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Abstract. Let p be an odd prime, and let S be a p-group with a unique elementary abelian
subgroup A of index p. We classify the simple fusion systems over all such groups S in which
A is essential. The resulting list, which depends on the classification of finite simple groups,
includes a large variety of new, exotic simple fusion systems.

A saturated fusion system F over a finite p-group S is a category whose objects are the
subgroups of S, whose morphisms are monomorphisms between subgroups, and whose mor-
phism sets satisfy certain axioms, formulated originally by Puig and motivated by properties
of conjugacy relations between p-subgroups of a finite group. For example, to each finite
group G and each Sylow p-subgroup S of G, one associates the saturated fusion system
FS(G) over S whose morphisms are those homomorphisms induced by conjugation in G.
We refer to [AKO] or [Cr1] for a detailed introduction to the theory of saturated fusion
systems, and to the beginning of Section 1 for a little more detail about these definitions.

A saturated fusion system F is simple if it contains no non-trivial proper normal subsys-
tems (see [AKO, Definition I.6.1] or [Cr1, Sections 5.4 and 8.1] for the precise definition of
a normal subsystem). In this paper, we continue the study, started in [Ol], of simple fusion
systems F over non-abelian p-groups S which have an abelian subgroup of index p. For
p = 2, this was handled in [AOV2, Proposition 5.2(a)]: S must be dihedral, semidihedral or
wreathed, and F must be the 2-fusion system of PSL2(q) for q ≡ ±1 (mod 8) or of PSL3(q)
for q odd. So assume p is an odd prime. If S has more than one such subgroup, then |S| = p3

by [Ol, Theorem 2.1], and this case was dealt with earlier in [RV]. Thus we assume that S
has a unique abelian subgroup of index p, which we denote A. If A is not F -essential (see
Definition 1.1), then we are in the situation of [Ol], and [Ol, Theorem 2.8] gives a complete
characterization of simple fusion systems on S. In contrast to the situation when p = 2,
most of the fusion systems found in [Ol] are exotic; i.e., they are not fusion systems of finite
groups.

In this paper, we handle the case when A is an F -essential subgroup and has exponent p,
and again find a very large variety of exotic fusion systems. Our main tool is Theorem 2.8,
which gives precise details concerning the way in which the structure of F is controlled by
the action of AutF(A) on A. Indeed, Theorem 2.8 and its Corollary 2.10 reduce the problem
of classifying fusion systems on S to that of determining all pairs (G,A), where G is a finite
group (the candidate for AutF(A)) and A is an FpG-module that satisfy a certain list of
conditions.

Date: June 16, 2016.
2000 Mathematics Subject Classification. Primary 20D20. Secondary 20C20, 20D05, 20E45.
Key words and phrases. finite groups, fusion, finite simple groups, modular representations, Sylow

subgroups.
D. Craven is financially supported by a Royal Society University Research Fellowship.
B. Oliver is partially supported by UMR 7539 of the CNRS.
J. Semeraro was an EPSRC-funded DPhil student while some of this research was carried out.

1



2 DAVID A. CRAVEN, BOB OLIVER, AND JASON SEMERARO

The bulk of our analysis is thus centred on classifying modules satisfying the required
conditions. After some preliminary results in Section 3, the main results are summarized in
Theorem 4.1 and Table 4.1. Certain cases are then covered in more detail in Propositions
4.2, 4.3, and 4.4. By combining these results with Theorem 2.8, one can get a complete
list of all simple fusion systems of the type described. (A few explicit examples are worked
out at the end of Section 4.) Most of the results involving lists of modules depend on the
classification of finite simple groups (CFSG), which is thus assumed throughout Sections 4
and 5 and also in Lemma 1.7.

Our strategy for listing modules is based on Aschbacher’s classification [A1] of subgroups
G < GLn(p). This splits into two cases, according to whether or not the image of G
in PGLn(p) is almost simple. If it is not almost simple, Aschbacher gives a short list of
possibilities, which we make more explicit (in our situation) in Section 5 (Propositions 5.3
and 5.4). When G/Z(G) is almost simple, we use CFSG to check each of the possibilities
for G in Sections 6–11.

We are still left with the case where S has a unique abelian subgroup of index p which
is F -essential and of exponent greater than p. The second author plans to handle this in a
later paper with Albert Ruiz.

Our notation is mostly standard. For example, p1+2k
± denotes an extraspecial group of order

p2k+1, where (for odd p) p1+2k
+ has exponent p and p1+2k

− exponent p2. Also, xg = xgx−1,
gx = x−1gx, G′ is the derived (commutator) subgroup of G, and A ◦ B denotes a central
product of groups A and B.

As usual, F (G) denotes the Fitting subgroup of the finite group G: the largest normal
nilpotent subgroup of G (i.e., the product of the subgroups Op(G) for all p). Also, E(G)
denotes the layer: the central product of the components of G (the subnormal quasisimple
subgroups). Thus F ∗(G) = F (G)E(G) is the generalized Fitting subgroup.

The following definition will be useful in Sections 6–11.

Definition 0.1. Let H be a finite simple group. A finite group G is of type H if Z(G) is
cyclic and F ∗(G)/Z(G) ∼= H.

1. Background

We begin by recalling some definitions. When G is a finite group and S ∈ Sylp(G), the
p-fusion system of G is the category FS(G) whose objects are the subgroups of S, and where
for P,Q ≤ S,

HomFS(G)(P,Q) = HomG(P,Q)

def
=
{
ϕ ∈ Hom(P,Q)

∣∣ ϕ = cg for some g ∈ G such that gP ≤ Q
}
.

More generally, a saturated fusion system over a p-group S is a category F whose objects
are the subgroups of S, where HomF(P,Q) is a set of injective homomorphisms from P to
Q for each P,Q ≤ S, and which satisfies certain axioms, due originally to Puig, and listed
(in the form we use them) in [AKO, Definition I.2.2] and [Cr1, § 4.1].

The following terminology is used to describe certain subgroups in a fusion system.

Definition 1.1. Fix a prime p, a finite p-group S, and a saturated fusion system F over S.
Let P ≤ S be any subgroup.

• PF denotes the set of subgroups of S which are F -conjugate (isomorphic in F) to P .
Also, gF denotes the F -conjugacy class of an element g ∈ S (the set of images of g
under morphisms in F).
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• P is fully normalized in F (fully centralized in F) if |NS(P )| ≥ |NS(Q)| (|CS(P )| ≥
|CS(Q)|) for each Q ∈ PF .

• P is F-centric if CS(Q) = Z(Q) for each Q ∈ PF .

• P is F-essential if P < S, P is F -centric and fully normalized in F , and OutF(P )
def
=

AutF(P )/Inn(P ) contains a strongly p-embedded subgroup. Here, a proper subgroup
H < G of a finite group G is strongly p-embedded if p

∣∣ |H|, and p - |H ∩ gHg−1| for
each g ∈ GrH.
Let EF denote the set of all F -essential subgroups of S.

• P is normal in F if each morphism ϕ ∈ HomF(Q,R) in F extends to a morphism
ϕ ∈ HomF(PQ,PR) such that ϕ(P ) = P . The maximal normal p-subgroup of a
saturated fusion system F is denoted Op(F).

• P is strongly closed in F if for each g ∈ P , gF ⊆ P .

• foc(F) =
〈
gh−1

∣∣ g ∈ S, h ∈ gF〉.
The above definition of F -essential subgroups is motivated by the following version for

fusion systems, due to Puig, of the Alperin–Goldschmidt fusion theorem.

Theorem 1.2 ([AKO, Theorem I.3.5], [Cr1, Theorem 4.51]). For each saturated fusion
system F over a finite p-group S, each morphism in F is a composite of restrictions of
F-automorphisms of S and of F-essential subgroups of S.

Let Op(F) and Op′(F) denote the smallest normal fusion subsystems of p-power index,
and of index prime to p, respectively. Such normal subsystems are defined by analogy with
finite groups, and we refer to [AKO, § I.7] or [Cr1, § 7.5] for their precise definitions and
properties.

Definition 1.3. For any saturated fusion system F ,

• F is reduced if Op(F) = 1, Op(F) = F , and Op′(F) = F ;

• F is simple if it contains no non-trivial proper normal fusion subsystems, in the sense
of [AKO, Definition I.6.1] or [Cr1, §§ 5.4 & 8.1]; and

• F is realizable if F = FS(G) for some finite group G with Sylow p-subgroup S.

For any saturated fusion system F over S, Op(F), Op′(F), and FOp(F)(Op(F)) are all
normal subsystems of F . Hence F is reduced if it is simple. If E E F is a normal subsystem
over the subgroup T E S, then by definition of normality, T is strongly closed in F . Thus a
reduced fusion system is simple if it has no proper non-trivial strongly closed subgroups.

The next proposition gives some very general conditions for a fusion system to be reduced.

Proposition 1.4. The following hold for a saturated fusion system F over a finite p-group
S.

(a) For each Q E S, Q E F if and only if for each P ∈ EF ∪ {S}, Q ≤ P and Q is
AutF(P )-invariant.

(b) We have foc(F) =
〈
[P,AutF(P )]

∣∣P ∈ EF ∪ {S}
〉
.

(c) In all cases, Op(F) = F if and only if foc(F) = S.
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(d) If each P ∈ EF is minimal in the set of all F-centric subgroups, then Op′(F) = F if

and only if AutF(S) =
〈
Inn(S),Aut

(P )
F (S)

∣∣P ∈ EF
〉
, where for P ≤ S,

Aut
(P )
F (S) =

{
α ∈ AutF(S)

∣∣α(P ) = P, α|P ∈ Op′(AutF(P ))
}
.

Proof. Point (a) is shown in [AKO, Proposition I.4.5], and point (c) in [AKO, Corollary
I.7.5]. Point (b) follows from the definition and Alperin’s fusion theorem (Theorem 1.2).
Point (d) is shown in [Ol, Lemma 1.4]. �

In order to be able to identify which of the fusion systems we construct are realizable, it
will be helpful to know that when realizable, they can be realized by finite simple groups.

Lemma 1.5 ([DRV], [Ol, Lemma 1.5]). Let F be a reduced fusion system over a p-group
S. Assume, for each strongly F-closed subgroup 1 6= P E S, that is P centric in S, is not
elementary abelian, and does not factor as a product of two or more subgroups which are
permuted transitively by AutF(P ). Under these conditions, if F is realizable, then it is the
fusion system of a finite simple group.

The next lemma gives a very simple, necessary condition for a p-group S to have an abelian
subgroup of index p.

Lemma 1.6. Let p be any prime, and let S be a non-abelian p-group which contains an
abelian subgroup of index p. Then |Z(S)|·|[S, S]| = 1

p
|S|.

Proof. Let A E S be an abelian subgroup of index p, fix x ∈ S r A, and let ϕ ∈ End(A)
be the homomorphism ϕ(a) = [a, x]. Then Z(S) = CA(x) = Ker(ϕ), and [S, S] = [x,A] =
Im(ϕ). �

Lemma 1.5 motivates the next lemma: a list of all finite simple groups whose fusion
systems are of the type we are studying.

Lemma 1.7. Assume the classification of finite simple groups. Let p be an odd prime, and
let F be a reduced fusion system over a finite p-group S which contains a unique abelian
subgroup A of index p. If F is realizable, then it is isomorphic to the fusion system of one
of the following simple groups:

(a) Apn, where p ≤ n < 2p;

(b) Sp4(p);

(c) PSLn(q), where p|(q − 1) and p ≤ n < 2p;

(d) PΩ+
2n(q), where p|(q − 1) and p ≤ n < 2p;

(e) 3D4(q) or 2F4(q), where p = 3 and q is prime to 3;

(f) En(q), where p|(q − 1), p = 5 if n = 6, 7, and p = 7 if n = 7, 8;

(g) E8(q), where p = 5 and q ≡ ±2 (mod 5); or

(h) Co1, where p = 5.

Proof. Since A is the unique abelian subgroup of index p, |S| ≥ p4. By Lemma 1.5, F is the
fusion system of a finite simple group G.

Case 1: If G is an alternating group, then G ∼= An for some p2 ≤ n < 2p2. Since
F = FS(G) is reduced, we can choose n to be a multiple of p.
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Case 2: Assume that G is of Lie type in characteristic p, and fix S ∈ Sylp(G). We prove
that the only possibility is G = PSp4(p), by showing that in all other cases, either S is
abelian, or it has more than one abelian subgroup of index p, or it has none at all.

Assume first that G is one of the following groups:

PSL4(p) ∼= Ω+
6 (p), PSU4(p) ∼= Ω−6 (p), PSp6(p), G2(p), 2G2(3k). (1)

We will show that S has no abelian group of index p in any of these cases. If H < PSL4(p)
is the stabilizer of a projective plane and a point in the plane, then Op(H) ∼= p1+4

+ . If
G = PSU4(p) or PSp6(p), and H < G is the stabilizer of an isotropic point or a point,
respectively, then Op(H) ∼= p1+4

+ . Thus if G is one of the groups PSL4(p), PSU4(p), or
PSp6(p), then S contains an extraspecial subgroup of order p5, and hence contains no abelian
subgroup of index p.

For p ≥ 5, G2(p) also contains an extraspecial p-group of order p5 (see [Wi2, p.127]). If
G ∼= G2(3), then its parabolic subgroups have the form (C2

3×31+2
+ )oGL2(3). If S is contained

in this group, then each abelian subgroup of S must intersect the subgroup (C2
3 × 31+2

+ ) with
index at least 3, so that SL2(3) must act trivially in particular on the C2

3 factor, while it
actually acts as on the natural module (see [Wi2, p.125]). So we eliminate these cases.

Now assume that G ∼= 2G2(3k) for k ≥ 3. By the main theorem in [Wa], |S| = (pk)3 =
|Z(S)|·|[S, S]|. So by Lemma 1.6, S does not contain an abelian subgroup of index p.

Thus S has no abelian subgroup of index p if G is one of the groups in (1), or any group
which contains one of them. In this way, we can eliminate all larger classical groups, as well
as 3D4(p) > G2(p), En(p) > F4(p) > Spin9(p) (n = 6, 7, 8), and 2E6(p) > F4(p) (see, e.g.,
[Wi2, Chapter 4] for descriptions of these inclusions), and also the groups of the same type
over larger fields of characteristic p.

Since PSL2(pk) has abelian Sylow p-subgroups, it remains to consider the groups

PSL3(pk), PSU3(pk), PSp4(pk) ∼= Ω5(pk), (2)

for k ≥ 1. The Sylow p-subgroups of PSL3(p) and PSU3(p) are extraspecial of order p3,
hence have more than one abelian subgroup of index p, while those of PSp4(p) do have a
unique such subgroup. By [GLS3, Theorem 3.3.1.a], if G is one of the groups in (2), then
|S|, |Z(S)|, and |[S, S]| are all powers of pk, and so if k > 1, S contains no abelian subgroup
of index p by Lemma 1.6.

Case 3: Assume that G = rG(q) is a group of Lie type in characteristic different from
p. By [BMO2, Lemma 6.9], and since the Sylow p-subgroups of G are non-abelian, G has a
p-fusion system isomorphic to that of one of the following groups:

(i) PSLn(q) for some n ≥ p; or

(ii) PΩε
2n(q), where n ≥ p, ε = ±1, qn ≡ ε (mod p), and ε = +1 if n is odd; or

(iii) 3D4(q) or 2F4(q), where p = 3 and q is a power of 2; or

(iv) G2(q), F4(q), E6(q), E7(q), or E8(q) where p|(q − 1); or

(v) E8(q) where p = 5 and q ≡ ±2 (mod 5).

Assume that G = PSLn(q). If e = ordp(q) > 1, then by [Ru, Theorem B], the p-fusion
system of G has a proper normal subsystem of index e, and hence is not reduced. Thus
p|(q − 1), and p ≤ n < 2p since the Sylow p-subgroups have abelian subgroups of index p.
We are thus in the situation of (c).
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Assume that G = PΩε
2n(q) is as in (ii). Set e = ordp(q). If e is even, then by [BMO1,

Proposition A.3], the p-fusion system of GOε
2n(q) is isomorphic to that of SL2n(q). So F is

normal of index 2 in the fusion system of SL2n(q); this contains a normal subsystem of index
e by [Ru, Theorem B] again, and hence F has a normal subsystem of index e/2. So F is
reduced only if e = 2. If e is odd, then by [BMO1, Theorem A(a,b)], we can assume that q is
a square, GOε

2n(q) and SL2n(
√
q) have isomorphic p-fusion systems by [BMO1, Proposition

A.3] again, and so F is reduced only if e = 1.

