgroup
growth [16]. In this work we study lower bounds for the representation growth of
pro-p and profinite groups, and the connected topic of character degree multiplicities
for finite groups.

Let G be a finitely generated, residually finite group, and let rnðGÞ be the number of
inequivalent, complex irreducible representations of G of dimension n, whose kernels
have finite index. If G is a finitely generated profinite group, rnðGÞ is the number of
continuous complex irreducible representations of dimension n. When we say ‘finitely
generated, residually finite group’, we allow the case where G is a finitely generated
profinite group. The main aim of representation growth is to relate the arithmetic
properties of the sequence ðrnðGÞÞ with algebraic properties of the group. A group
G is FAb (short for ‘finite abelianizations’) if all finite-index subgroups of G have
finite abelianizations; it is well known [1, Proposition 2] that all of the rnðGÞ are finite
if and only if G is FAb.

We begin with two contrasting theorems on bounding from below the sequences
ðrnðGÞÞ and ðRnðGÞÞ, the latter being the partial sums of the sequence ðrnðGÞÞ.

Theorem A. There exists a function f : N ! N such that f ðxÞ ! y as x ! y with

the following property: for any infinite, finitely generated, residually finite group G with

FAb, rnðGÞ is greater than f ðnÞ infinitely often. In particular, for any such G, the se-

quence ðrnðGÞÞ contains a subsequence that tends to infinity.

Theorem B. Let f be a divergent, non-decreasing function. There exists an infinite,
finitely generated profinite group G such that RnðGÞ < f ðnÞ for infinitely many n. In



other words, there is no divergent, non-decreasing function f such that f ðnÞ < RnðGÞ
for every infinite, finitely generated profinite group G, and for all su‰ciently large n.

These theorems suggest that requiring rnðGÞ (or RnðGÞ) to be less than a function f

infinitely often should be the ‘correct’ concept of a lower bound for representation
growth.

Our next result concerns groups G for which at least one, but only finitely many, of
the numbers rnðGÞ are infinite.

Theorem C. Let G be an infinite, finitely generated, residually finite group. Let IðGÞ be

the set of all natural numbers i such that riðGÞ ¼ y. The following are equivalent:

(1) IðGÞ is finite and non-empty;

(2) riðGÞ ¼ 0 for all su‰ciently large i; and

(3) G is virtually abelian.

Using Theorems A and C, we get the following tetrachotomy for finitely generated,
residually finite groups.

Corollary D. Let G be a finitely generated, residually finite group. Let IðGÞ be the set

of all natural numbers i such that riðGÞ ¼ y. Exactly one of the following possibilities

holds:

(1) IðGÞ ¼ q and only finitely many of the riðGÞ are non-zero;

(2) IðGÞ ¼ q and the sequence ðriðGÞÞ contains a subsequence that tends to infinity;

(3) 0 < jIðGÞj < y, and only finitely many of the riðGÞ are non-zero; and

(4) IðGÞ is infinite.

In the first case, G is finite, in the second, G has FAb and is infinite, and in the third

case G is infinite and virtually abelian.

In the final case, using simply the sequence ðrnðGÞÞ, and its associated objects like
zeta functions, it seems unlikely that very much can be said. (We should note that if
G is a finitely generated nilpotent group, we can study so-called twist isoclasses: see
[14, Theorem 6.6].)

We move on to symmetric groups; the process in [3] to generate irreducible char-
acters with the same degree is constructive, and in Section 4 we derive an explicit
bound, proving the following result.

Theorem E. Let n be an integer, and let X ðnÞ denote the multiset of the degrees of the

irreducible characters of the symmetric group Sn. Let mðnÞ denote the largest of the

multiplicities of the elements of XðnÞ. For all su‰ciently large n, mðnÞd n1=7.

In Section 4 we derive a more complicated explicit bound. We conjecture that a
similar upper bound holds.
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Conjecture F. Let n be an integer, and let XðnÞ denote the multiset of the degrees of
the irreducible characters of the symmetric group Sn. Let mðnÞ denote the largest of
the multiplicities of the elements of XðnÞ. There are positive constants e1 and e2 such
that, for all su‰ciently large n,

n e1 < mðnÞ < ne2 :

When one considers the order of the symmetric group instead of the degree of the
symmetric group, then all the functions ne become functions of the same order; this
conjecture would yield the exact rate of growth of mðnÞ in terms of jSnj ¼ n!. In Sec-
tion 5, we compare this growth (or rather, that of the alternating groups An) to that
of the other finite simple groups, and prove that the alternating groups are the finite
simple groups G for which the maximum mðGÞ of the rnðGÞ grows slowest relative to
the order of the group G.

In Section 6 we turn our attention to p-groups, using known results on conjugacy
classes of p-groups to derive bounds for the growths of rnðGÞ and the partial sums
RnðGÞ. After considering rnðGÞ and RnðGÞ for powerful pro-p groups and the Not-
tingham group, we consider all pro-p groups. The strongest result that we derive
here is a consequence of a remarkable recent theorem of Jaikin-Zapirain [8] (stated
here as Theorem 6.5), which resolves a problem first posed by Pyber in [19].