We can thus assume that q ≡ ±1 (mod p), and p|(q− 1) if n is odd (since ε = +1). If n is
even and q ≡ −1 (mod p), then by [BMO1, Theorem A(b)], G has the same p-fusion system
as PΩε

2n(q∗) for some q∗ ≡ 1 (mod p). So we can assume that p|(q − 1) in all cases, and are
in the situation of (d).

Cases (iii) and (v) correspond to (e) and (g), respectively. In case (iv), if G = G(q) and
p|(q − 1), then the order of the Weyl group of G must be a multiple of p but not of p2, and
so (G, p) is one of the pairs (G2, 3), (E6, 5), (E7, 5), (E7, 7), or (E8, 7). The 3-fusion system
of G2(q) is not reduced, since it is the fusion system of PSL3(q):2 or PSU3(q):2 [A2, (16.11)].
So we are in the situation of (f).

Case 4: If G is a sporadic group, then by the tables in [GL, § 1.5] or [GLS3, § 5.3], in almost
all cases, either |S| ≤ p3, or S is abelian, or S contains an extraspecial group of type p1+2k

for k ≥ 2, or S contains a special group of type 32+4. The exceptions are (G, p) = (J3, 3),
(Co1, 5), and (Th, 3). When S ∈ Syl3(J3), |S| = 35, Z(S) ∼= C2

3 and [S, S] ∼= C3
3 (see

[FR, § 3]), so by Lemma 1.6, S does not contain an abelian subgroup of index 3. Since Th
contains a subgroup isomorphic to G2(3) [Pa, (3.12)], whose Sylow 3-subgroups were already
shown not to have abelian subgroups of index 3, the same holds for Th. Thus p = 5 and
G = Co1. �

We finish the section with some miscellaneous group-theoretic results that will be needed
later.

Lemma 1.8. Fix a prime p, a finite p-group P , and a group G ≤ Aut(P ) of automorphisms
of P . Let Fr(P ) = P0 E P1 E · · · E Pm = P be a sequence of subgroups, all normal in P and
normalized by G. Let H ≤ G be the subgroup of those g ∈ G which act via the identity on
Pi/Pi−1 for each 1 ≤ i ≤ m. Then H is a normal p-subgroup of G, and hence H ≤ Op(G).

Proof. See, e.g., [Go, Theorems 5.3.2 & 5.1.4]. �

Lemma 1.9. Fix a finite abelian p-group A and a subgroup G ≤ Aut(A), and choose U ∈
Sylp(G). Then

CA(U) ≤ [G,A] ⇐⇒ CA(G) ≤ [G,A] ⇐⇒ CA(G) ≤ [U, A] .

Proof. Each of the first and third inequalities clearly implies the second, so it suffices to
show that the second implies each of the other two. Assume CA(G) ≤ [G,A].

If CA(U) � [G,A], then choose z ∈ CA(U) r [G,A]. Let X be the G-orbit of z and set
m = |X|; p-m since z is fixed by U. Let ẑ be the product of the elements in X. Then
ẑ ∈ CA(G), and ẑ ∈ zm·[G,A]. Thus ẑ ∈ CA(G)r [G,A], contradicting our assumption.

Now assume CA(G) � [U, A]. Since Z/p∞ is injective as an abelian group, there is a
homomorphism ϕ ∈ Hom(A,Z/p∞) such that [U, A] ≤ Ker(ϕ) but CA(G) � Ker(ϕ). Let X
be the G-orbit of ϕ under the action of G on Hom(A,Z/p∞), and set m = |X|. Then p-m
since ϕ is fixed by U. Let ϕ̂ be the product of the elements of X. Then ϕ̂ is G-invariant,
so [G,A] ≤ Ker(ϕ̂). Fix z ∈ CA(G) such that ϕ(z) 6= 0; then ϕ̂(z) = m·ϕ(z) 6= 0. Thus
z ∈ CA(G)r [G,A], again contradicting our assumption. �
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Lemma 1.10 ([Ol, Lemma 1.11]). Fix a finite abelian p-group A and a subgroup G ≤
Aut(A). Assume the following.

(i) Each Sylow p-subgroup of G has order p and is not normal in G.

(ii) For each x ∈ G of order p, [x,A] has order p, and hence CA(x) has index p.

Set A1 = CA(Op′(G)) and A2 = [Op′(G), A]. Then G normalizes A1 and A2, A = A1 × A2,
and Op′(G) ∼= SL2(p) acts faithfully on A2

∼= C2
p .

Lemma 1.11. Let V be a finite abelian p-group (written additively), and fix a subgroup
G ≤ Aut(V ) with U ∈ Sylp(G) of order p. Assume also that dim

(
CV (U) ∩ [U, V ]

)
= 1.

Set V0 = CV (U)[U, V ]. Define inductively W1 > W2 > · · · by setting W1 = [U, V ], and
Wn+1 = [U,Wn] for n ≥ 1. Let m be the smallest integer such that Wm = 0. Then the
following hold.

(a) For each 1 ≤ i ≤ m− 1, |Wi/Wi+1| = p = |V/V0|.
(b) Fix g ∈ NG(U). Let r, t ∈ (Z/p)× be such that gu = ur for all u ∈ U, and g induces

multiplication by t on V/V0. Then for each 1 ≤ i ≤ m− 1, g induces multiplication by
tri on Wi/Wi+1.

Proof. (a) Fix a generator u ∈ U, and let ϕ : V −−−→ V be the homomorphism ϕ(v) = [u, v].
For each 0 6= W ≤ V normalized by U, Ker(ϕ|W ) = CW (U), Im(ϕ|W ) = [U,W ], and thus
|W/[U,W ]| = |CW (U)| > 1. In particular, if 0 6= W ≤ W1 = [U, V ], then 0 6= CW (U) ≤
CW1(U), with equality since CW1(U) = CV (U) ∩ [U, V ] has order p by assumption. Hence
[U,W ] has index p in W .

Thus |Wi/Wi+1| = p for each 1 ≤ i < m. Also, since |CV (U)|·|[U, V ]| = |V |, |V/V0| =
|CV (U) ∩ [U, V ]| = p.

(b) Fix g ∈ NG(U), and let r, t ∈ (Z/p)× be as above. For each x = [u, v] ∈ W1,
g(x) = [gu, g(v)] ≡ [ur, tv] ≡ rt[u, v] modulo [U, V0] = [U,W1] = W2. This proves the result
when i = 1, and the other cases follow inductively. �

2. Reduced fusion systems over non-abelian p-groups with index p abelian
subgroup

Throughout this section, p is an odd prime. We want to describe all reduced fusion systems
over non-abelian p-groups which contain an abelian subgroup of index p. If S has more than
one abelian subgroup of index p, then by [Ol, Theorem 2.1], either S is extraspecial of order
p3 and exponent p (the case already handled by Ruiz and Viruel in [RV]), or there are no
reduced fusion systems over S. In [Ol, Theorem 2.8], the second author handled the case
where S contains a unique abelian subgroup of index p and that subgroup is not essential.
We now look at the more complicated case: that where S contains a unique abelian subgroup
of index p and it is essential (Theorem 2.8 below).

Notation 2.1. Fix a p-group S with unique abelian subgroup A of index p, and a saturated
fusion system F over S. Define

S ′ = [S, S] , Z = Z(S) , Z0 = Z ∩ S ′ , Z2 = Z2(S) , A0 = Z·S ′ .
Thus Z0 ≤ Z ≤ A0 ≤ A and Z0 ≤ S ′ ≤ A0. Also, set

H =
{
Z〈x〉

∣∣x ∈ S r A
}

and (when Z2 ≤ A0) B =
{
Z2〈x〉

∣∣x ∈ S r A
}
.

Lemma 2.2. Assume the notation and hypotheses of 2.1. Then the following hold.
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(a) For each P ∈ EF , either P = A, or P is abelian and P ∈ H, or P is non-abelian and
P ∈ B. In all cases, |NS(P )/P | = p.

(b) If Z2〈x〉 ∈ EF for some x ∈ S r A, then Z〈x〉 is not F-centric and Z〈x〉 /∈ EF .

(c) If A 5 F (equivalently, if EF 6⊆ {A}), then |Z0| = p.

(d) If |Z0| = p, then |A/A0| = p, |Z2/Z| = p, Z2 ≤ A0, and Z2 ∩ S ′ ∼= C2
p . Also, there

are elements x ∈ S r A and a ∈ A r A0 such that A0〈x〉 and S ′〈a〉 are normalized by
AutF(S). If some element of S rA has order p, then we can choose x to have order p.

(e) For each P ∈ EF and each α ∈ NAutF (P )(AutS(P )), α extends to some α ∈ AutF(S).

(f) For each x ∈ S r A and each g ∈ A0, Z〈x〉 is S-conjugate to Z〈gx〉, and Z2〈x〉 is
S-conjugate to Z2〈gx〉.

Proof. (a,b,c,e) See points (a), (c), (b), and (e), respectively, in [Ol, Lemma 2.3].

(d) Assume that |Z0| = p. Fix a generator α ∈ AutS(A) ∼= Cp. Let f : A −−−→ A be the
homomorphism f(x) = x−1α(x). Then Ker(f) = CA(α) = Z and Im(f) = [α,A] = S ′, so
|Z|·|S ′| = |A|, and |A/A0| = |A/ZS ′| = |Z ∩ S ′| = p. Also, |S ′| > p since A is the unique
abelian subgroup of index p in S, so S/Z is non-abelian, and Z2/Z = Z(S/Z) = CA/Z(α).

Let f : A/Z −−−→ A/Z be the homomorphism induced by f on the quotient; then |Z2/Z| =
|Ker(f)| = |(A/Z)/Im(f)| = |A/ZS ′| = p.

Since Z2/Z = Z(S/Z) has order p (and |S/Z| > p), Z2/Z must be contained in [S/Z, S/Z] =
S ′Z/Z = A0/Z. Thus Z2 ≤ A0, so Z2S

′ = ZS ′, and hence |Z2 ∩ S ′| = |Z2/Z|·|Z ∩ S ′| = p2.
It remains to show that Z2 ∩ S ′ is not cyclic.

For each x ∈ S ′ = [α,A], x = y−1α(y) for some y ∈ A, so
∏p−1

i=0 α
i(x) = 1. Hence

if Z2 ∩ S ′ ∼= Cp2 is generated by x, then α(x) = x1+kp for some k such that p - k, and∑p−1
i=0 (1 + kp)i =

(
(1 + kp)p− 1

)/
kp ≡ 0 (mod p2). Since (1 + kp)p ≡ 1 + kp2 (mod p3), this

is impossible.

Let B ≤ A be minimal among subgroups which are normalized by AutF(S) such that
B ≥ S ′ and BA0 = A. The natural surjection B/S ′Fr(B) −−� A/A0 of Fp[OutF(S)]-
modules is split since p - |OutF(S)|. Hence B/S ′Fr(B) ∼= A/A0 by the minimality of B, and
B/S ′ is cyclic since B/S ′Fr(B) is cyclic. For any generator aS ′ of B/S ′, a ∈ A r A0, and
B = S ′〈a〉 is normalized by AutF(S).

For each x ∈ S r A, xp ∈ CA(x) = Z ≤ A0. Hence S/A0
∼= C2

p . Since A/A0 is an
Fp[OutF(S)]-submodule of S/A0 (and since p - |OutF(S)|), S/A0 splits as a product S/A0 =
(A/A0) × (R/A0) where R is AutF(S)-invariant. Let x be any element of R r A ⊆ S r A;
then R = A0〈x〉.

Assume that there is y ∈ S rA such that yp = 1. If A0〈y〉 is normalized by AutF(S), we
are done. Otherwise, there is y′ ∈ S r A such that y′p = 1 and y−1y′ /∈ A0. Set g = y−1y′;
then

1 = y′p = (yg)p = (ygy−1)(y2gy−2) · · · (ypgy−p)yp ,
so
∏p

i=1(yigy−i) = 1. Then (ygj)p =
∏p

i=1(yigjy−i)yp = 1 for all j ∈ Z by a similar
computation. Since g ∈ A r A0, there is j such that ygj ∈ xA0. Upon replacing x by ygj,
we can arrange that xp = 1.

(f) Fix x ∈ S r A and g ∈ A0 = S ′Z, and choose z ∈ Z and g′ ∈ S ′ such that g = g′z.
Then there is h ∈ A such that g′ = h−1(xh), gx = zh−1xh, and so Z〈gx〉 = Z〈xh〉 = Z〈x〉h
and Z2〈gx〉 = Z2〈xh〉 = Z2〈x〉h. �
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Lemma 2.3. Let A E S, F , H, B, etc., be as in Notation 2.1. Assume that A 5 F .

(a) If P ∈ B∩EF , then P = ZP ∗ for some unique AutF(P )-invariant extraspecial subgroup
P ∗ of order p3 and exponent p, with centre Z(P ∗) = Z0 = Z∩P ∗. Also, Op′(OutF(P )) ∼=
SL2(p), and this group acts faithfully on P ∗/Z0

∼= P/Z ∼= C2
p and acts trivially on Z.

(b) If P ∈ H∩EF , then there is a unique subgroup Z∗ < Z which is normalized by AutF(Z)
and such that Z = Z0 × Z∗. Also, Z∗ is normalized by AutF(P ), P = Z∗ × P ∗ for
some unique AutF(P )-invariant subgroup P ∗ ∼= C2

p which contains Z0, Op′(AutF(P )) ∼=
SL2(p), and this group acts faithfully on P ∗ and acts trivially on Z∗.

(c) There is x ∈ S r A of order p; i.e., S splits over A.

Proof. (a) Assume that P ∈ B ∩EF . Then |P/Z| = |P/Z2|·|Z2/Z| = p2 (Lemma 2.2(c,d)),
so P/Z is abelian, and [P, P ] ≤ Z ∩ S ′ = Z0. Thus [P, P ] = Z0 since |Z0| = p and P is
non-abelian.

By Lemma 2.2(a), OutS(P ) ∈ Sylp(OutF(P )) has order p. Also, [NS(P ), P ] ≤ P ∩ S ′ =
Z2 ∩ S ′, and Z2 ∩ S ′ ∼= C2

p by Lemma 2.2(c,d). Thus [AutS(P ), P/Z0] ≤ (Z2 ∩ S ′)/Z0
∼= Cp,

with equality since P is essential and hence AutS(P ) ∈ Sylp(AutF(P )) cannot act trivially
on P/[P, P ].

By Lemma 1.10 applied to the OutF(P )-action on P/Z0, P = P1P2, where AutF(P )
normalizes P1 and P2, P1/Z0 = CP/Z0(O

p′(OutF(P ))), and P1 ∩ P2 = Z0. Thus P1/Z0 is
the intersection of the subgroups in the AutF(P )-orbit of CP/Z0(AutS(P )) = Z2/Z0, hence
contains Z(P )/Z0 = Z/Z0, with equality since |P/Z| = p2 = |P2/Z0|. Thus P1 = Z, and
we set P ∗ = P2. Since P ∗/Z0

∼= C2
p by Lemma 1.10 again, P ∗ is extraspecial of order p3,

and has exponent p since otherwise its automorphism group would be a p-group. The last
statement follows immediately from Lemma 1.10.

(b) Assume that P ∈ H ∩ EF . Thus P is abelian. By Lemma 2.2(a), AutS(P ) ∈
Sylp(AutF(P )) has order p. Also, for each g ∈ NS(P ) r P , 1 6= [g, P ] ≤ P ∩ S ′ = Z0,
so |[g, P ]| = p by Lemma 2.2(c). Hence by Lemma 1.10, P = Z∗ × P ∗, where Z∗ ≤
Z and P ∗ ≥ Z(P ) ∩ S ′ = Z0 are both AutF(P )-invariant. Also, by the same lemma,
Op′(AutF(P )) ∼= SL2(p), and this subgroup acts faithfully on P ∗ ∼= C2

p and trivially on Z∗.

In particular, there is a subgroup H ≤ NOp′ (AutF (P ))(AutS(P )) of order p − 1 which acts

as the full group of automorphisms of Z0 and of P ∗/Z0, and acts trivially on Z∗. Since H
restricts to a subgroup of AutF(Z), this shows that Z = Z∗ × Z0 is the unique AutF(Z)-
invariant splitting of Z with one factor Z0.

(c) Since A 5 F , there must be P ∈ EF in H∪B. So there is x ∈ S rA of order p by the
descriptions of P in (a) and (b). �

We now need to fix some more notation.

Notation 2.4. Assume Notation 2.1. Assume also that |Z0| = p, and hence that |A/A0| = p.
Fix a ∈ A r A0 and x ∈ S r A, chosen such that A0〈x〉 and S ′〈a〉 are each normalized by
AutF(S), and such that xp = 1 if any element of S r A has order p (Lemma 2.2(d)). For
each i = 0, 1, . . . , p− 1, define

Hi = Z〈xai〉 ∈ H and Bi = Z2〈xai〉 ∈ B .
Let Hi and Bi denote the S-conjugacy classes of Hi and Bi, respectively, and set

H∗ = H1 ∪ · · · ∪ Hp−1 and B∗ = B1 ∪ · · · ∪ Bp−1.

Thus H = H0 ∪H∗ and B = B0 ∪ B∗ by Lemma 2.2(f) and since |A/A0| = p.
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Set

∆ = (Z/p)× × (Z/p)× , and ∆i = {(r, ri) | r ∈ (Z/p)×} ≤ ∆ (for i ∈ Z).

Define
µ : Aut(S) −−−−−−→ ∆ and µ̂ : Out(S) −−−−−−→ ∆

by setting, for α ∈ Aut(S),

µ(α) = µ̂([α]) = (r, s) if

{
α(x) ∈ xrA for x ∈ S r A

α(g) = gs for g ∈ Z0 .

Finally, set

Aut∨F(S) =
{
α ∈ AutF(S)

∣∣ [α,Z] ≤ Z0

}
,

Out∨F(S) = Aut∨F(S)/Inn(S),

Aut∨F(A) =
{
α|A

∣∣α ∈ Aut∨F(S)
}

=
{
β ∈ NAutF (A)(AutS(A))

∣∣ [β, Z] ≤ Z0

}
,

Aut
(P )
F (S) =

{
α ∈ AutF(S)

∣∣α(P ) = P, α|P ∈ Op′(AutF(P ))
}

(all P ≤ S).

Lemma 2.5. Let S be a finite p-group with a unique abelian subgroup A E S of index p,
and let F be a saturated fusion system over S. Assume that |Z0| = p, and use Notation 2.1
and 2.4. Let m ≥ 3 be such that |A/Z| = pm−1. Then the following hold.

(a) µ̂|Out∨F (S) is injective.

(b) Fix α ∈ Aut(S), set (r, s) = µ(α), and let t be such that α(g) ∈ gtA0 for each g ∈ ArA0.
Then s ≡ trm−1 (mod p).

(c) For α ∈ AutF(S), either µ(α) ∈ ∆m, and α normalizes each of the S-conjugacy classes
Hi and Bi (0 ≤ i ≤ p − 1); or µ(α) /∈ ∆m, and α normalizes only the classes H0 and
B0. Also, α acts via the identity on A/A0 if and only if µ(α) ∈ ∆m−1.

(d) Assume that xp = 1, and set σ =
∏p−1

i=0
xi

(a) = (ax)px−p. For each P ∈ H0 ∪ B0, P
splits over P ∩A. For each P ∈ H∗ ∪ B∗, P splits over P ∩A if and only if σ ∈ Fr(Z).

Proof. (b) This follows from Lemma 1.11(b), applied with A, A0, S ′, and Z0 in the role of
V , V0, W1, and Wm−1. Note that pm−1 = |A/Z| = |S ′|, |W1| = pm−1 by Lemma 1.11(a), and
thus m plays the same role here as in Lemma 1.11.

(a) Assume that α ∈ Aut∨F(S) has order prime to p, and µ(α) = 1. Then α induces the
identity on S/A, on A/A0 by (b), and on A0/S

′ since [α,ZS ′] ≤ Z0S
′ = S ′ by definition of

Aut∨F(S). So α = IdS by Lemma 1.8. Thus Aut∨F(S)∩Ker(µ) is a p-group, and hence equal
to Inn(S).

(c) Fix α ∈ AutF(S), and let r, s, t be as in (b). Then α acts via the identity on A/A0 if
and only if t = 1; equivalently (by (b)) if and only if µ̂([α]) = (r, s) ∈ ∆m−1.

Since α(A0〈x〉) = A0〈x〉 by assumption (see Notation 2.4), α(x) ∈ A0x
r. Hence for each

0 ≤ i < p, α(A0〈xai〉) = A0〈xrait〉. Thus α(H0) = H0 and α(B0) = B0 in all cases, while for
0 < j < p, α(Hj) = Hj or α(Bj) = Bj only if r ≡ t (mod p − 1). By (b), this holds if and
only if s ≡ rm (mod p− 1); i.e., if and only if µ(α) ∈ ∆m.

(d) Since xp = 1, P splits over P ∩ A for all P ∈ H0 ∪ B0. For each 1 ≤ i ≤ p − 1,
(xai)p = σi, so there is z ∈ Z with xaiz of order p exactly when σ ∈ Fr(Z). This proves the
claim for P ∈ H∗.

Assume that P ∈ Bi for 1 ≤ i ≤ p− 1. If P splits over P ∩A, then Z2〈xai〉 splits (it is S-
conjugate to P ), and hence (xaiy)p = 1 for some y ∈ Z2. Also, [xai, y] = [x, y] ∈ [S,Z2] = Z0,
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so 1 = (xaiy)p = (xai)pyp = σiyp, and hence σ ∈ Fr(Z2). Also, since Z2 = Z(Z2 ∩ S ′) where
Z2 ∩ S ′ ∼= C2

p , Z2
∼= Z × Cp, and hence Fr(Z2) = Fr(Z). The converse is clear: if σ = zp for

some z ∈ Z, then Z2〈xai〉 is split over Z2 by 〈xaiz−i〉. �

Lemma 2.6. Let S be a finite p-group with a unique abelian subgroup A E S of index p,
and let F be a saturated fusion system over S. We use Notation 2.1, and let m be such that
|A/Z| = pm−1. Fix P ∈ H ∪ B. Set t = −1 if P ∈ H or set t = 0 if P ∈ B.

(a) If P ∈ EF , then in the notation of 2.4, Aut
(P )
F (S) ≤ Aut∨F(S) and µ(Aut

(P )
F (S)) = ∆t.

If in addition, P ∈ H∗ ∪ B∗, then m ≡ t (mod p− 1).

(b) Conversely, assume that µ
(
NAut∨F (S)(P )

)
≥ ∆t, and also that P splits over P ∩A. Then

there is a unique subgroup Θ ≤ Aut(P ) such that

(i) AutS(P ) ∈ Sylp(Θ),

(ii) Θ ≥ Inn(P ) and Op′(Θ)/Inn(P ) ∼= SL2(p),

(iii) [α,Z] ≤ Z0 for each α ∈ Op′(Θ), and

(iv) NΘ(AutS(P )) =
{
α|P

∣∣α ∈ NAutF (S)(P )
}

.

Proof. (a) Assume that P ∈ EF . By Lemma 2.3(a,b), whether P ∈ H or P ∈ B,

Op′(OutF(P )) ∼= SL2(p), and acts trivially on Z/Z0. Thus Aut
(P )
F (S) ≤ Aut∨F(S).

If P ∈ H, then by Lemma 2.3(b), there is P ∗ ≤ P such that P ∗ ∩ A = Z0, and
Op′(AutF(P )) ∼= SL2(p) acts faithfully on P ∗ ∼= C2

p . Each element of the normalizer

NOp′ (AutF (P ))(AutS(P )) ∼= Cp o Cp−1 extends to an element of Aut
(P )
F (S) by Lemma 2.2(e);

and since this normalizer contains all diagonal matrices
(
u 0
0 u−1

)
for u ∈ (Z/p)×, µ(Aut

(P )
F (S))

is the set {(u, u−1) |u ∈ (Z/p)×} = ∆−1.

If P ∈ B, then by Lemma 2.3(a), there is P ∗ ≤ P such that Z0 ≤ P ∗ ∩ A ≤ Z2, P ∗

is extraspecial of order p3 and exponent p, and Op′(OutF(P )) ∼= SL2(p) acts faithfully on
P ∗/Z0

∼= C2
p . Each element of NOp′ (OutF (P ))(OutS(P )) ∼= Cp o Cp−1 extends to an element

of Aut
(P )
F (S) by Lemma 2.2(e); this normalizer acts trivially on Z0, and hence µ(Aut

(P )
F ) =

{(u, 1) |u ∈ (Z/p)×} = ∆0.

If P ∈ H∗∪B∗, then µ(Aut
(P )
F (S)) ≤ ∆m by Lemma 2.5(c), since each element in Aut

(P )
F (S)

normalizes P . So ∆m = ∆t, and m ≡ t (mod p− 1).

(b) Set

ΛP =
{
α|P

∣∣α ∈ NAutF (S)(P )
}

and P̂ = P ∩ S ′ =

{
Z ∩ S ′ = Z0 if P ∈ H
Z2 ∩ S ′ ∼= C2

p if P ∈ B.

Then ΛP normalizes P̂ , and the induced action of ΛP on P/P̂ factors through the quotient

group ΛP/AutS(P ) of order prime to p and normalizes (A ∩ P )/P̂ . Since P splits over

P ∩ A, there is a subgroup P ∗/P̂ ≤ P/P̂ of order p, also normalized by ΛP , such that

P/P̂ = ((P ∩ A)/P̂ ) × (P ∗/P̂ ). Since Z2 ≤ A0 = ZS ′ by Lemma 2.2(d), P = P ∗Z and
P ∗ ∩ Z = Z0. Also, |P ∗| = p2 if P ∈ H, and P ∗ is extraspecial of order p3 if P ∈ B.

Assume first that P ∈ H. Choose α ∈ NAut∨F (S)(P ) such that µ(α) generates ∆−1. Then
α(P ∗) = P ∗ since P ∗ is normalized by ΛP , α acts non-trivially on Z0 and on P ∗/Z0, and
induces the identity on Z/Z0. Set Z∗ = CZ(α); thus Z = Z0 × Z∗. Also, P ∗ = [α, P ],
and P ∗ ∼= C2

p since P = Z∗ × P ∗ splits over Z. Since AutF(Z) has order prime to p, and
normalizes Z0 which is a direct factor in Z, there is an AutF(Z)-invariant subgroup of Z
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complementary to Z0, and this can only be Z∗ = CZ(α). In particular, Z∗ is normalized by
AutF(S), and hence by ΛP .

Now assume that P ∈ B. Choose α ∈ NAut∨F (S)(P ) such that µ(α) generates ∆0. Then
α(P ∗) = P ∗ since P ∗ is normalized by ΛP , α acts non-trivially on P ∗/(P ∗ ∩ A) and on
(P ∗∩A)/Z0 and trivially on Z0, and hence P ∗ has exponent p. Also, since P ∗/Z0 = [α, P/Z0],
the choice of P ∗ was unique.

We have now shown that Op′(Out(P ∗)) ∼= SL2(p) in both cases (P ∈ H or P ∈ B). Define

Θ0 =

{{
α ∈ Aut(P )

∣∣α|P ∗ ∈ Op′(Aut(P ∗)), α|Z∗ = Id
}

if P ∈ H{
α ∈ Aut(P )

∣∣α|P ∗ ∈ Op′(Aut(P ∗)), α|Z = Id
}

if P ∈ B

and set Θ = ΛPΘ0. Since ΛP normalizes Θ0, Θ is a subgroup of Aut(P ). Also, Θ ≥ Θ0 ≥
Inn(P ), and Θ0/Inn(P ) ∼= SL2(p).

Proof of (i)–(iii) Since Θ = ΛPΘ0 where ΛP normalizes Θ0, |Θ/Θ0| = |ΛP/(ΛP ∩Θ0)|, and
this is prime to p since ΛP ∩Θ0 ≥ AutS(P ) ∈ Sylp(ΛP ). Thus Θ0 = Op′(Θ), and AutS(P ) ∈
Sylp(Θ). So (i) and (ii) hold. Also, (iii) holds since [α,Z] ≤ Z0 for all α ∈ Θ0 = Op′(Θ).

Proof of (iv) By construction, ΛP ≤ NΘ(AutS(P )). So to prove (iv), it suffices to show that
ΛP ≥ NΘ0(AutS(P )). Fix a generator u ∈ (Z/p)×. By assumption, there is α ∈ NAut∨F (S)(P )

such that µ(α) = (u, ut). Thus α|P ∈ ΛP , and [α,Z] ≤ Z0. Upon replacing α by an
appropriate power, if necessary, we can assume that |α| is prime to p.

If P ∈ H, then α|Z∗ = Id (recall that α|Z ∈ AutF(Z) normalizes Z∗), t = −1, so α acts
on P ∗ ∼= C2

p via diag(u, u−1). If P ∈ B, then t = 0, α|Z = Id since α induces the identity

on Z0 and on Z/Z0, and α acts on P ∗/Z0
∼= C2

p via diag(u, u−1). Thus α|P ∈ Θ0, and
NΘ0(AutS(P )) = AutS(P )〈α〉 ≤ ΛP . This finishes the proof of (iv).

Proof of uniqueness Let Θ∗ ≤ Aut(P ) be another subgroup which satisfies (i)–(iv). Since
AutS(P ) ∈ Sylp(Θ

∗) by (i), Θ∗ = NΘ(AutS(P ))Op′(Θ∗) by the Frattini argument, and so

Θ∗ = ΛPO
p′(Θ∗) by (iv).

It remains to prove that Op′(Θ∗) = Θ0. Since Op′(Θ∗)/Inn(P ) ∼= SL2(p) ∼= Θ0/Inn(P ) by
(ii), it suffices to show that Op′(Θ∗) ≤ Θ0. If P ∈ B, then AutS(P ) ∈ Sylp(Θ

∗) acts trivially

on Z and Z = Z(P ) is characteristic in P , so Op′(Θ∗) also acts trivially on Z, and hence
Op′(Θ∗) ≤ Θ0 by definition and the uniqueness of P ∗.

If P ∈ H, then by Lemma 1.10, P = Z∨×P∨ where Op′(Θ∗) ∼= SL2(p) acts trivially on Z∨

and acts faithfully on P∨ ∼= C2
p . We showed above that there is α ∈ NAut∨F (S)(P ) such that

Z∗ = CP (α) and P ∗ = [α, P ], and α|P ∈ ΛP ≤ Θ∗ by (iv). Hence Z∗ = Z∨ and P ∗ = P∨,
and so Op′(Θ∗) ≤ Θ0. �

In the next lemma, we describe the conditions for a saturated fusion system F over S to
be reduced. This requires some more precise information about the F -essential subgroups
and their automorphisms in this situation.

In the proofs of the next lemma and theorem, we refer several times to the extension axiom
for saturated fusion systems. This axiom states that in a saturated fusion system F over a

p-group S, if ϕ ∈ HomF(P,Q) is such that Q = ϕ(P ) is fully centralized in F , and if P ≥ P

is such that P E P and ϕAut
P

(P )ϕ−1 ≤ AutS(Q), then there is ϕ ∈ HomF(P , S) which
extends ϕ. We refer to [AKO, Proposition I.2.5] for more detail, including a description of
how this axiom can be used to characterize saturated fusion systems.
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Lemma 2.7. Fix an odd prime p, and a p-group S which contains a unique abelian subgroup
A E S of index p. Let F be a saturated fusion system over S, and assume that A 5 F .
We use the notation of 2.1 and 2.4. Assume also that A ∈ EF , and set G = AutF(A) and
U = AutS(A) ∈ Sylp(G). Then the following hold.