Theorem G. There exists a constant c such that, if G is an infinite, finitely generated

pro-p group, then for all su‰ciently large n,

Rp nðGÞd cn
logp n

logp logp n
:

and for infinitely many n,

rpnðGÞd 2c
logp n

logp logp n
:

A weaker result than the second part of Theorem G first appeared in [7].

2 Proof of Theorem A

The main tool for the proof of Theorem A is the following result from [3], itself
depending on results from [7] and [17].

Theorem 2.1 ([3, Corollary 1.3]). There exists a function f such that, if G is a finite

group, and mðGÞ denotes the maximum of the set frnðGÞ : n A Ng, then jGjc f ðmðGÞÞ.

We will briefly mention how this theorem is proved. It relies on two special cases of
this result, for p-groups and for finite simple groups. For p-groups, this is Theorem
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G, and for simple groups Sections 4 and 5 give the result (see also [17] and [3]). Using
these two explicit computations, we can firstly give a bound for soluble groups, and
then extend this to all finite groups using the generalized Fitting subgroup.

Write l : N ! N for the function

lðnÞ ¼ min
jGjdn

mðGÞ:

By Theorem 2.1, this function is well defined and non-decreasing. Also, for every
finite group G of order n, we have riðGÞd lðnÞ for some i <

ffiffiffi
n

p
. In fact, since

jGjd rjðGÞ j2 for all j, we see that

i c

ffiffiffiffiffiffiffiffiffi
n

lðnÞ

r
:

Thus if H is a quotient of G, and H has order n, then there exists ic
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n=lðnÞ

p
such

that riðGÞd lðnÞ.
Now let G be an infinite, finitely generated, residually finite group, and suppose

that G is FAb. There is an infinite sequence H1;H2; . . . of finite quotients of G with
jHij < jHiþ1j for all i. For Hi of order ni, let ji denote the natural number, at mostffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ni=lðniÞ
p

, such that rjiðHiÞd lðniÞ. Therefore

rjiðGÞd lðniÞ;

and thus the rjiðGÞ form a subsequence of the rmðGÞ that tends to infinity, bounded
below by lðniÞ, proving Theorem A.

This theorem proves that the sequence ðrnðGÞÞ contains a subsequence that tends to
infinity, but for the RnðGÞ, we can get reasonable growth bounds that are likely to be
close to sharp. Using a theorem of Pyber from [19], it is easy to show that

RnðGÞd c
log n

ðlog log nÞ8

for infinitely many n, since he proves that for all finite groups G of order at least 4,
we have kðGÞd c logjGj=ðlog logjGjÞ8 for some c > 0, where kðGÞ is the number of
conjugacy classes of G. However, a more involved argument, due to Andrei Jaikin-
Zapirain, proves something considerably better.

Proposition 2.2. There is a constant c > 0 such that if G is an infinite, finitely generated

profinite group with FAb, then there are infinitely many integers n for which

RnðGÞd c log nðlog log nÞ1�e;

for any e > 0.
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Proof. Let G be an infinite, finitely generated profinite group. If G possesses infinitely
many maximal subgroups, then G maps onto infinitely many finite groups with trivial
Frattini subgroup, in particular onto such groups with arbitrarily large order. At the
end of the proof of [19, Theorem A], Pyber proves that if H is a finite group with
trivial Frattini subgroup, then

kðHÞd 2cðlogjHjÞ1=8

for some constant c > 0; in particular, all quotients H with trivial Frattini subgroup

satisfy RjHjðHÞd 2cðlogjHjÞ1=8

, and so therefore does G for infinitely many n ¼ jHj.
This is well above the bound needed.

Thus we may assume that G possesses only finitely many maximal subgroups,
in which case G is virtually pro-nilpotent, with pro-nilpotent subgroup H of finite
index. In this case, Theorem G proves that RnðHÞ grows at least as quickly as
c log nðlog log nÞ1�e for any e > 0, and hence so does RnðGÞ, as required. (To move
between RnðHÞ and RnðGÞ, we note that if N is a normal subgroup of a finite group
G, then kðGÞd kðNÞ=jG : Nj (see e.g. [19, Lemma 2.1 (ii)]), so if jG : Hj is fixed,
RnðGÞ grows with the same order as RnðHÞ.) r

It seems that pro-nilpotent groups (or pro-p groups) are the bounding case in this
result. In particular, if G is an infinite, finitely generated group with many simple
quotients, then 2cðlog nÞ1=8

is the slowest that RnðGÞ can grow, at least for infinitely
many n. We will return to this concept of only being able to bound infinitely many
RnðGÞ from below in Section 7.

3 Proof of Theorem C

We start with a lemma, which gives us extra information in the case where
r1ðGÞ ¼ y.

Lemma 3.1. Let G be a finitely generated group. If r1ðGÞ ¼ y then for all n, either

rnðGÞ ¼ 0 or rnðGÞ ¼ y.