(a) Op(F) = 1 if and only if either

(i) there are no non-trivial G-invariant subgroups of Z; or

(ii) EF ∩H 6= ∅ and Z0 is the only non-trivial G-invariant subgroup of Z.

(b) If Op(F) = 1, then Op(F) = F if and only if [G,A] = A.

(c) Op′(F) = F if and only if one of the following holds: either

(i) EF r {A} = H0 ∪ B∗, and AutF(S) =
〈
Aut∨F(S),Aut

(A)
F (S)

〉
; or

(ii) EF r {A} = B0 ∪H∗, and AutF(S) =
〈
Aut∨F(S),Aut

(A)
F (S)

〉
; or

(iii) EF r {A} ⊆ H and AutF(S) =
〈
(Aut∨F(S) ∩ µ−1(∆−1)),Aut

(A)
F (S)

〉
; or

(iv) EF r {A} ⊆ B and AutF(S) =
〈
(Aut∨F(S) ∩ µ−1(∆0)),Aut

(A)
F (S)

〉
.

Proof. (a) Upon replacing the statements by their negatives, we must show that Op(F) 6= 1
if and only if

there is a non-trivial subgroup 1 6= Q ≤ Z normalized by G, such that either
Q 6= Z0 or EF ∩H = ∅.

(1)

Assume first that Op(F) 6= 1, and set Q = Op(F). Since A ∈ EF , Q ≤ A and is G-
invariant by Proposition 1.4(a). Since A 5 F , there is some P ∈ EF r {A} ⊆ B ∪ H.
By Proposition 1.4(a) again, if P ∈ H, then Q ≤ P ∩ A = Z, while if P ∈ B, then
Q ≤

⋂
α∈AutF (P ) α(P ∩ A) = Z. Thus Q is a non-trivial G-invariant subgroup of Z. If

Q = Z0, then EF ∩ H = ∅, since for P ∈ EF ∩ H, Z0 is not normalized by AutF(P )
(Z0 < P ∗ ∼= C2

p in the notation of Lemma 2.3(b)). Thus (1) holds in this case.

Conversely, assume that (1) holds. In particular, 1 6= Q ≤ Z is G-invariant. For each
α ∈ AutF(S), α(A) = A since A is the unique abelian subgroup of index p, so α|A ∈ G, and
thus α(Q) = Q. Since each element of AutF(Z) extends to S by the extension axiom, Q is
also normalized by AutF(Z). Also, for each P ∈ EF ∩ B, Z = Z(P ) is characteristic in P
and so Q is also normalized by AutF(P ). In particular, if EF ∩ H = ∅, then Q E F by
Proposition 1.4(a), so Op(F) 6= 1.

Now assume that EF ∩H 6= ∅, and hence by assumption that Q 6= Z0. By Lemma 2.3(d),
there is a unique AutF(Z)-invariant splitting Z = Z0×Z∗. Set Q∗ = Q∩Z∗. If Q ≥ Z0, then
Q = Q∗ × Z0. Otherwise, Q ∩ Z0 = 1 (recall |Z0| = p), and since Q is AutF(Z)-invariant,
the uniqueness of the splitting implies that Q ≤ Z∗ and hence Q = Q∗. Since Q 6= Z0, we
have Q∗ 6= 1 in either case.

For each ϕ ∈ AutF(A) = G, ϕ(Q∗) ≤ Q ≤ Z, so by the extension axiom, ϕ|Q∗ extends
to some ϕ ∈ AutF(S), and ϕ(Q∗) = ϕ(Q∗) = Q∗ since Q∗ is AutF(Z)-invariant. So by
the same arguments as those applied above to Q, Q∗ is normalized by AutF(P ) for each
P ∈ ({S} ∪ EF) rH. If P ∈ EF ∩ H, then for each α ∈ AutF(P ), α(Z∗) = Z∗ by Lemma
2.3(b), so α|Z∗ extends to an element of AutF(S) and hence of AutF(Z), and in particular,
α(Q∗) = Q∗. Thus 1 6= Q∗ E F , and hence Op(F) 6= 1.

(b) Assume that Op(F) = 1 and [G,A] < A. Since CA(G) ≤ Z0 ≤ [U, A] by (a), [G,A] ≥
CA(U) = Z by Lemma 1.9. Hence [G,A] ≥ ZS ′ = A0, with equality since |A/A0| = p. The
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G-action on A/A0 is thus trivial, and hence µ̂(OutF(S)) ≤ ∆m−1 by Lemma 2.5(c), where
pm−1 = |A/Z|.

By Lemma 2.6(a), for each 1 ≤ i ≤ p − 1, Hi ⊆ EF implies µ̂(OutF(S)) ≥ ∆−1 = ∆m,
while Bi ⊆ EF implies µ̂(OutF(S)) ≥ ∆0 = ∆m. Thus EF r {A} ⊆ H0 ∪ B0, so foc(F) ≤〈
[G,A],H0,B0

〉
= A0〈x〉 < S by Proposition 1.4(b), and Op(F) 6= F by Proposition 1.4(c).

Conversely, if [G,A] = A, then foc(F) ≥ A. Since A 5 F , EF % {A}, and hence
foc(F) = S. So Op(F) = F by Proposition 1.4(c).

(c) By Proposition 1.4(d), and since Aut
(A)
F (S) ≥ Inn(S), Op′(F) = F if and only if AutF(S)

is generated by the subgroups Aut
(P )
F (S) for all P ∈ EF . By Lemma 2.6(a), if P ∈ EFr{A},

then Aut
(P )
F (S) = Aut∨F(S) ∩ µ−1(∆t), where t = −1 if P ∈ H and t = 0 if P ∈ B. Hence

the conditions in (c.iii) are necessary and sufficient if EF r {A} ⊆ H, and those in (c.iv) are
necessary and sufficient if EF r {A} ⊆ B.

If EF r {A} contains subgroups in both H and B, then µ(Aut∨F(S)) ≥ ∆0∆−1 = ∆ by

Lemma 2.6(a), and AutF(S) = 〈Aut
(A)
F (S),Aut∨F(S)〉 by the above remarks. Also, by Lemma

2.2(b), some Hi or Bi must be essential for 0 < i < p, and by Lemma 2.6(a), m ≡ −1 (mod
p− 1) if Hi ∈ EF , while m ≡ 0 (mod p− 1) if Bi ∈ EF . Also, all subgroups in H∗ and in B∗
are F -conjugate by Lemma 2.5(c) and since µ(Aut∨F(S)) = ∆. Hence EF r {A} = H0 ∪ B∗
or B0 ∪H∗, and we are in the situation of (c.i) or (c.ii). �

We are now ready to describe the reduced fusion systems over non-abelian p-groups S
which contain a unique abelian subgroup of index p which is essential. Recall that we
defined

Aut∨F(A) =
{
α ∈ NG(U)

∣∣ [α,Z] ≤ Z0

}
=
{
α|A

∣∣α ∈ Aut∨F(S)
}
.

Let
µA : Aut∨F(A) −−−−−→ ∆

be the homomorphism defined by setting µA(α) = µ(α) for some α ∈ AutF(S) which extends
α. Since α ∈ NG(U) = NAutF (A)(AutS(A)), it does extend to some α ∈ AutF(S) by the
extension axiom. If β is another extension, then β−1α ∈ AutF(S) induces the identity
on A and (since CS(A) = A) on S/A, and hence by definition of µ lies in Ker(µ). Thus
µA(α) = µ(α) is independent of the choice of α.

Theorem 2.8. Fix an odd prime p, and a p-group S which contains a unique abelian subgroup
A E S of index p. Let F be a reduced fusion system over S for which A is F-essential. We
use the notation of 2.1 and 2.4, and also set E0 = EF r {A} and G = AutF(A), so that

U = AutS(A) ∈ Sylp(G). Let m ≥ 3 be such that |A/Z| = pm−1. Set σ =
∏p−1

i=0
xi

(a) =
(ax)px−p ∈ Z. Then the following hold:

(a) Z0 = CA(U) ∩ [U, A] has order p, and hence A0 = CA(U)[U, A] has index p in A.

(b) There are no non-trivial G-invariant subgroups of Z = CA(U), aside (possibly) from
Z0.

(c) [G,A] = A.

(d) One of the conditions (i)–(iv) holds, described in Table 2.1.

Conversely, for each G, A, U ∈ Sylp(G), and E0 ⊆ H∪B which satisfy conditions (a)–(d),

where |U| = p and U 5 G, there is a reduced fusion system F over AoU with AutF(A) = G
and EF = E0 ∪ {A}, unique up to isomorphism. All such fusion systems are simple. All
such fusion systems are exotic, except for the fusion systems of the simple groups listed in
Table 2.2.
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µA(Aut∨F(A)) G = Op′(G)X where m (mod p− 1) σ E0

(i) ∆ X = Aut∨F(A) ≡ 0 σ ∈ Fr(Z) H0 ∪ B∗
(ii) ∆ X = Aut∨F(A) ≡ −1 σ ∈ Fr(Z) B0 ∪H∗

≡ −1 σ ∈ Fr(Z) union of Hi’s
(iii) ≥ ∆−1 X = µ−1

A (∆−1)
− − H0

X = µ−1
A (∆0) ≡ 0 σ ∈ Fr(Z) union of Bi’s

(iv) ≥ ∆0
Z0 not G-invariant − − B0

Table 2.1

Such a fusion system F has a proper strongly closed subgroup if and only if A0 = CA(U)[U, A]
is G-invariant, and E0 = Hi or Bi for some i, in which case A0Hi = A0Bi is strongly closed.

In Table 2.2, e is such that pe is the exponent of A. In all cases except when Γ ∼= PSLp(q)
and e > 1, A is homocyclic.

Γ p conditions rk(A) e m G = AutΓ(A) E0

Apn p p ≤ n < 2p n 1 p 1
2Cp−1 o Sn H0

Sp4(p) p 3 1 3 GL2(p)/{±I} B0

PSLp(q) p vp(q−1) = 1, p > 3 p−2 1 p− 2 Sp H0 ∪H∗
PSLp(q) p p2|(q−1), p > 3 p−1 vp(q−1) e(p−1)− 1 Sp H0 ∪H∗
PSLn(q) p p|(q−1), p<n<2p n−1 vp(q−1) e(p−1) + 1 Sn B0

PΩ+
2n(q) p p|(q−1), p≤n<2p n vp(q−1) e(p−1) + 1 Cn−1

2 o Sn B0

2F4(q) 3 q ≥ 8 2 v3(q+1) 2e GL2(3) B0 ∪ B∗
En(q) 5 n = 6, 7, p|(q−1) n vp(q−1) 4e+ 1 W (En) B0

En(q) 7 n = 7, 8, p|(q−1) n vp(q−1) 6e+ 1 W (En) B0

E8(q) 5 q ≡ ±2 (mod 5) 4 v5(q4−1) 4e (C4 ◦ 21+4).S6 H0 ∪ B∗
Co1 5 3 1 3 4× S5 B0 ∪H∗

Table 2.2

Proof. We prove in Step 1 that conditions (a)–(d) are necessary, and in Step 2 that they
are sufficient for the existence of a reduced fusion system. In Step 3, we list all strongly
closed subgroups for the fusion systems constructed in Step 2, and then prove in Step 4 that
they are all simple. In Step 5, we handle the question of which of these fusion systems are
realizable.

Step 1: Assume that F is a reduced fusion system over S. We must show that conditions
(a)–(d) hold.

(a) By Lemma 2.2(c,d), |Z0| = p = |A/A0|.
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(b,c) Since F is reduced, Op(F) = 1 and Op(F) = F . So these claims follow from points
(a) and (b), respectively, in Lemma 2.7.

(d) Cases (i)–(iv) here correspond exactly to cases (i)–(iv) of Lemma 2.7(c). The condi-
tions on E0 follow immediately from that lemma, while the conditions on µA(Aut∨F(A)) =
µ(Aut∨F(S)) and those on m (mod p− 1) follow from Lemma 2.6(a). By Lemma 2.5(d), for
P ∈ H∗ ∪ B∗, σ ∈ Fr(Z) if and only if P splits over P ∩A, and this is a necessary condition
to have P ∈ EF by Lemma 2.3(a,b).

To see why the conditions on G hold, let

R : AutF(S) −−−−−−→ NAutF (A)(AutS(A)) = NG(U)

be the homomorphism induced by restriction. By the extension axiom and by definition, R
sends subgroups of AutF(S) as follows:

X R−1(Y ) AutF(S) Aut∨F(S) Aut
(A)
F (S) Aut∨F(S) ∩ µ−1(∆r)

R(X) Y NG(U) Aut∨F(A) NOp′ (G)(U) µ−1
A (∆r)

(1)

In other words, the groups in the second row are the images of those in the first, and
those in the first are the inverse images of those in the second. By the Frattini argument,
G = Op′(G)·NG(U) = Op′(G)·R(AutF(S)). The claims in (d) about generators for G now

follow from the formulas for AutF(S) in Lemma 2.7(c) (and since R(Aut
(A)
F (S)) ≤ Op′(G)).

Step 2: Now assume that A, G, and E0 are as above and satisfy (a)–(d). We will show
that they are realized by a unique reduced fusion system F .

Set Γ = A o G, and identify S = A o U ∈ Sylp(Γ). Choose a generator x ∈ U < S.
Choose a ∈ A r A0 so that S ′〈a〉 is normalized by NG(U). Set Z = Z(S), Z2 = Z2(S),
Hi = Z〈xai〉, and Bi = Z2〈xai〉, as in Notation 2.1 and 2.4.

Let Q1, . . . , Qk ∈ E0∩{Bi, Hi | 0 ≤ i ≤ p−1} be a set of Γ-conjugacy class representatives
for the subgroups in E0. For each i ≤ k, set Ki = AutΓ(Qi). Set ti = −1 if Qi ∈ H, and
ti = 0 if Qi ∈ B. Since σ ∈ Fr(Z) whenever Qi ∈ H∗ ∪ B∗, Qi splits over Qi ∩ A in all
cases by Lemma 2.5(d). By the assumptions in (d), there is α ∈ Aut∨F(S) such that µ(α)
generates ∆t. By Lemma 2.5(c) and the assumptions on m, α(Qi) is S-conjugate to Qi.
So upon composing α with an inner automorphism (hence in Ker(µ)), we can arrange that
α ∈ NAut∨F (S)(Qi).

We want to apply Lemma 2.6(b), with FS(Γ) in the role of F and Qi in the role of P . Thus
Aut∨F(A) = Aut∨FS(Γ)(S). Each element of Ki = AutΓ(Qi) extends to an element of AutΓ(S)

since NΓ(Qi) ≤ NΓ(AQi), and so Ki =
{
α|Qi

∣∣α ∈ NAutF (S)(Qi)
}

. By Lemma 2.6(b),
there is a unique subgroup Θi ≤ Aut(Qi) such that Θi ≥ Inn(Qi), AutS(Qi) ∈ Sylp(Θi),

NΘi
(AutS(Qi)) = Ki, [α,Z] ≤ Z0 for α ∈ Op′(Θi), and Op′(Θi)/Inn(Qi) ∼= SL2(p).

Set F = 〈FS(Γ),Θ1, . . . ,Θk〉: the smallest fusion system over S which contains FS(Γ),
and such that AutF(Qi) ≥ Θi for each i. By [BLO4, Proposition 5.1], to see that F is
saturated, it suffices to check that the following conditions hold.

(1) For i 6= j, Qi is not Γ-conjugate to a subgroup of Qj. By assumption, Qi and Qj

are not Γ-conjugate, and hence are not F -conjugate since there is no larger group in the
generating set which could conjugate the one into the other. If Qi = Hk and Qj = B`

for some k, ` ∈ {0, 1, . . . , p − 1}, then by (d), either k = 0 and ` 6= 0 or vice versa, so
Bk and B` are not AutF(S)-conjugate (hence not Γ-conjugate, hence not F -conjugate)
by Lemma 2.5(c).