Proof. Suppose that G has a representation f of degree n, with kernel K , and let c be
a 1-dimensional representation, with kernel H. If fnc ¼ f, then it must be that H

contains K, since otherwise the kernel of fnc would not be K. Thus for each rep-
resentation f of degree n, there are only finitely many 1-dimensional representations
c such that fnc ¼ f, and so rnðGÞ ¼ y, as claimed. r

We now prove Theorem C. Firstly, if G is infinite and virtually abelian, then it has
some infinite abelian subgroup H of index n. If r is a representation of G, then an
irreducible constituent f of r #H is 1-dimensional, and so by Frobenius reciprocity r

has dimension at most n, giving (iii) implies (ii); that (ii) implies (i) is clear.
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Suppose that IðGÞ is finite and non-empty; since G is not FAb, choose a subgroup
H of index n with jH=H 0j infinite. Suppose that there are infinitely many i such that
riðHÞ ¼ y, and write I ¼ IðHÞ. Let J ¼ IðGÞ be the corresponding (finite) set for G.
We will derive a contradiction, proving that I is finite.

Let r be an irreducible representation of H, of dimension m. Since ðr "GÞ #H has r
as a constituent, there is some constituent c of r "G such that r is a constituent of
c #H ; thus mc dimc. Note that r "G has dimension nm, and so dimcc nm.

Let a A I be greater than any element of J. There are infinitely many (inequivalent)
representations ri of H of dimension a, and thus there must be infinitely many repre-
sentations ci such that ri is a constituent of ci #H and dimci lies between a and am.
Since there are only finitely many constituents of a given representation, this implies
that rcðGÞ is infinite for some ac cc am, a contradiction. Thus IðHÞ is finite, and so
by Lemma 3.1 we have riðHÞ0 0 for only finitely many i; let c be the largest dimen-
sion of an irreducible representation of H. By a well-known theorem of Jordan [9],
for each finite quotient H=K of H, there is an abelian normal subgroup W=K such
that jH=W j is bounded by d ¼ f ðcÞ for some non-decreasing function f . Since H is
finitely generated, there are only finitely many subgroups of index at most d, so let
A be the intersection of all such subgroups, necessarily a normal subgroup of finite
index in H. We claim that A is residually (finite abelian), and is hence abelian. This
proves that H, and hence G, is virtually abelian, as required.

Let

H ¼ H1 dH2 dH3 d � � �

be a descending sequence of normal subgroups of finite index of H such that
7Hi ¼ 1. Let Ai ¼ AVHi, and note that the Ai is a descending sequence of normal
subgroups of finite index of A such that 7Ai ¼ 1. Since H=Ai is a finite group, there
is some abelian subgroup B=Ai of index at most d, and by construction BdA, so
A=Ai is abelian, as required.

Corollary D follows from Theorems A and C.

4 Degree multiplicity for symmetric groups

This section relies on work of the author in [3], and we will briefly recall what is
involved there. There is a standard bijection between the irreducible characters of
the symmetric group of degree n and the partitions of n, with the degree of a partic-
ular character calculable from the corresponding partition, via hook numbers. We
presume that the reader is familiar with this method, and we will pause to fix notation
only.

If l is a partition, write jlj for the number of which l is a partition, and l 0 for the
conjugate of l. Let tðlÞ be the sum of the number of rows of l and the number
of columns of it. Let HðlÞ denote the multiset of all hook numbers of l. If
HðlÞ ¼ HðmÞ, then the characters corresponding to l and m have the same degree.

To any partition, one may associate the enveloping partition EðlÞ, which is con-
structed in [3], and is illustrated here by example. One takes a square of length tðlÞ,
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appends a copy of l to the left and to the bottom of the square, and removes a re-
flected copy of l from the bottom-right portion of the square. This is the enveloping
partition of ð5; 3; 3; 2Þ:

If l is a partition, and t ¼ tðlÞ, then write EðlÞi for the partition got from EðlÞ by
incrementing the first t rows of EðlÞ by i. In [3], the following theorem is proved.

Theorem 4.1 ([3, Theorem 7.1]). Suppose that l and m are partitions, and that

HðlÞ ¼ HðmÞ. Write t for the sum of the number of rows and the number of columns

of l. (This is the same as that for m.) Then

HðEðlÞiÞ ¼ HðEðmÞiÞ:

If we start with a partition l that is not self-conjugate, then the partitions l and
l 0 0 l have the same hook numbers. From these two partitions, we may construct
four partitions with the same hook numbers, namely

EðlÞ1; Eðl 0Þ1; EðlÞ01; and Eðl 0Þ 01:

If jlj ¼ n and t ¼ tðlÞ, then all four of these partitions are partitions of n þ t2 þ t.
This procedure can be iterated, to produce, given a partition l, a set of 2 i partitions
with the same hook numbers. Here we will calculate the smallest integer N such that
it can be guaranteed using this procedure that for all ndN, there are 2 i di¤erent
partitions of n, each of which has the same hook numbers.

Firstly, given a partition l with jlj ¼ n and tðlÞ ¼ t, we need to calculate the
size of the partition got by applying the above procedure of taking m 7! EðmÞ1 a num-
ber, say i, of times. Let f denote the function on the set of all partitions given by
f ðmÞ ¼ EðmÞ1, and write n1 ¼ n and t1 ¼ t. It is clear that

jEðlÞ1j ¼ n þ t þ t2 and tðEðlÞ1Þ ¼ 3t þ 1:
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Therefore, if ni and ti denote the size and row and column sum of f ði�1ÞðlÞ (i.e., f

applied i � 1 times to l), we see that

ti ¼ 3ti�1 þ 1; ni ¼ ni�1 þ ti�1 þ t2
i�1:

The first recurrence is easily solved to get

ti ¼ 3 i�1t þ 3 i�1 � 1

2
;

and solving the second recurrence relation yields

ni ¼ n þ ð4t2 þ 4t þ 1Þð9 i�1 � 1Þ
32

� i � 1

4
:

The equations above imply that given a partition l that is not self-conjugate with
jlj ¼ n and tðlÞ ¼ t, one may construct 2 i partitions with row and column sum ti, and
by extending the first ti�1 rows by j each, they may be taken to have sizes ni þ jti�1

for all j d 0.
The idea is to find ti�1 partitions, each of which has the same row and column sum

t, and whose sizes cover the ti�1 congruence classes modulo ti�1. Therefore for some
integer N we would have found 2 i partitions of size N with the same hook numbers,
and for all subsequent integers as well.

Suppose that a partition l has tðlÞ ¼ t. Furthermore, suppose that t is odd (so that
l is definitely not self-conjugate), and write t ¼ 2r þ 1. Then the largest that jlj can
be is ðt2 � 1Þ=4 (which is a rectangle of sides r and r þ 1), and the smallest that jlj can
be is t � 1 (which is a hook). Furthermore, it is easy to see that every possible size
between these two can be given by a partition that is not self-conjugate. Thus given
a row and column sum t, there are ðt2 � 4t þ 7Þ=4 di¤erent possibilities for n, and
these possibilities form an interval.

Finally, since ti�1 ¼ 3 i�2t þ ð3 i�2 � 1Þ=2, we see that there are enough partitions if

t2 � 4t þ 7d 4 � 3 i�2t þ 2ð3 i�2 � 1Þ:

Using the quadratic formula, we get the exact solution

t ¼ 2ð1 þ 3 i�2ÞG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1 þ 3 i�2Þ2 þ 2 � 3 i�2 � 9

q
;

and we take the approximate solution

t ¼ 5 þ 4 � 3 i�2;

which guarantees that there are enough partitions. Notice that the smallest value of n

is t � 1, and therefore substituting these values into the equation for ni gives

ni ¼ 4 þ 4 � 3 i�2 þ ð4ð5 þ 4 � 3 i�2Þ2 þ 4ð5 þ 4 � 3 i�2Þ þ 1Þð9 i�1 � 1Þ
32

� i � 1

4
:
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Thus we have proved that the symmetric group Sn has 2 i irreducible characters of
the same degree if

nd
15 � 16 � 3 i�1 þ 1025 � 9 i�2 þ 1584 � 27 i�2 þ 576 � 81 i�2 � 8i

32
;

as required.
This is far from optimal. In [3], it was shown that for all nd 22 there are four par-

titions with the same hook numbers, whereas this strategy proves it only for nd 98.
For eight partitions, this method requires nd 3078, and while the real bound is not
known precisely, it is known to be true for nd 200. In general, however, there ap-
pears to be no easy improvement on the method above.

5 The other finite simple groups

Apart from the alternating groups, the finite simple groups are the sixteen classes of
groups of Lie type, together with the twenty-six sporadic simple groups. In terms of
asymptotic group theory, the sporadic groups are unimportant, but we briefly men-
tion the maximal degree multiplicities of the sporadic groups in a table, derived from
the information in [2].

G mðGÞ G mðGÞ G mðGÞ

M11 3 Co3 3 B 2
M12 3 McL 2 M 3
M22 2 Suz 3 J1 3
M23 3 He 3 ON 3
M24 3 HN 3 J3 3
HS 3 Th 2 Ru 3
J2 2 Fi22 4 J4 3

Co1 2 Fi23 3 Ly 5
Co2 3 Fi 024 2 T 2

(We include the Tits group T ¼ 2F4ð2Þ0 here, since it is ‘semi-sporadic’, and not
really one of the Ree groups 2F4ð22nþ1Þ.) What is interesting here is that, with the
exception of the Lyons and smallest Fischer groups, all of the sporadic groups have
maximal multiplicity either 2 or 3. In particular, if G is a finite simple group and
mðGÞ ¼ 2, then jGj is at most that of the Baby Monster, and if mðGÞ ¼ 3, then jGj
is at most that of the Monster.

For the alternating groups, it is easy to see that

2

5
mðSnÞcmðAnÞc

5

2
mðSnÞ;

using Cli¤ord theory.
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Lemma 5.1. Let G be a finite p-group, and let N be a normal subgroup of index pn. We

have

p

p2 þ 1

� �n

mðGÞcmðNÞc p2 þ 1

p

� �n

mðGÞ:

Proof. Firstly assume that n ¼ 1. Suppose that there are m characters of G of the
same degree. There are pi of them that restrict to i irreducible characters c of N (as
p of them restrict to each such c), and m � pi of them that do not restrict to an irre-
ducible character, and instead restrict to pðm � piÞ characters of N (with the same
degree).