REDUCED FUSION SYSTEMS OVER p-GROUPS WITH ABELIAN SUBGROUP OF INDEX p: II 17

(2) For each i, Qi is p-centric in Γ, but no proper subgroup P < Qi is F-centric
nor an essential p-subgroup of Γ. In all cases, CΓ(Qi)∩A = Z = Z(Qi)∩A. Also,
Qi ∈ H implies CΓ(Qi) ≤ A o CG(Z) where U ∈ Sylp(CG(Z)), while Qi ∈ B implies

CΓ(Qi) ≤ AoCG(Z2) where CG(Z2) has order prime to p. Thus Z(Qi) ∈ Sylp(CΓ(Qi))
in both cases, so Qi is p-centric in Γ by definition.

Each proper subgroup of Qi either does not contain Z or is in the Θi-orbit of (hence
F -conjugate to) a proper subgroup of A, and in either case, is not F -centric. Since
A E Γ (so A E FS(Γ)), each essential p-subgroup of Γ contains A by Proposition 1.4(a).

(3) For each i, p - [Θi:Ki] and Ki/Inn(Qi) is strongly p-embedded in Θi/Inn(Qi).
By assumption, AutS(Qi) ∈ Sylp(Θi), and Ki = NΘi

(AutS(Qi)). Thus OutS(Qi) ∈
Sylp(Θi/Inn(Qi)) has order p (and is not normal), and so its normalizer has index prime
to p and is strongly p-embedded in Θi/Inn(Qi).

It remains to prove that F is reduced. By (b), there are no non-trivial G-invariant sub-
groups of Z except possibly for Z0, EF∩H 6= ∅ in cases (d.i)–(d.iii), and Z0 is not G-invariant
in case (d.iv). Hence Op(F) = 1 by Lemma 2.7(a). Also, Op(F) = F by Lemma 2.7(b), and
since [G,A] = A by (c).

As for showing that Op′(F) = F , we claim that the necessary conditions in Lemma
2.7(c.i–c.iv) follow from (d.i–d.iv). The conditions on E0 = EF r {A} are clear. As for the
conditions on AutF(S), these follow since if G = Op(G)X by (d) for X ≤ NAut(A)(U), and
R : Aut(S) −−−→ NAut(A)(U) is as in Step 1, then

AutF(S) = R−1(NG(U)) = R−1(NOp′ (G)(U))·R−1(X) = Aut
(A)
F (S)·R−1(X),

where R−1(X) is described in (1).

The uniqueness of F follows from the uniqueness of the Θi (Lemma 2.6(b)).

Step 3: We next list the proper non-trivial strongly closed subgroups in the reduced fusion
system F constructed in Step 2.

Assume that 1 6= Q < S is strongly closed in F . If Q ≤ Z, then Q is contained in all
F -essential subgroups, so Q E F by Proposition 1.4(a), which is impossible since Op(F) = 1.
Thus Q � Z.

Now, (QZ/Z) ∩ Z(S/Z) 6= 1 since Q E S, so Q ∩ Z2 � Z. Fix g ∈ (Q ∩ Z2) r Z. Then
Q ≥ [g, S] = Z0 since Q E S.

Since A 5 F , there is P ∈ E0. If P ∈ B, then the AutF(P )-orbit of g ∈ Z2 ≤ P is not
contained in A. If P ∈ H, then the AutF(P )-orbit of Z0 ≤ P is not contained in A. So in
either case, Q � A. Hence Q ≥ [Q,S] ≥ [U, A] = S ′.

Set G0 = Op′(G). Since Q ∩A is normalized by the action of G = AutF(A), and contains
[U, A] where U ∈ Sylp(G), Q ≥ [G0, A]. Since [G,A] = A by (c), the group G/G0 of order
prime to p acts on A/[G0, A] with CA/[G0,A](G/G0) = 1. Also, G = G0Aut∨F(A) by (d), so
CA/[G0,A](Aut∨F(A)) = 1. Since Aut∨F(A) acts trivially on Z/Z0 (and Z0 ≤ S ′ ≤ [G0, A]),
the natural homomorphism Z/Z0 −−−→ A/[G0, A] has trivial image. Hence A0 = ZS ′ ≤
[G0, A] ≤ Q.

Since Q < S by assumption, this proves that Q = A0〈xai〉 = A0Hi for some i, and has
index p in S. If A0Hi is strongly closed, then neither Hj nor Bj can be F -essential for any
j 6= i (0 ≤ j ≤ p− 1), so E0 = Hi or Bi.

Conversely, if E0 = Hi or Bi for some 0 ≤ i ≤ p−1 and A0 is normalized by G, then A0Hi

is normalized by AutF(S) and AutF(A) and contains all F -essential subgroups other than
A, hence is strongly closed in F .
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Step 4: We now prove that F is simple. Assume otherwise. Then there is a normal
subsystem E E F over a proper strongly closed subgroup 1 6= T < S. We just saw that this
implies T = A0Hi for some i, and E0 = Hi or Bi.

Assume first that m ≥ 4. Thus |S ′| = |A/Z| = pm−1 ≥ p3. For P ∈ E0, we have P < T ,
so NS(P ) ≤ A0P = T . Thus AutS(P ) ≤ AutE(P ) and AutE(P ) E AutF(P ), which imply
that P ∈ EE . (Since AutE(P ) has Sylow p-subgroups which are non-normal and have order
p, it has strongly p-embedded subgroups.) Also, A0 = A∩ T is the unique abelian subgroup
of index p in T since |[T, T ]| = 1

p
|S ′| ≥ p2, so by Steps 1 and 2 applied to E , we have

EE = {A0,Hi} or {A0,Bi}. Here, Hi or Bi plays the role for E that H or B plays for F .
So by Lemma 2.6(a) (or by Table 2.1 case (iii) or (iv)), m − 1 ≡ t (mod p − 1), where as
usual, t = −1 if E0 = Hi and t = 0 if E0 = Bi. Also, G = Op′(G)µ−1

A (∆t), and by Lemma
2.5(c), elements in µ−1

A (∆t) = µ−1
A (∆m−1) act trivially on A/A0. Since Op′(G) acts trivially

on A/A0
∼= Cp, this proves that [G,A] ≤ A0, which contradicts (c). We conclude that F is

simple.

Now assume that m = 3. Thus |[U, A0]| = |A0/Z| = pm−2 = p, and A0 is G-invariant.
By Lemma 1.10 applied to the G-action on A0, A0 = CA0(O

p′(G)) × [Op′(G), A0], the first
factor is G-invariant and contained in Z, and hence is trivial by (b). So by the same lemma,
A0
∼= C2

p and Op′(G) ∼= SL2(p). If α ∈ NOp′ (G)(U) has order p− 1, then for some generator

u ∈ (Z/p)×, α(z) = zu for z ∈ Z0, and α(z) ∈ zu−1
Z0 for z ∈ Z2 r Z0 = A0 r Z0. In the

notation of Lemma 1.11(b) (applied with A in the role of V ), tr = u−1 and tr2 = u. So

t = u−3, and thus α(a) ∈ au−3
A0 for a ∈ A r A0. Since Op′(G) acts trivially on A/A0, this

implies that u−3 ≡ 1 (mod p), so (p− 1)|3, which is impossible. Thus there are no strongly
closed subgroups in this case, and so F is simple.

Step 5: By Lemma 1.5, if F is realizable, it is isomorphic to the fusion system of a finite
simple group. Hence by Lemma 1.7, it is isomorphic to the fusion system of one of the simple
groups listed in Table 2.2. �

Recall that when U ∼= Cp, then FpU ∼= Fp[X]/(Xp), and hence the indecomposable FpU-
modules are those of the form Fp[X]/(X i) for 1 ≤ i ≤ p. These are the “Jordan blocks” of
an FpU-module.

Notation 2.9. Assume that G is a finite group, with U ∈ Sylp(G) of order p. Let M be
an FpG-module, and set Z = CM(U) and Z0 = Z ∩ [U,M ]. Assume that dim(Z0) = 1;
equivalently, that M |U has just one non-trivial Jordan block. In this situation, we set

G∨ =
{
α ∈ NG(U)

∣∣ [α,Z] ≤ Z0

}
,

and define µA : G∨ −−−→ ∆ by setting µA(g) = (r, s) if gu = ur and g(z) = zs for all u ∈ U
and z ∈ Z0.

Using this notation, we now get as an immediate consequence of Theorem 2.8 the following
list of necessary and sufficient conditions for an FpG-representation A to give rise to a simple
fusion system in the way described by the theorem.

Corollary 2.10. Fix an odd prime p, a finite group G, and a finite dimensional, faithful
FpG-module A. Fix U ∈ Sylp(G), and assume that |U| = p and U 5 G. Set Z = CA(U),
Z0 = Z ∩ [U, A], and m = dim(A/Z) + 1, and assume that m ≥ 3. Then there is a simple
fusion system F over a finite p-group S which contains A as its unique abelian subgroup of
index p, where G = AutF(A), if and only if the following conditions hold:

(a) |Z0| = p;
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(b) there are no non-trivial G-invariant subgroups of Z, aside (possibly) from Z0;

(c) [G,A] = A; and

(d) one of the following holds: either

(d.1) µA(G∨) = ∆, G = Op′(G)G∨, m ≡ 0,−1 (mod p− 1), and dim(A) ≤ p− 1; or

(d.1′) µA(G∨) = ∆, G = Op′(G)G∨, m = p− 1 or p− 2 or m = p = 3, and dim(A) ≤
p− 1; or

(d.2) µA(G∨) ≥ ∆−1 and G = Op′(G)·µ−1
A (∆−1); or

(d.3) µA(G∨) ≥ ∆0, G = Op′(G)·µ−1
A (∆0), and Z0 is not G-invariant.

We will see in Section 3 (Propositions 3.5 and 3.7) that m = min(rk(A), p) in the situation
of Corollary 2.10.

We finish the section with some examples which show that proper strongly closed sub-
groups can be found in simple fusion systems of the type constructed in Theorem 2.8.

Example 2.11. Fix a prime p ≥ 5. Set Γ = Sp × F×p , and let M ∼= Fpp be the FpΓ-
module where Sp acts by permuting the coordinates, and where a ∈ F×p acts via a·IdM . Fix
U ∈ Sylp(Γ).

(a) Set A = M and S = A o U. Let µA : NΓ(U) −−−→ ∆ be as in Notation 2.9. Set
G = Op(Γ)µ−1(∆−1). By Theorem 2.8 case (d.iii), there is a simple fusion system F
over S such that AutF(A) = AutG(A), and such that EF = {A} ∪ H0 in the notation
of 2.4. Furthermore, the subgroup A0U, where A0 = [U, A], is strongly closed in F .

(b) Set A = M/CM(Op′(Γ)) and S = A o U. Thus |A| = pp−1 and |S| = pp. Let
µA : NΓ(U) −−−→ ∆ be as in Notation 2.9. Set G = Op′(Γ)µ−1(∆0). By Theorem
2.8 case (d.iv), there is a simple fusion system F over S such that AutF(A) = AutG(A),
and such that EF = {A} ∪ B0 in the notation of 2.4. Furthermore, the subgroup A0U,
where A0 = [U, A], is strongly closed in F .

(c) Let A, S, µA, and G be as in (b). Fix I ⊆ {0, 1, . . . , p− 1} with |I| ≥ 2. By Theorem
2.8 case (d.iv), there is a simple fusion system F over S such that AutF(A) = AutG(A)
and EF = {A} ∪

⋃
i∈I Bi, and no proper non-trivial subgroup of S is strongly closed in

F .

In all of these cases, G has index 2 in Γ, and F is exotic by Table 2.2 and the theorem.

3. Representation-theoretic preliminaries

From now on, we restrict attention to the case where the abelian group A in Section 2
has exponent p. In other words, we are looking at FpG-modules, for certain finite groups G,
for which the conditions in Corollary 2.10 are satisfied. We begin with some representation
theory that we will need, in particular the representation theory of groups with a Sylow
p-subgroup of order p, which is very well understood. Throughout this section, p is an odd
prime.

Definition 3.1. Let Gp be the class of finite groups whose Sylow p-subgroups are not normal
and have order p. Let G ∧p be the class of all G ∈ Gp such that |AutG(U)| = p − 1 for
U ∈ Sylp(G).

The following notation will be used throughout this section, and in much of the rest of
the paper.
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Notation 3.2. When p is odd and G ∈ Gp, we

• fix an element x of order p in G and set U = 〈x〉 ∈ Sylp(G); and

• set N = NG(U), C = CG(U), and C ′ = C ′G(U) = Op′(CG(U)).

For background to the following discussion about vertices, sources, and Green correspon-
dents of FpG-modules, we refer to [Be, Chapter 3], and especially to Sections 3.10–3.12.

Let V be an indecomposable FpG-module. A vertex for V is a minimal subgroup P ≤ G
such that V is relatively P -projective; i.e., such that each surjection W → V which splits
FpP -linearly is also FpG-linearly split. This is always a p-subgroup of G, and is uniquely
determined up to conjugacy. If G ∈ Gp, then since U ∈ Sylp(G) has order p, either V is
FpG-projective and has trivial vertex, or V is non-projective and U is a vertex of V . Note
that V is projective if and only if V |U is projective, equivalently, if U (or x) acts on V with
Jordan blocks all of size p.

In general, if P is a vertex of V then the restriction V |NG(P ) of V to NG(P ) is the direct
sum of an indecomposable FpNG(P )-module W with vertex P , the Green correspondent
of V , and other indecomposable modules with vertices that are contained in intersections
P g ∩NG(P ) for g /∈ NG(P ), so in particular not equal to P and of order at most |P |. Thus
when U ∈ Sylp(G) has order p and V is not projective, V |N ∼= W ⊕X (recall N = NG(U)),
where W (the Green correspondent) is indecomposable and non-projective, and where X is
projective.

The restriction of any non-projective, indecomposable FpG-module V to U is a sum of free
modules and of copies of a fixed FpU-module T , called the source of V . (In general, U is a
sum of conjugates of the source, but for cyclic groups conjugate modules are isomorphic.) If
the source of V is the trivial module (i.e., V |U is a sum of free modules and trivial modules)
then V is said to be trivial source. The source of an indecomposable FpG-module and the
source of its Green correspondent are the same.

As C is normal in N , the simple FpN -modules restrict to C as a sum of simple modules.
However, as C = U × C ′, we see that the simple FpC-modules are just the simple FpC ′-
modules, which are irreducible ordinary characters as C ′ is a p′-group. In particular, all
simple FpN -modules are trivial source, and indeed these are the only trivial-source FpN -
modules. Hence if V is a simple, trivial-source FpG-module then its Green correspondent is
also simple.

The following definition will be useful in our discussion.

Definition 3.3. When G ∈ Gp, an FpG-module M is minimally active if the action of x on
M has at most one non-trivial Jordan block (i.e., at most one Jordan block with non-trivial
action).

Lemma 3.4. Fix a field k of characteristic p, assume that G ∈ Gp, and let M be a minimally
active kG-module upon which U acts non-trivially.

(a) If M = M1⊕M2, where the Mi are kG-submodules, then Op′(G) acts trivially on exactly
one of the Mi.

(b) M is indecomposable if and only if CM(Op′(G)) ≤ [Op′(G),M ].

(c) If M is indecomposable, then M is absolutely indecomposable. If M is simple then M
is absolutely simple.

(d) We can decompose M |N = M0 ⊕M1, where U acts trivially on M0 and M1|U is inde-
composable.
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Proof. (a) Since M is minimally active, a generator x ∈ U acts with at most one non-
trivial Jordan block. So U must act trivially on at least one of the Mi, and hence Op′(G)
acts trivially on it.

(b) Set H = Op′(G) for short. If M is decomposable, then CM(H) � [H,M ] by (a).

Assume, conversely, that CM(H) � [H,M ]. Since k[G/H] is semisimple, there is a kG-
submodule V0 ≤ CM(H) such that V0 6= 0 and CM(H) = V0 ⊕ (CM(H) ∩ [H,M ]). For the
same reason, there is V1 ≤M such that V1 ≥ [H,M ] and M/[H,M ] = (V0+[H,M ])/[H,M ]⊕
(V1/[H,M ]). Thus M = V0 ⊕ V1, V1 6= 0 since [H,M ] 6= 0 (since U acts non-trivially), and
thus M is decomposable.