The case where there are the fewest characters of the same degree in N is when
i ¼ pðm � piÞ, and so i ¼ mp=ðp2 þ 1Þ. Hence mðNÞdmðGÞ � p=ðp2 þ 1Þ. However,
by Frobenius reciprocity the situation is exactly the same for induction from N to G,
and so mðGÞdmðNÞ � p=ðp2 þ 1Þ. A simple induction completes the proof. r

Of course, this leaves only the groups of Lie type, so fix a Lie-type group G ¼ GðqÞ.
It is known [12, Theorem 1.7] that the orders, character degrees, and character degree
multiplicities, of G are polynomials in q (dependent on the type, but just the Lie rank
of the group determines a lot). For the exceptional groups, these polynomials are
known, and have been collated by Lübeck; they are currently available on his website
[13]. However, these data are only for the adjoint and simply connected versions of
the groups, and so the simple group is not given for eE6ðqÞ and E7ðqÞ (for certain
values of q). Using some elementary Cli¤ord theory and the tables of character de-
grees, it is possible to still get the maximal multiplicities for the simple groups.

For the general group of Lie type, the polynomials are in the order q of the finite
field over which the group lies. For the Suzuki and Ree groups 2B2ðqÞ, 2G2ðqÞ, and
2F4ðqÞ we use the notation q2 ¼ p2nþ1, where p is either 2 or 3. In [12], Liebeck and
Shalev prove that if the Lie rank of GðqÞ is l, then mðGðqÞÞ is a polynomial with
degree l; in the tables below, we reproduce the exact polynomial for mðGðqÞÞ (and
the character degree at which it is attained) for each of the exceptional groups, and
describe afterwards the small values of q for which the table is incorrect.

For the simple group GðqÞ, with q odd, the multiplicities are given in Table 5.1,
and for q even, the multiplicities are given in Table 5.2.

We should describe briefly how to determine the values in the table for eE6ðqÞ
and E7ðqÞ when there is a non-trivial centre. For E6ðqÞ for example, there are
m ¼ ðq4 � 1Þðq2 � 1Þ=8 characters f of the degree given in the table for the adjoint
group E6ðqÞ:3, and since there are no characters of degree ðdeg fÞ=3 for the simply
connected group 3 � E6ðqÞ, there are m=3 characters of degree deg f for the simple
group E6ðqÞ. Also, if c is a character of 3 � E6ðqÞ then there are no characters of
degree degc=3 for 3 � E6ðqÞ, and so it su‰ces to consider those character degrees
for E6ðqÞ:3 whose multiplicities exceed m=3; in all cases it is easy to see that one
gets fewer than m characters with the same degree for the simple group. The tech-
nique is similar for 2E6ðqÞ and E7ðqÞ.
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Note that the maximal multiplicity of character degrees for E7ðqÞ is realized by two
di¤erent sets of characters, as suggested in the table: the first one has the smaller de-
gree, and is also more naturally expressed as a product of polynomials of the form
ðqi � 1Þ.

There are obviously some small exceptions, and these are summarized in Table 5.3.
The only unresolved case is E7ð3Þ, for which the multiplicity lies between 78 and 80.
Naı̈ve Cli¤ord theory and the information for the adjoint and simply connected
versions of E7ð3Þ appears to be not enough to determine the multiplicities.

For the classical groups, there is no known general formula for the maximal mul-
tiplicity of the character degrees, and so we use the lower bounds given in [17], as
displayed in Table 5.4. (The choice of d in the table below is influenced by the re-
quirement that the numerator in each multiplicity should be the same.)

Group Degree Multiplicity

G2ðqÞ Y6 ðq � 1Þ2=2
2G2ðqÞ q6 þ 1 ðq2 � 3Þ=2
3D4ðqÞ Y6ðq4 � q2 þ 1Þðq2 � q þ 1Þ ðq4 � 2q þ 1Þ=4
F4ðqÞ Y12Y8Y2ðq2 � q þ 1Þ q2ðq2 � 1Þ=6
E6ðqÞ Y12Y9Y6Y5Y4 ðq4 � 1Þðq2 � 1Þ=8 gcdðq � 1; 3Þ

2E6ðqÞ Y18Y12Y10Y6Y4=Y9Y5 ðq4 � 1Þðq2 � 1Þ=8 gcdðq þ 1; 3Þ

E7ðqÞ
Y18Y12Y10Y8Y7Y6Y2 qðq6 � 1Þ=28

Y18Y14Y12Y10Y8Y6Y2=Y7

E8ðqÞ Y30Y24Y20Y18Y14Y12Y2 ðq4 � 1Þð5q4 � 2q3 � 7Þ=64

Table 5.1. Multiplicities of character degrees for exceptional groups of Lie type for odd q.
(Here, Yi ¼ qi � 1.)

Group Degree Multiplicity

2B2ðqÞ q4 þ 1 ðq2 � 2Þ=2
G2ðqÞ Y6 qðq � 2Þ=2

3D4ðqÞ Y6ðq4 � q2 þ 1Þðq2 � q þ 1Þ qðq3 � 2Þ=4
F4ðqÞ Y12Y8Y2ðq2 � q þ 1Þ q2ðq2 � 1Þ=6

2F4ðqÞ Y24ðq4 þ 1Þ=ðq4 þ q2 þ 1Þ q2ðq2 � 2Þ=4
E6ðqÞ Y12Y9Y6Y5Y4 q4ðq2 � 1Þ=8 gcdðq � 1; 3Þ

2E6ðqÞ Y18Y12Y10Y6Y4=Y9Y5 q4ðq2 � 1Þ=8 gcdðq þ 1; 3Þ

E7ðqÞ
Y18Y12Y10Y8Y7Y6Y2 qðq6 � 1Þ=14

Y18Y14Y12Y10Y8Y6Y2=Y7

E8ðqÞ Y30Y24Y20Y18Y14Y12Y2 q4ð5q4 � 2q3 � 8Þ=64

Table 5.2. Multiplicities of character degrees for exceptional groups of Lie type for even q.
(Here, Yi ¼ qi � 1.)
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We aim to prove that each of these grows faster (in terms of jGj) than the symmet-
ric groups can possibly do, proving that the symmetric groups are definitely the sim-
ple groups with the slowest-growing function mðGÞ in terms of jGj. We will prove
that, for su‰ciently large jGj, for symmetric groups,

logðlog mðGÞ þ log logjGjÞ < ðlog logjGjÞ=2;

whereas for groups of Lie type the opposite inequality holds. This shows that the
growth of mðGÞ with respect to jGj is slower for the symmetric groups than for the
groups of Lie type, proving our claim.

The number of partitions of m is asymptotically

pðmÞ@ ea
ffiffiffi
m

p

bm
;

Group Degree Multiplicity Group Degree Multiplicity

E6ð2Þ 42826799925 8 G2ð2Þ 0 7 3
E6ð3Þ 127752132719411200 84 G2ð3Þ 91 3

2E6ð2Þ 27498621150 5 G2ð4Þ 819 7
E7ð2Þ 5070690584338804425 9 2B2ð8Þ 35 3
F4ð2Þ 541450 4 3D4ð2Þ 351 3

Table 5.3. Exceptions in mðGÞ for exceptional groups of Lie type for small q.

Group OðjGjÞ Multiplicity

PSLdðqÞ q d 2�1

gcdðq�1; dÞ
fðq d�1Þ
d 2ðq�1Þ

PSU2dðqÞ q4d 2�1

gcdðqþ1; 2dÞ
fðq d�1Þ

4d 2

PSU2dþ1ðqÞ q4dðdþ1Þ

gcdðqþ1; 2dþ1Þ
fðq d�1Þ
ð2dþ1Þ2

PSp2dðqÞ
q2d 2þd

gcdð2; q�1Þ
fðq d�1Þ

4d

PW2dþ1ðqÞ q2d 2þd

gcdð2; q�1Þ
fðq d�1Þ

4dþ2

PWþ
2dðqÞ

q2d 2�d

gcdð4; q d�1Þ
fðq d�1Þ

4d

PW�
2dþ2ðqÞ

q2d 2þdþ1

gcdð4; q dþ1þ1Þ
fðq d�1Þ

4dþ4

Table 5.4. Lower bounds for mðGÞ for classical groups.
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where a ¼ p
ffiffiffiffiffiffiffiffi
2=3

p
and b ¼ 4

ffiffiffi
3

p
, by the famous Hardy–Ramanujan asymptotic for-

mula [5, (1.41)]. This is the number of irreducible characters of Sm, and so certainly
mðSmÞ is bounded by this number. Written as a function of jSmj ¼ m! ¼ n, this be-
comes (of the order of )

ea
ffiffiffiffiffiffi
f ðnÞ

p

b � f ðnÞ ;

where f ðnÞ ¼ log n=log log n. By removing b from the denominator, we get a function
that is definitely larger than mðSmÞ for su‰ciently large m. Taking logarithms yields

log mðSmÞc a
ffiffiffiffiffiffiffiffiffi
f ðnÞ

p
� log f ðnÞ

¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=log log n

p
� logðlog n=log log nÞ

c a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=log log n

p
� log log n:

Thus

logðlog mðSmÞ þ log log nÞc logða
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=log log n

p
Þ

¼ log a þ 1

2
ðlog log n � log log log nÞ

<
1

2
log log n

for su‰ciently large n. This proves the first assertion.
Moving on to the groups of Lie type, let G be a group of Lie type of the form in the

table above, and let m be the dimension of the natural module for G (so that m ¼ d

for SLdðqÞ, m ¼ 2d þ 1 for PW2dþ1ðqÞ, and so on). If G is untwisted, write n ¼ qm2
,

and if G is special unitary, write n ¼ ðq2Þm2

. In all cases, n > jGj since n is equal to
the total number of m � m matrices over Fq (or Fq2 in the twisted case).