(c) Set M = k ⊗k M for short. If M is indecomposable, then CM(Op′(G)) ≤ [Op′(G),M ]

by (b), so C
M

(Op′(G)) ≤ [Op′(G),M ], and M is indecomposable by (b) again.

If M is simple, then EndkG(M) ∼= Fpk for some k ≥ 1. Then k
∣∣ dim(CM(U)∩[U,M ]) = 1,

so k = 1, and M is absolutely simple.

(d) We apply (a) and (b) with N and U in the role of G and Op′(G). If CM(U) ≤
[U,M ], then M |U is indecomposable, and we take (M0,M1) = (0,M). Otherwise, M |N is
decomposable by (b), and U acts trivially on all but one of its indecomposable summands
by (a). �

Minimally active modules are what is needed in the situation of Theorem 2.8 and Corollary
2.10. This is made more precise in the next proposition.

Proposition 3.5. If A is an FpG-module that satisfies the hypotheses of Corollary 2.10,
then G ∈ G ∧p , and A is minimally active and indecomposable.

Proof. By Corollary 2.10(a), dim(CA(U) ∩ [U, A]) = 1, so the action of x has only one
non-trivial Jordan block. Thus A is minimally active. Also, U ∈ Sylp(G) has order p and
|AutG(U)| = p− 1 by the conditions in Corollary 2.10(d), so G ∈ G ∧p .

If A = A1 ⊕ A2, where the Ai are FpG-submodules, then by Lemma 3.4, at least one of
its direct factors lies in Z = CA(U) and intersects trivially with [U, A]. In the terminology
of Corollary 2.10, this is a non-trivial G-invariant subgroup of Z which is not equal to Z0,
contradicting point (b) in the corollary. Thus A is indecomposable. �

We note the following easy lemma.

Lemma 3.6. The property of being minimally active is preserved under taking submodules,
quotients, dual, tensoring by a 1-dimensional module, and restricting to subgroups in Gp.

We will show that of the almost simple groups which lie in G ∧p , very few possess minimally
active modules. The previous lemma shows that if M is a minimally active FpG-module
and H ≤ G, then M |H is also minimally active. This means that we can use induction and
embed, say, SLn−1(q) into SLn(q). Here the automizers of cyclic subgroups are the same,
and so if SLn−1(q) is not in G ∧p then neither is SLn(q).

The next result describes some of the basic properties of minimally active modules.

Proposition 3.7. Let G ∈ Gp, and assume Notation 3.2. Then the following hold for each
indecomposable, minimally active FpG-module M on which U acts faithfully.

(a) Either

• dim(M) < p and M |U is indecomposable, or
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• dim(M) = p, M |U is indecomposable and free, and M is projective, or

• dim(M) > p, M is a trivial-source module, and M |U is the sum of one copy of FpU
and a module with fixed action.

(b) M is a trivial-source module if and only if dim(M) ≥ p.

(c) If dim(M) ≥ p+ 2 then M is simple and absolutely simple.

(d) If M is simple and has trivial source, then M is the reduction modulo p of a Zp-lattice
in a simple QpG-module. Moreover, χM extends to an absolutely irreducible ordinary
character.

(e) If dim(M) > p, then the Green correspondent V of M is simple.

Proof. (a) By Lemma 3.4(d), we can write M |N = V0 ⊕ V1, where V1|U is a non-trivial
Jordan block and V0 has fixed action of U. (Recall that N = NG(U).) If V0 = 0, then
dim(M) ≤ p, as p is the largest size of a Jordan block, and M |U ∼= V1|U is indecomposable.
If in addition, dim(V1) = p, then V1

∼= M |U is projective, and hence M is projective since
U ∈ Sylp(G) (cf. [Be, Corollary 3.6.9]).

If V0 6= 0, then M is not projective, so M |N is the sum of a projective module and the
Green correspondent of M . Thus V1 is projective, hence of rank p, and so dim(M) > p.
Also, M is a trivial source module since U acts trivially on V0.

(b) If dim(M) > p, then we are done by (a). If dim(M) = p, then M is projective, and
hence has trivial vertex and trivial source. If dim(M) < p, then M |U is indecomposable,
hence is the source of M , and has non-trivial action since M |U is assumed to be faithful.

(c) Assume that dim(M) ≥ p + 2. By Lemma 3.4(d), M |N = V0 ⊕ V1, where V1 is
FpN -projective (and V1|U ∼= FpU), and V0 is the Green correspondent to M and is an
indecomposable (hence simple) Fp[N/U]-module. Note that by the Frattini argument, G =
Op′(G)N .

Assume first that there is a non-trivial submodule 0 6= M0 < M on which U acts trivially.
Then Op′(G) acts trivially on M0, and M0 ≤ CM(U) = V0 ⊕ CV1(U). Since V0 is FpN -
irreducible, dim(V0) = dim(M) − p ≥ 2, and dim(CV1(U)) = 1, either M0 ≥ V0 or M0 =
CV1(U). If M0 ≥ V0, then V0 is an FpG-submodule of M (recall G = Op′(G)N), hence a
direct summand of M since M/V0 is FpG-projective, which contradicts the indecomposability
of M .

Thus M0 = CV1(U). As M/M0 does not satisfy any of the conditions in (a), (since U
acts faithfully) it must be decomposable. By the Krull–Schmidt theorem, each proper direct
sum decomposition of (M/M0)|N has a summand isomorphic to V0, so M/M0 contains a
direct summand whose restriction to N is isomorphic to V0, and which (by an argument
similar to that in the last paragraph) must be equal to the image of V0 in M/M0. Hence
V0 ⊕ CV1(U) = CM(U) is an FpG-submodule, and we just showed that this is impossible.

Now assume that 1 6= M0 < M is an arbitrary non-trivial proper submodule. We just
showed that U acts non-trivially on M0, and by a similar argument applied to the dual M∗,
U also acts non-trivially on M/M0. If either of M0 or M/M0 is decomposable, then it has a
direct factor on which U acts trivially (Lemma 3.4), which contradicts the fact that M has
no submodules or quotients on which U acts trivially. So each of M0 and M/M0 has one
of the forms listed in (a). Since M is minimally active, M |U and (M/M0)|U must both be
indecomposable, so dim(CM(U)) ≤ dim(CM0(U)) + dim(CM/M0(U)) = 2. But we already
saw that dim(CM(U)) = dim(V0) + 1 = dim(M)− p+ 1 ≥ 3, so this is impossible. Absolute
simplicity now comes from Lemma 3.4(c).
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(d) That M is the mod p reduction of a Zp-lattice M̂ is a general property of all trivial-

source modules (see [Be, Corollary 3.11.4(i)]). If QpM̂ is not simple, then it contains a

non-trivial proper submodule 0 6= W < QpM̂ , and the mod p reduction of W ∩ M̂ is a
proper FpG-submodule of M , contradicting the assumption that M is simple. Since this
also holds for Fpn for n ≥ 1, we get absolute irreducibility since M is absolutely simple by
Lemma 3.4(c).

By Lemma 3.4(c), Fp ⊗Fp M is a simple FpG-module. Hence by a similar argument,

K ⊗Qp (QpM̂) is a simple KG-module for each finite extension K ⊃ Qp by roots of unity.

So Qp ⊗Qp (QpM̂) is simple, and the character of QpM̂ is irreducible when regarded as a
complex character of G.

(e) By (a), M has trivial source, so its Green correspondent is an indecomposable Fp[N/U]-
module, hence irreducible since N/U has order prime to p. �

The next lemma will be useful when showing that certain extensions of minimally active
modules are again minimally active.

Lemma 3.8. Fix G ∈ Gp. Assume that V is an indecomposable FpG-module of dimension
at most p + 1, and that V has a nonzero submodule or quotient module which is minimally
active. Then V is also minimally active.

Proof. Assume V is not minimally active. Then V |N is the Green correspondent of V , and is
thus indecomposable. By [Al, p. 42] and since U is normal and cyclic in N , V |N is uniserial
in the sense of [Al, p. 26]. (Alperin always assumes we are working over an algebraically
closed field, but this proof does not use that.) In particular, the socle CV (U) and the top
V/[U, V ] are both irreducible N/U-modules, and they have rank at least 2 since V is not
minimally active. But this is impossible: if W < V is a submodule, then CW (U) < CV (U)
has rank 1 if W is minimally active, while the image of W in V/[U, V ] has corank 1 if V/W
is minimally active. �

As a consequence of Proposition 3.7, if M is a simple, minimally active module, then either
dim(M) ≤ p, or M has as Green correspondent the reduction modulo p of an irreducible
ordinary character of G, whose minimal degrees are known in the case where G is quasisimple.
The next result will help us to classify such modules.

Proposition 3.9. The following hold for each faithful, indecomposable, minimally active
FpG-module M .

(a) Suppose that dim(M) > p, and set a = dim(M)− p. Then

• a divides |N/U|;
• if N/U is abelian, then a = 1;

• if C is abelian, then a divides |N/C|; and

• if C > U, then a ≤ |C/U| − 1.

(b) If Op′(G) = 〈x, y〉 for some x, y ∈ G, where |x| = |y| = p or |x| = 2 and |y| = p, then

for each central extension G̃ of G of degree prime to p, the dimension of each minimally

active faithful indecomposable FpG̃-module is at most 2p− 2.

Proof. (a) If dim(M) = p + 1, then all four statements hold. So we may assume that
dim(M) > p+1. In particular, by Proposition 3.7(c), M is absolutely simple, and the Green
correspondent W of M is an absolutely simple module for N , and for the p′-group N/U
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since U acts trivially on W . Thus χW is an ordinary irreducible character for N/U. Also,
dim(W ) = dim(M)− p = a.

In particular, dim(W ) divides |N/U| (see, e.g., [Is, Theorem 3.11]), and dim(W ) = 1 if
N/U is abelian. If C is abelian, then we apply a theorem of Ito (see [Is, Theorem 6.15]) to
get that dim(W ) divides |N/C|. This proves the first three statements.

Set W = Fp ⊗Fp W , where Fp ⊇ Fp is the algebraic closure. By Clifford theory (see [Fe,

Theorem III.2.12]), W |C ∼= e·[
⊕k

i=1Wi], where e ≥ 1, and where W1, . . . ,Wk are pairwise

distinct irreducible Fp[C/U]-modules which form one orbit under the N/C-action on the set
of all irreducible representations. Also, e = 1 since N/C is cyclic (see [Fe, Theorem III.2.14]),

so W |C is a sum of distinct irreducible representations. Since C/U 6= 1, N/C cannot act

transitively on the set Irr(C/U), and hence dimFp(W ) < dimFp
(Fp[C/U]) = |C/U|.

(b) By Lemma 3.4(b), M is FpOp′(G)-indecomposable if it is FpG-indecomposable. So
we can assume G = Op′(G).

If G = 〈x, y〉 where x and y have order p, then since a minimally active module M has
at most one non-trivial Jordan block, CM(x) and CM(y) have codimension at most p − 1.
This means that CM(x) ∩ CM(y) = CM(Op′(G)) has codimension at most 2p − 2. Since M
is simple, dim(M) ≤ 2p− 2, as needed.

If G = 〈t, y〉 where |t| = 2 and |y| = p, then 〈ty, y〉 is normal of index at most 2 in G, hence

equal to G since G = Op′(G). If G̃ is a central extension of G of degree prime to p, where

G = 〈x, y〉 and |x| = |y| = p, then x and y lift to x̃, ỹ ∈ G̃ of order p, and 〈x̃, ỹ〉 ≥ Op′(G̃).
So in both cases, we are back in the first situation. �

Proposition 3.9(b) is useful because both sporadic and alternating groups are known to
be generated by two elements of order p whenever the Sylow p-subgroup is cyclic (see [Cr2]
for sporadic groups), and this can be checked for any individual groups we might encounter.
In general, it appears that with few exceptions this is always true for finite simple groups,
and such a statement is currently under investigation by the first author.

As a generalization of part of Proposition 3.9, we get the following condition, which is
useful for bounding the size of minimally active modules for a group in terms of minimally
active modules for a subgroup.

Proposition 3.10. Let H be a subgroup of G such that Op′(H) = H. Suppose that Op′(G) ≤
〈H1, . . . , Hn〉 for some set H1, . . . , Hn of n conjugates of H. Let s be the maximal dimension
of an indecomposable, faithful, minimally active FpH-module. If M is an indecomposable,
faithful, minimally active FpG-module such that CM(Op′(G)) = 0, then dim(M) ≤ ns. In
particular, if CH(U) is abelian, then dim(M) < 2np.

Proof. The proof is similar to that of Proposition 3.9(b). If M is an indecomposable, faithful,
minimally active FpG-module, then by Lemma 3.4(a), for each 1 ≤ i ≤ n, the restriction of
M to Hi must have a summand Ni of codimension at most s on which Hi acts trivially. The
intersection of the Ni has codimension at most ns, and is contained in the proper submodule
CM(Op′(G)). Since CM(Op′(G)) = 0 we have dim(M) ≤ ns, as claimed. �

Having found minimally active, simple modules, we would like to know whether there are
minimally active, indecomposable modules built from them. In almost every case we will see
that if V is minimally active then dim(V ) > (p+ 1)/2, so that Proposition 3.7(c) eliminates
any extensions between non-trivial modules. However, this leaves open the possibility that
V is minimally active for G and H1(G, V ) 6= 0, so that V has a minimally active extension
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with the trivial module; for example, the permutation module for the symmetric group
Sp is minimally active and has a trivial submodule and a trivial quotient. Of course, by
Proposition 3.7(c) again, dim(V ) must be at most p for this to work. The next lemma deals
with this case, when V is self dual.

Lemma 3.11. Let G be a group in G ∧p , and let V be a self-dual, simple, minimally active

module with dim(V ) ≤ p. If H1(G, V ) 6= 0 then dim(V ) = p− 2.

Proof. Set m = dim(V ). If m = p, then V is projective and H1(G, V ) = 0, so m < p.
Since 0 6= H1(G;V ) ∼= Ext1

FpG(Fp, V ), there is an indecomposable extension M of Fp by V

(with V as submodule). Since restriction sends H1(G;V ) injectively into H1(U;V ), M |U is
indecomposable and consists of one Jordan block. SetM0 = [U,M ] = V , andMi = [U,Mi−1]
for each i ≥ 1; then dim(Mi) = m− i for each 0 ≤ i ≤ m.

Fix g ∈ N such that gu = ur where r generates (Z/p)×. By Lemma 1.11(b), and since
g acts trivially on M/M0 = M/V , g acts on each Mi−1/Mi by multiplication by ri. In
particular, it acts on M0/M1 by multiplication by r and on Mm−1 by multiplication by rm,
and since V is self-dual, rm ≡ r−1 (mod p). Thus m+1 ≡ 0 (mod p−1), and since 0 < m < p,
we have m = p− 2. �

In the next lemma, we give some tools for handling some of the other properties listed in
Corollary 2.10, especially those involving the homomorphism µV : G∨ −−−→ ∆ of Notation
2.9. For any finite abelian group M , let Autsc(M) be the group of scalar automorphisms:
those of the form (x 7→ kx) for k prime to |M |.

Lemma 3.12. Fix G ∈ Gp, and let V be a faithful, minimally active FpG-module. Let
U ∈ Sylp(G), G∨ ≤ NG(U), and µV : G∨ −−−→ ∆ be as in Notation 2.9.

(a) The homomorphism µV sends G∨/U injectively into ∆.

(b) If G ∈ G ∧p , dim(V ) ≤ p, and G ≥ Autsc(V ), then G∨ = NG(U) and µV (G∨) = ∆.

(c) Assume that dim(V ) ≥ p, and set Z = CV (U). Then for each g ∈ NG(U)rCG(U),
χV (g) = χZ(g).

Proof. Let V0 = CV (U)[U, V ] and [U, V ] = W1 > W2 > · · · > Wm = 0 be as in Lemma 1.11.