Let us firstly consider the groups G ¼ PSLdðqÞ, with n ¼ qd 2

. By [6, Theorem
327], fðaÞd ad for any d < 1 and all su‰ciently large a. Therefore, for all su‰ciently
large n,

mðGÞd fðqd � 1Þ
d 2ðq � 1Þ d

ðqd � 1Þd

qd 2 log q
A

qdd�1

log n
:

(The middle inequality holds for all q (even q ¼ 2) since q log q=ðq � 1Þ > 1 for all
qd 2.) Taking logarithms gives

log mðGÞd log
qdd�1

log n

� �
¼ ðdd� 1Þ log q � log log n;
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and thus

logðlog mðGÞ þ log log nÞd logððdd� 1Þ log qÞ

> log d þ log d� 1 þ log log q

>
1

2
log log n þ log d� 1;

since log log n ¼ 2 log d þ log log q. The same argument works for the other classical
groups, completing the proof of our claim.

6 Representation growth of p-groups

For powerful p-groups (i.e., groups G for which G 0 cG p if p is odd and G 0 cG4 if
p ¼ 2) one can get very good bounds on the number of conjugacy classes.

Lemma 6.1 ([20, Lemma 4.7 (ii)]). If G is a powerful finite p-group, then

kðGÞd ð1 � p�1ÞjGj1=d ;

where d ¼ dðGÞ is the number of generators of G.

Using this, it is very easy to give a lower bound for powerful pro-p groups, and in
fact a slightly larger class of pro-p groups.

Proposition 6.2. Let G be a d-generator pro-p with FAb, and suppose that G has pow-

erful finite images of arbitrarily large order (in particular, this holds if G is an infinite,
powerful pro-p group). For all powers n of the prime p,

RnðGÞd cn2=d ;

where c ¼ ð1 � p�1Þ.

Proof. Let N be a normal subgroup such that G=N is powerful of order pm where m

is even. (Since quotients of powerful groups are powerful, we can do this for all even
m.) We have kðG=NÞd cjG=Nj1=d ; each of the irreducible representations of G=N is
of dimension less than pm=2, and so

Rp m=2ðGÞd apm=d ;

writing n ¼ pm=2 we get RnðGÞd cn2=d . r

If one wants a result on the numbers rnðGÞ rather than RnðGÞ, then this is easy
now.

886 D. A. Craven



Corollary 6.3. Let G be a d-generator pro-p with FAb, and suppose that G has powerful

finite images of arbitrarily large order (in particular, this holds if G is an infinite, pow-

erful pro-p group). For infinitely many powers n of the prime p,

rnðGÞd 2cn2=d

logp n
;

where c ¼ 1 � p�1.

This follows simply because there are at most ðlogp nÞ=2 degrees of irreducible rep-
resentations of G at most n.

A similar result can be obtained for some groups that are not powerful, like the
Nottingham group.

Proposition 6.4. Let p be an odd prime and let G be the Nottingham group over Fq,
where q is a power of p. For all powers n of p we have

RnðGÞd cn2=3p;

where c ¼ cðqÞ depends only on q.

Proof. By [7, Theorem 1.2] we have kðG=NÞd cjG=Nj1=3p for any normal subgroup
N of G, where c depends only on q. The method of proof of Proposition 6.2 now
gives the result. r

For all finitely generated pro-p groups, until recently only a logarithmic bound for
RnðGÞ was available. However, in [8], Jaikin-Zapirain proved the following theorem.

Theorem 6.5 (Jaikin-Zapirain [8]). There is a constant c > 0 such that, for all finite p-

groups G, we have

kðGÞ > c logpjGj
logp logpjGj

logp logp logpjGj :

Using this result, it is very easy to prove Theorem G, via the same methods used
for Proposition 6.2.

Jaikin-Zapirain has suggested the following slight improvement to Theorem G, if
one relaxes the condition that all su‰ciently large n satisfy the bound to just infinitely
many n: in this case, one can get

Rp nðGÞd cn logp n

for infinitely many n and some constant c (independent of the group G). To see this,
suppose that G is an infinite, finitely generated pro-p group. If G is p-adic analytic,
then G contains a powerful subgroup of finite index, and hence the result follows
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by Proposition 6.2 (for any c > 0). If G is not virtually powerful, then all dimension
subgroups are distinct (see [4, Theorem 11.5]); write an ¼ jG : D2 nðGÞj. For infinitely
many n we have an=an�1 d an�1=2; let H ¼ G=D2 n for some such n. Note that we
have

jD2 n�1ðHÞjd jHj1=3:

Using the proof of [8, Claim 3.5] (which states that if G is a finite p-group with
maximal powerful normal subgroup P, then kðG=FðPÞÞd pm logp m=24, where
m ¼ dðPÞ), one sees that if P is a powerful normal subgroup containing D2 n�1ðHÞ
(which is elementary abelian as D2 nðHÞ ¼ 1) then dðPÞd b=3, where jHj ¼ pb, and
so the claim is proved.

7 Constructing groups of slow representation growth

Theorem A states that the sequence ðrnðGÞÞ has a subsequence that tends to infinity,
and Proposition 2.2 states that the sequence ðRnðGÞÞ strays above log nðlog log nÞ1�e

infinitely often. In some sense therefore there is a ‘global’ lower bound to the repre-
sentation growth of a profinite group. However, Theorem B asserts that there is no
function f that tends to infinity such that RnðGÞ > f ðnÞ for all su‰ciently large n and
all infinite, finitely generated profinite groups G.