(a) This is essentially Lemma 2.5(a), but we give another proof here. Assume that
g ∈ G∨ has order prime to p, and µV (g) = (1, 1). By Lemma 1.11(b), g acts via the identity
on V/V0, and on Wi/Wi+1 for each 1 ≤ i ≤ m− 1 (r = t = 1 in the notation of the lemma).
By definition of G∨, g acts via the identity on CV (U)/Wm−1, and hence also acts via the
identity on CV (U)[U, V ]/[U, V ] = V0/W1. So by Lemma 1.8, g acts trivially on V , and
hence g = 1 since G acts faithfully.

Thus Ker(µV |G∨) ≤ U, and the opposite inclusion is clear.

(b) Since dim(V ) ≤ p, V |U contains only one Jordan block. So dim(CV (U)) = 1, Z = Z0

in the notation of Corollary 2.10, and G∨ = NG(U).

Let r ∈ (Z/p)× be a generator, and let ψr ∈ Autsc(V ) ≤ NG(U) be the automorphism
(a 7→ ar). Then µV (ψr) = (1, r).

By assumption, there is g ∈ NG(U) such that gu = ur for each u ∈ U. Then µV (g) = (r, s)
for some s, and thus µV (G∨) ≥ 〈µV (g), µV (ψr)〉 =

〈
(1, r), (r, s)

〉
= ∆.

(c) Let W0 ≤ V and V0 ≤ Z be such that W0 is a non-trivial Jordan block for the action
of U and V = W0 ⊕ V0. Since dim(V ) ≥ p, dim(W0) = p by Proposition 3.7(a). Hence
dim(V/Z) = dim(W0/CW0(U)) = p− 1.
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Let [U, V ] = [U,W0] = W1 > W2 > · · · > Wp = 0 be as defined above. By Lemma 1.11(a),
|Wi/Wi+1| = p for each 1 ≤ i ≤ p− 1, and also for i = 0 since W0/W1

∼= W0Z/W1Z = V/V0.

Fix g ∈ NG(U). Let r, t ∈ (Z/p)× be such that gu = ur for each u ∈ U, and g acts on
W0/W1

∼= V/V0 via multiplication by t. Then by Lemma 1.11(b), for each 1 ≤ i ≤ p − 1,
g acts on Wi/Wi+1 via multiplication by tri. The action of g on W0/Wp−1

∼= V/Z thus

has eigenvalues t, tr, tr2, . . . , trp−2. Hence χV (g)−χZ(g) =
∑p−2

i=0 ψ(tri) for some embedding
ψ : (Z/p)× −−−→ C×. If g /∈ CG(U), then ψ(r) 6= 1, the sum of this geometric series is zero
since ψ(r)p−1 = 1, and hence χV (g) = χZ(g). �

We now summarize the tools which will be used to compute µV (G∨) in later sections.

Proposition 3.13. Fix G ∈ G ∧p , and let V be a faithful, minimally active FpG-module such
that G ≥ Autsc(V ). Let U ∈ Sylp(G), G∨, and µV be as in Notation 2.9.

(a) If dim(V ) ≤ p, then µV (G∨) = ∆ and CG(U) = U× Autsc(V ).

(b) If dim(V ) > p, then |µV (G∨)| = |G∨/U| ≤ |NG(U)/U|
p−1

, with equality if dim(V ) = p+ 1.

(c) If dim(V ) = p + 1, and g ∈ NG(U) has order prime to p and is such that cg generates
Aut(U), then the following hold.

(i) If |χV (g)| = 2, then µV (G∨) ≥ ∆0.

(ii) If χV (g) = 0, then µV (G∨) ≥ ∆(p−1)/2.

(iii) If |χV (g)| = 1, then µV (G∨) ≥ ∆ε(p−1)/3 for some ε = ±1.

Proof. (a) The first statement was shown in Lemma 3.12(b). Hence |NG(U)/U| = |G∨/U| =
|∆| = (p−1)2 by Lemma 3.12(b,a), so |CG(U)| = p(p−1), and the centralizer is as described.

(b) The first equality holds since Ker(µV ) = U by Lemma 3.12(a). Also, Autsc(V ) ≤ CG(U)
and intersects trivially with G∨, so G∨ has index at least p−1 in NG(U). If dim(V ) = p+1,
then dim(Z/Z0) = 1 (in the notation of 2.9), so for each g ∈ NG(U), the coset gAutsc(V )
contains a unique element in G∨. Hence G∨ has index exactly p− 1 in NG(U) in this case.

(c) Now assume that dim(V ) = p + 1, and fix g ∈ NG(U) of order p − 1 such that cg
generates Aut(U). Let g′ ∈ gAutsc(V ) be the unique element in G∨. Let r ∈ (Z/p)× be such
that gu = g′u = ur for each u ∈ U.

Set Z = CV (U) and Z0 = Z ∩ [U, V ]. Thus dim(Z) = 2, dim(Z0) = 1, and χV (g) = χZ(g)
by Lemma 3.12(c). Also, for some choice of monomorphism ψ : (Z/p)× −−−→ C×, χZ(g) =
ψ(s) + ψ(t), where g acts on Z0 via multiplication by s and on Z/Z0 via multiplication by t
(s, t ∈ (Z/p)×). Since g′ acts on Z/Z0 via the identity by definition of G∨, it acts on Z0 via
multiplication by st−1, and hence µV (g′) = (r, st−1).

Recall that r generates (Z/p)× by the assumption on g. If |χV (g)| = |ψ(s) + ψ(t)| = 2,
then s = t, so µV (g′) = (r, 1) generates ∆0. If χV (g) = 0, then s = −t, so µV (g′) = (r,−1)
generates ∆(p−1)/2. If |χV (g)| = 1, then ψ(st−1) = ψ(s)/ψ(t) must be a primitive cube root
of unity, and hence µV (g′) = (r, st−1) generates ∆(p−1)/3 or ∆−(p−1)/3. �

4. Representations which occur in simple fusion systems: a summary

In this section, we present a summary of the rest of paper, by outlining our classification
of all possible pairs (G,A) satisfying parts (a) to (d) in Theorem 2.8 or Corollary 2.10.
From now on, these will be regarded as FpG-modules with additive structure (as opposed
to the multiplicative group structure on A), and will be denoted by V to emphasize this.
Throughout this section and the next, we assume the classification of finite simple groups.
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Table 4.1 is an attempt at tabulating this information, but its notation requires explana-
tion. When the image of G in PGL(V ) is almost simple, the group G0 = F ∗(G) is listed in

the second column, and a group G ≤ NGL(V )(G0) such that G/G0 is a p′-subgroup of max-
imal order in NGL(V )(G0)/G0 is listed in the fourth column. In all cases, NGL(V )(G0)/G0 is

solvable, so the choice of G is unique up to conjugacy, and we can assume that G0 ≤ G ≤ G.

(In almost all cases, G = NGL(V )(G0).)

When the image of G in PGL(V ) is not almost simple, the second column is left blank,

G is contained in the group G in the fourth column, and we provide more information
on the possibilities for G later in this section. In all cases, the third column lists the
possible dimensions of the minimally active module V that becomes the subgroup A in the

saturated fusion system. The fifth and sixth columns list the images µV (G∨0 ) ≤ µV (G∨) ≤ ∆,
and the final column gives the information as to whether this representation leads to a
realizable fusion system (R) and/or an exotic fusion system (E) with superscripts indicating
the number of such systems. In some cases we are necessarily vague when considering whole
collections of possible groups G.

Theorem 4.1. Assume that G ∈ G ∧p , and let V be a minimally active, faithful, indecompos-
able FpG-module which satisfies the hypotheses of Corollary 2.10. Then either

(a) the image of G in PGL(V ) is not almost simple, and G ≤ G with the given action on

V for one of the pairs (G, V ) listed in Table 4.1 with no entry G0; or

(b) the image of G in PGL(V ) is almost simple, and G0 ≤ G ≤ G for one of the triples

(G0, G, V ) listed in Table 4.1.

When G0
∼= SL2(p) or Ap for p ≥ 5, more precise descriptions of the modules are given in

Propositions 4.2 and 4.3, respectively.

Proof. Let V be a minimally active, faithful, indecomposable FpG-module with dim(V ) ≥ 3.
When the image of G in PGL(V ) is not almost simple, the possibilities for G and V are listed
in cases (b)–(e) of Proposition 5.4. When the image of G in PGL(V ) is almost simple, and
G0 = F ∗(G), the possible pairs (G0, V ) are determined in Sections 6–11: SL2(p) is handled
in Proposition 6.1 (the only groups of Lie type in defining characteristic p which appear),
sporadic groups in Proposition 7.1, alternating groups in Proposition 8.1, linear, unitary and
symplectic groups in Propositions 10.1, 10.2 and 10.3, and orthogonal groups in Proposition
10.4. Finally, the exceptional groups are dealt with in Proposition 11.1. Together, these
show that in all cases, (G, V ) appears as an entry in one of the two Tables 4.1 or 4.2, as
described in (a) or (b).

If V is a simple FpG0-module, then it is absolutely simple by Lemma 3.4(c), and hence

CGL(V )(G0) = Autsc(V ) (the group of scalar automorphisms). So G = Op(NGL(V )(G0)) is an
extension of G0Autsc(V ) by outer automorphisms of G0 and hence can be determined from

the tables of modular characters. When V is indecomposable but not simple, G has a similar
form but is not in general the full normalizer of G0 in GL(V ) (see, e.g., the second-to-last
sentence in Proposition 6.1.

In both tables, µV (G∨) = ∆ by Proposition 3.13(a) whenever dim(V ) ≤ p. When G0
∼= An

(n ≥ p+2) orG ≤ Cp−1oSn (n > p), µV (G∨) is easily calculated using the definition, and when

G0
∼= SL2(p) and dim(V ) = p + 1, it is calculated in Section 6. When G ∼= (C3 × 21+6

+ ).S8,

µV (G∨) is determined in Lemma 5.5. In all other cases where dim(V ) = p+1, µV (G∨) can be
determined using points (b) and (c) in Proposition 3.13. This leaves only the representation
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p G0 dim(V ) G µV (G∨) µV (G∨0 ) E,R

SL2(p) or PSL2(p)
3 ≤ n ≤ p (4.2)

socle of dim. i
GL2(p) or ∆ {(u2, ui−1)} ER

p
(p ≥ 5) 2/(p−1) (4.2) PGL2(p)× Cp−1 ∆−1

1
2∆−1 E

p Ap (p ≥ 5) [1]/p−2/[1] (4.3) Sp × (p−1) ∆ 1
2∆0 or 1

2∆−1 ER

p Ap+1 (p ≥ 5) p Sp+1 × (p−1) ∆ 1
2∆0 ER

p An (p+2 ≤ n ≤ 2p−1) n− 1 Sn × (p−1) ∆0
1
2∆0 R

p — n (4.4(b)) Cp−1 o Sn (n ≥ p) ∆ — ER

3 — 2/2 (4.4(c)) GL2(3) ∆1 — E

5 2·A6 4 4 ◦ 2·S6 ∆ ∆1/2 E

5 — 4 (4.4(d)) (C4 ◦ 21+4).S6 ∆ — ER

5 PSp4(3) = W (E6)′ 6 W (E6)× 4 ∆0.2
1
2∆0 R

5 Sp6(2) = W (E7)′ 7 G0 × 4 ∆0
1
2∆0 R

7 2·A7 4 2·S7 × 3 ∆ ∆3/2 E

7 6·PSL3(4) 6 G0.21 ∆ F×2
p × F×p E

7 61·PSU4(3) 6 G0.22 ∆ F×2
p × F×p E

7 PSU3(3) 6 G0.2× 6 ∆ 1
2∆1 E

7 PSU3(3) 7 G0.2× 6 ∆ 1
2∆0 E

7 SL2(8) 7 G0:3× 6 ∆ 1
3∆1 E

7 Sp6(2) = W (E7)′ 7 G0 × 6 ∆ ∆3 ER

7 2·Ω+
8 (2) = W (E8)′ 8 W (E8)× 3 ∆0.2 ∆3 R

11 J1 7 G0 × 10 ∆ ∆3 E

11 PSU5(2) 10 G0.2× 10 ∆ 1
2∆2 E

11 2·M12 10[2] G0.2× 5 ∆ ∆1/2 , ∆7/2 E

11 2·M22 10[2] G0.2× 5 ∆ ∆1/2 , ∆7/2 E

13 PSU3(4) 12 G0.4× 12 ∆ 1
3∆1 E

In the third column, a superscript in brackets shows the number of distinct represen-
tations of G0 of the given dimension (not counting them as distinct if they differ by

an automorphism of G0). A superscript (4.x) means that these representations (and/or
the groups) are described more precisely in Proposition 4.x. When k, ` are relatively
prime, we set ∆k/` = {(u`, uk) |u ∈ F×p } (always cyclic of order p− 1).

Table 4.1. Groups in G ∧p with minimally active modules of dimension at
least 3 which appear in reduced fusion systems

where p = 5, G0
∼= Sp6(2), and dim(V ) = 7: |µV (G∨)| = p − 1 by Proposition 3.13(b), and

the structure of fusion in E7(q) (when v5(q − 1) = 1) together with Table 2.1 show that it
must be ∆0.

The determination of µV (G∨0 ) is slightly more delicate than that of µV (G∨). But in
almost all cases, this can either be done either directly using the definitions, or with the
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help of character tables and Green correspondence, or by examining V |H for some H < G0

isomorphic to SL2(p) or PSL2(p).

Finally, with the help of Table 2.1, we determine which of these representations appear in

simple fusion systems (i.e., satisfy the conditions in Corollary 2.10 for some choice of G ≤ G

containing G0), and in those cases we determine µV (G∨) and give dim(V ). Among those
fusion systems, Table 2.2 tells us which are realizable. �

p G0 dim(V ) G µV (G∨)

p (P)SL2(p)
type j/i (4.2)

(i+j = p+1, j 6= 2)

GL2(p) or
PGL2(p)× Cp−1

∆i−1

7 — 8 (4.4(e)) (C3 × 21+6
+ ).S8 ∆3

7 SL2(8) 8 G0:3× 6 ∆3

7 2·Sp6(2) 8 G0 × 3 ∆3

7 2·A7 4/4 2·S7 × 3 ∆3

7 2·A8 8 2·S8 × 3 ∆3

7 2·A9 8 G0 × 3 ∆3

11 2·M12 12 G0.2× 5 ∆5

13 2B2(8) 14[2] G0:3× 12 ∆±4

13 G2(3) 14 G0:2× 12 ∆6

17 Sp4(4) 18 G0.4× 16 ∆8

Table 4.2. Groups in G ∧p with minimally active modules of dimension at
least 3 which do not satisfy the hypotheses of Corollary 2.10

The first few rows of Tables 4.1 and 4.2 require the most explanation. The next proposition
concerns the first row, and is basically a restatement of Proposition 6.1.

Proposition 4.2. Let G0, V , and G be as in Theorem 4.1, and assume that G0 = SL2(p).
The indecomposable minimally active FpG0-modules with faithful action of G0 or of G0/Z(G0)
are described as follows (where unique always means up to isomorphism).

(a) A unique simple FpG0-module Vi of dimension i for each 2 ≤ i ≤ p. Each simple FpG0-
module is isomorphic to Vi for some 1 ≤ i ≤ p, where V1 = Fp is the trivial module, V2

is the natural module for G0 = SL2(p), and Vi = Symi−1(V2) for 3 ≤ i ≤ p (the (i−1)-st
symmetric power).

(b) A unique (p − 1)-dimensional indecomposable module Vj,i of type Vj/Vi for each 1 ≤
i, j ≤ p− 2 such that i+ j = p− 1.

(c) A unique p-dimensional indecomposable module V1,p−2,1 of type V1/Vp−2/V1.

(d) A unique (p + 1)-dimensional indecomposable module Vj,i of type Vj/Vi for each 2 ≤
i, j ≤ p− 1 such that i+ j = p+ 1.

If the simple composition factors of V are even dimensional, then G0 = SL2(p) acts faithfully

on V , and G ∼= GL2(p). If the simple composition factors of V are odd dimensional, then

the action of G0 factors through PSL2(p), and G ∼= PGL2(p)×Cp−1. Also, G = NAut(V )(G0)
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except when V ∼= Vi,i for i = (p± 1)/2 or V ∼= V1,p−2,1, in which cases G has index p in the
normalizer.