In [18], Neumann constructed finitely generated profinite groups whose finite
images are iterated wreath products of finite simple groups. Kassabov and Nikolov,
in [10], constructed profinite groups with finite images consisting of precisely direct
products of specified finite simple groups.

More specifically, let S be any infinite collection of finite simple groups, where
each group may appear with a finite multiplicity. In [10] it was proved that, under
suitable conditions for the multiplicities, there is a finitely generated profinite group
whose finite images are exactly the finite direct products of elements of S. (One such
suitable condition that we will use later is that all elements of S have multiplicity 1.)

The Kassabov–Nikolov examples have representation growths that are reasonably
easy to compute. Using alternating groups of varying degrees, Kassabov and Niko-
lov constructed profinite groups G for which RnðGÞ is bounded between nb and nbþe

for any b > 0 and e > 0 (and n su‰ciently large), so that the abcissca of convergence
of the zeta function is exactly b. (It could be that the representation growth of G is,
for example, nb log n.)

For functions f that are supermultiplicative (i.e., f ðxÞ f ðyÞd f ðxyÞ), grow faster
than any polynomial, and are below n!, it was also proved [10, Theorem 1.8 (a)] that
there is a finitely generated profinite group G such that RnðGÞ=f ðnÞ ! 1 as n ! y.

One can achieve even faster growth by constructing groups ĜG, such that the finite
quotients are extensions of elementary abelian subgroups by simple groups, using the
same technique. Thus there can be no upper bound on the rate at which the sequence
ðRnðGÞÞ may grow.

Let S ¼ fAn1
;An2

; . . .g be a collection of alternating groups, with ni < niþ1.
Suppose that sequence ðniÞ grows very quickly; more precisely, suppose that
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ni >
Q

j<iðnj!Þ. This condition implies that the representations of degree at most
ni � 2 are all representations of the product of the first i � 1 elements of S. There-
fore, for id 2,

Rni�2ðGÞ ¼
Y
j<i

kðAnj
ÞA

Y
j<i

pðnjÞ=2;

where again pðmÞ denotes the number of partitions of m. (The number of conjugacy
classes of Am is approximately pðmÞ=2.) The reason for the ni � 2 is that Ani

has no
representations of degree less than ni � 1, and exactly one of degree ni � 1, at least if
ni d 7.

Given any non-decreasing function f : N ! N that tends to infinity, we may
construct an infinite, finitely generated profinite group G such that RnðGÞ < f ðnÞ
for infinitely many n. To see this, simply define G to be as follows: let n1 ¼ 7,
and choose n2 such that kðAn1

Þ > f ðn2Þ (and also n2 > n1!). This ensures that
Rn2�2ðGÞ ¼ kðAn1

Þ. We repeat the process, choosing n3 such that n3 > ðn1!Þðn2!Þ and
f ðn3Þ > kðAn1

ÞkðAn2
Þ, and so on.

This process produces a finitely generated group G such that Rni�2ðGÞ < f ðni � 2Þ
for all i. Thus it is not possible to produce a global lower bound, proving Theorem
B. If we are to make claims about ‘lower bounds’ for representation growth, the
most we can say is that the function RnðGÞ is greater than a given function f ðnÞ infi-

nitely many times. In the example we constructed above, for any non-decreasing,
divergent f , we can choose the ni so that RnðGÞ < f ðnÞ for arbitrarily large intervals
in N. Therefore we cannot, given a divergent non-decreasing function f : N ! N,
even give lower bounds on ‘the proportion of N’ (e.g., using density) for which
any finitely generated profinite group G satisfies RnðGÞ > f ðnÞ, for example for

f ðnÞ ¼ c log nðlog log nÞ1�e as in Proposition 2.2.
Since Rni�2ðGÞ is the product of partition functions (roughly) for the groups above,

we actually have that these groups G satisfy RnðGÞ=f ðnÞ > 1 for infinitely many n,

where f ðnÞ is of the form ea
ffiffiffiffiffiffiffi
log n

p
for some a > 0, and so are a long way from the

bound in Proposition 2.2.
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Angew. Math. 84 (1878), 89–215.
[10] M. Kassabov and N. Nikolov. Cartesian products as profinite completions. Int. Math.

Res. Not. (2006), Art. ID 72947.
[11] M. Larsen and A. Lubotzky. Representation growth of linear groups. J. Eur. Math. Soc.

(JEMS) 10 (2008), 351–390.
[12] M. Liebeck and A. Shalev. Character degrees and random walks in finite groups of Lie

type. Proc. London Math. Soc. (3) 90 (2005), 61–86.
[13] F. Lübeck. Character degrees and their multiplicities for some groups of Lie type of

rank < 9. www.math.rwth-aachen.de/~Frank.Luebeck/chev/DegMult/index.html.
[14] A. Lubotzky and A. Magid. Varieties of representations of finitely generated groups. Mem.

Amer. Math. Soc. 336 (American Mathematical Society, 1985).
[15] A. Lubotzky and B. Martin. Polynomial representation growth and the congruence sub-

group problem. Israel J. Math. 144 (2004), 293–316.
[16] A. Lubotzky and D. Segal. Subgroup growth (Birkhäuser, 2003).
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