We now consider the case where G0 is Ap.

Proposition 4.3. Let G0, V , and G be as in Theorem 4.1, and assume that G0 = Ap. Then
there is a unique faithful, simple, minimally active FpG0-module W , of dimension p − 2.
There are unique non-simple indecomposable minimally active modules of each of the types

Fp/W , W/Fp, and Fp/W/Fp, where the last is the permutation module. Also, G ∼= Sp×Cp−1

in all cases, and is equal to NAut(V )(G0) except when V is the permutation module, in which

case G has index p in the normalizer. All of these representations give rise to simple fusion
systems via Theorem 2.8 (for some choice of G), but only W itself gives rise to simple,
realizable fusion systems.

Proof. See Proposition 8.1 for a determination of the minimally active modules. �

It remains to describe the minimally active, indecomposable FpG-modules, when G ∈ G ∧p
and the image of G in the projective group is not almost simple.

Proposition 4.4. Assume that G ∈ G ∧p . Let V be a minimally active, faithful, indecompos-
able FpG-module, and set n = dim(V ). Then one of the following holds.

(a) The image of G in PGL(V ) is almost simple, and p divides the order of its socle.

(b) G ≤ Cp−1 o Sn (n ≥ p) acts as a group of monomial matrices on V ∼= (Fp)n. More
precisely, if we set K = Op′(G), then

K =
{

(a1, . . . , an) ∈ (Cp−1)n
∣∣ at1 = at2 = · · · = atn, (a1 · · · an, at1) ∈ R

}
for some 1 6= t|(p− 1) and some R ≤ Cp−1 × Cp−1; and one of the following holds:

• n = p and G/K ∼= Cp o Cp−1;

• n = p+ 1 and G/K ∼= PGL2(p);

• p ≤ n ≤ 2p− 1 and G/K ∼= Sn;

• p+ 2 ≤ n ≤ 2p− 1 and G/K ∼= An.

Also, V |K splits as a direct sum of pairwise non-isomorphic 1-dimensional FpK-modules
which are permuted 2-transitively by G/K.

(c) p = 3, G ∼= 21+2
− .S3

∼= Q8.S3
∼= GL2(3), and either n = 2 and V is simple, or n = 4 and

V is non-simple of type 2/2.

(d) p = 5, n = 4, O5′(G) ∼= C4 ◦ 21+4 or 21+4
− , and G/O5′(G) ∼= S6

∼= Sp4(2), S5
∼= SO−4 (2),

or C5 o C4. (Note that C4 ◦ 21+4
+
∼= C4 ◦ 21+4

− . If O5′(G) ∼= 21+4
− then G/O5′(G) is not

S6.)

(e) p = 7, n = 8, O7′(G) ∼= C3×21+6
+ or 21+6

+ , and G/O7′(G) ∼= S8
∼= SO+

6 (2), S7, PGL2(7),
or C7 o C6.

Proof. This will be proved in Section 5, as Propositions 5.3 and 5.4. �

In order to describe more explicitly how to get from Table 4.1 to actual fusion systems, we
list a few cases in more detail in Table 4.3. The first four columns in the table correspond to
information given in Table 4.1, while the last four columns consist of separate rows for the
different cases (corresponding to cases (i)–(iv) in Table 2.1). In the last column, E (or E+)
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means that there is one (or more than one) exotic fusion system of this type; otherwise, a
group is given which realizes it.

For example, when p ≥ 5, G0
∼= PSL2(p), and V is the simple (p−2)-dimensional FpG0-

module, we have m = dim(V ) ≡ −1 (mod p − 1) and µV (G∨) = ∆. Hence there are three
families of simple fusion systems which arise in this way, corresponding to the three cases
(ii), (iii), (iv) in Table 2.1. The fusion systems of types (ii) and (iv) are unique by Theorem
2.8, while in case (iii), EF r {A} can be any union of Hi’s. In all cases, AutF(A) = G ≥ G0

is determined (as a subgroup of G) by the third column in Table 2.1. For P ∈ EF ∩ (H∪B),
AutF(P ) is determined by Lemma 2.6. By Table 2.2, all of these fusion systems are exotic if
p ≥ 7. If p = 5, then the fusion systems of type (iii) are exotic, that of type (iv) is realized
by Sp4(5), and that of type (ii) is realized by Co1.

In contrast, when p = 7, G0
∼= 2·Ω+

8 (2) ∼= W (E8)′, and V is the simple 8-dimensional FpG0-

representation, then m = min(dim(V ), p) = 7, µV (G∨) = ∆0.2 = ∆0∆3, and µV (G∨0 ) = ∆3.
By Table 2.1, and since m 6≡ 0,−1 (mod p), any simple fusion system which realizes (G, V )

must be in case (iii) or (iv), and it cannot be in case (iii) since µV (G∨) � ∆−1. So there is
exactly one simple fusion system F of this type, of type (iv) and hence with EF = {A}∪B0.
Also, AutF(A) = G must contain G0 with index 2 by the condition in the third column
of Table 2.1, so G ∼= W (E8). By Table 2.2, F is realized by E8(q) for any q such that
v7(q − 1) = 1.

5. Reduction to almost simple groups

In this section, we analyse the possibilities for (G, V ) as in Theorem 4.1 when the image
of G in PGL(V ) is not almost simple, by using Aschbacher’s classification of the maximal
subgroups of GLn(p). The almost simple cases will be handled in the later sections.

Before proving a general result, we look at representations of G ≤ Cp−1 o Sn on Fnp , acting
via monomial matrices. Two lemmas are first needed.

Lemma 5.1. Assume that p is an odd prime and H is a finite group with a Sylow p-subgroup
U of order p such that |NH(U)/CH(U)| = p − 1. Assume also that H acts faithfully and
transitively on a set Ω in such a way that each x ∈ H of order p acts via a p-cycle. Then H
acts primitively and 2-transitively on Ω, and one of the following holds:

(a) |Ω| = p and H ∼= Cp o Cp−1;

(b) |Ω| = p+ 1 and H ∼= PGL2(p);

(c) p ≤ |Ω| ≤ 2p− 1 and H = SΩ;

(d) p+ 2 ≤ |Ω| ≤ 2p− 1 and H = AΩ; or

(e) p = 7, |Ω| = 9, and H ∼= ΣL2(8).

Proof. Fix U ∈ Sylp(H) and 1 6= x ∈ U. We first show that H is primitive on Ω. If Σ is
a block of a system of imprimitivity for the action of H on Ω (thus |Σ| > 1), then x must
stabilize Σ, as otherwise x must move at least p|Σ| > p points, contradicting our assumption.
Choose Σ so that x acts non-trivially on Σ and trivially on ΩrΣ. Since H acts transitively
on any system of imprimitivity, there exists h ∈ H such that xh acts non-trivially on a
different block Σh but trivially on Σ, 〈x, xh〉 is a subgroup of order p2 in H, contradicting
the assumption that U ∈ Sylp(G). Thus H acts primitively on Ω.

We now appeal to the classification of primitive permutation groups containing a p-cycle,
as listed, for example, in [Zi]. By that theorem, one of the following holds, where n = |Ω|.
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p G0 dim(V ) µV (G∨0 ) G µV (G∨) E0 Group/E

4 ≤ n ≤ p−3
GL2(p)/Z

|Z| = (p−1, n−1)
∆0∆n−1

2
B0 E

p SL2(p)
n even

∆n−1
2

1
εGL2(p)

ε = (p−1, n+1)
∆−1∆n−1

2
H0 E

G0.2× (p−1) ∆ B0 ∪H∗ Co1 (p=5)
E (p≥7)

p
PSL2(p)

p− 2 1
2∆−1 PGL2(p) ∆−1

⋃
Hi E

(p ≥ 5)
G0.2× p−1

2 ∆0.(
p−1

2 ) B0
Sp4(5) (p=5)
E (p≥7)

p
An

(p+2 ≤ n ≤ 2p−1)
n− 1 1

2∆0 Sn ∆0 B0 PSLn(q)

2·S7 ∆0∆3 B0 E
7 2·A7 4 ∆3/2

2·S7 × 3 ∆ H0 E

G0.21 ∆ B0 ∪H∗ E

7 6·PSL3(4) 6 1
2∆ G0.21 ∆

⋃
Hi E

G0.21 ∆ B0 E

G0 × 2 ∆0∆3 B0 E7(q)
7 Sp6(2) = W (E7)′ 7 ∆3

G0 × 3 ∆−1∆3 H0 E

7 2·Ω+
8 (2) ∼= W (E8)′ 8 ∆3 G.2 ∼= W (E8) ∆0.2 B0 E8(q)

10 G0.2× 5 ∆ H0 ∪ B∗ E

11 2·M12 (V |SL2(11) ∆1/2 G0.2× 5 ∆ H0 E

type 8/2) G0.2× 5 ∆
⋃
Bi E

G0.4× 12 ∆ H0 ∪ B∗ E

13 PSU3(4) 12 1
3∆1 G0.4× 3 ∆−1∆4 H0 E

G0.4× 3 ∆0∆4
⋃
Bi E

In all cases, q is a prime power such that vp(q − 1) = 1, and ∆k/` is as in Table 4.1.

Table 4.3. Some examples

(a) n = p, and H is a subgroup of AGL1(p) = Cp o Cp−1;

(b) n = p, p = qd−1
q−1

for some prime power q and d ≥ 2, and PSLd(q) ≤ H ≤ PΓLd(q);

(c) n = p+ 1, p = 2d − 1 is a Mersenne prime, and AGL1(2d) ≤ H ≤ AGLd(2);

(d) n = p+ 1, H ∼= PSL2(p) or H ∼= PGL2(p);

(e) n = p = 11, and H = PSL2(11) or H = M11, or n = p = 23 and H = M23;

(f) n = p+ 1 = 12, and H = M11 or H = M12, or n = p+ 1 = 24 and H = M24;

(g) n = p+ 2, p = 2d − 1 a Mersenne prime, and H ∼= PSL2(2d) or PΣL2(2d); or

(h) H is An or Sn, and p ≤ n ≤ 2p− 1.
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Thus the structure of H is very tightly controlled. Since |AutH(U)| = p − 1, we can be
even more restrictive: (a) can occur only with H = Cp o Cp−1, and (d) can occur only with
H ∼= PGL2(p). In case (b), if q = rk where r is prime, then p − 1 = |AutH(U)| ≤ kd, so
(qd−1)/(q−1) ≤ kd+1, which gives (p, q, d) = (3, 2, 2) or (5, 4, 2), and H ∼= S3 or S5. In case
(c), where |AutH(U)| ≤ d, we get 2d − 1 = p = d + 1 and hence d = 2, p = 3, and H ∼= S4.
For (e) and (f), |AutH(U)| = (p − 1)/2, so these do not occur. For (g), |AutH(U)| = 2 or
2d, so this occurs only when (p, d) = (3, 2) or (7, 3), and H ∼= PSL2(4) ∼= A5, PΣL2(4) ∼= S5,
or PΣL2(8). Of course (h) can occur, but not when H = Ap or H = Ap+1. By inspection,
all of these actions are 2-transitive. �

Lemma 5.2. Fix a prime p, and a subgroup H ≤ Sp such that H ∈ G ∧p . Fix m > 1 prime
to p, and regard (Z/m)p as a Z/m[H]-module via the inclusion H ≤ Sp. Let M ≤ (Z/m)p

be a submodule, and assume that U acts non-trivially on M/qM for each prime q | m. Then
M ≥ I, where

I =
{

(x1, . . . , xp)
∣∣xi ∈ Z/m, x1 + · · ·+ xp = 0

}
.

Proof. Fix U ∈ Sylp(H). Since (m, p) = 1, M |U = CM(U)⊕ (M ∩I), so U acts non-trivially
on (M ∩ I)/q(M ∩ I) for each prime q | m. So upon replacing M by M ∩ I, we can assume
that M ≤ I.

Assume first that m is a prime; thus Z/m ∼= Fm. As an FmU-module, (Fm)p factors
as a product of irreducible modules of which one is 1-dimensional with trivial action, and
the others are permuted transitively by the action of NH(U)/U (since |AutH(U)| = p− 1).
Hence each FmH-submodule of Fpm either has trivial action of U, or contains all of the factors
which have non-trivial action and thus contains their sum I. Since the action of U on M is
non-trivial by assumption, we have M ≥ I.

Now assume that m = qa where q is prime and a > 1. By assumption, M/qM has non-
trivial action of U, and we just showed that this implies that I ≤M+(qZ/mZ)p. Hence there
is x = (x1, . . . , xp) ∈M such that x1 ≡ 1 (mod q), x2 ≡ −1 (mod q), and xi ≡ 0 (mod q) for
each i ≥ 2. Then qa−1x and its U-translates generate qa−1I, so qa−1I ≤ M . Since qa−2x ≡
(qa−2,−qa−2, 0, . . . , 0) (mod qa−1I) (recall that M ≤ I), we have (qa−2,−qa−2, 0, . . . , 0) ∈M ,
and hence qa−2I ≤M . Upon continuing in this way, we get I ≤M .

If m is not a prime power, the result now follows upon splitting M and I as products of
their Sylow subgroups. �

We are now ready to describe the groups and modules which appear in case (b) of Propo-
sition 4.4.

Proposition 5.3. Set G = Cp−1 o Sn (n ≥ p), and let V ∼= Fnp be the natural FpG-module

where G acts via monomial matrices. Let G ≤ G be such that G ∈ G ∧p and V |G is a
simple, minimally active module. Assume also that the image of G in PGL(V ) is not almost

simple. Let K E G be the subgroup of G acting via diagonal matrices (K ∼= Cn
p−1), and set

K = G ∩K. Then for some 1 < t | (p− 1) and some R ≤ Cp−1 × Cp−1,

K =
{

(a1, . . . , an) ∈ (Cp−1)n
∣∣ at1 = at2 = · · · = atn, (a1 · · · an, at1) ∈ R

}
;

and one of the following holds:

(a) n = p and G/K ∼= Cp o Cp−1;

(b) n = p+ 1 and G/K ∼= PGL2(p);

(c) p ≤ n ≤ 2p− 1 and G/K ∼= Sn;
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(d) p+ 2 ≤ n ≤ 2p− 1 and G/K ∼= An.

(e) p = 7, n = 9, and G/K ∼= ΣL2(8).

Proof. Set H = G/K for short, with its natural action on Ω = {1, 2, . . . , n}. If H is
intransitive on Ω, then Ω = Ω1 ∪ Ω2 with Ωi being H-invariant. Then V = FpΩ1 ⊕ FpΩ2,
a sum of FpG-submodules, which is impossible since V is assumed to be indecomposable.
Thus the action of H on Ω is transitive.

Fix U ∈ Sylp(G). By assumption, |U| = p, U 5 G, and |AutG(U)| = p − 1. Each
1 6= x ∈ U acts as a single p-cycle on Ω, since x has a single non-trivial Jordan block on
M . So by Lemma 5.1, H (as a subgroup of Sn) is one of the groups listed in (a)–(d). In
particular, H acts 2-transitively on Ω.

Set B = {a1a
−1
2 | (a1, . . . , an) ∈ K} ≤ Cp−1. Since H acts 2-transitively on Ω, any other

pair of distinct elements of Ω defines the same subgroup. Set

KB =
{

(a1, . . . , an) ∈ (Cp−1)n
∣∣ a1 ≡ · · · ≡ an (mod B)

}
.

Thus K ≤ KB. Define

Φ: KB −−−−−→ Cp−1 × (Cp−1/B) by setting Φ(a1, . . . , an) = (a1 · · · an, a1B) .

If B = 1, then each element of K acts via multiplication by scalars, so either U E G or
the image of G in PGL(V ) is almost simple. Since we assume that neither of these holds,
B 6= 1.

Fix a generator u ∈ U. Without loss of generality, we can assume that elements in Ω are
arranged so that u = (1 2 . . . p). Let H0 be the image of NH(U) in Sp via restriction of its
action. Choose a = (a1, . . . , an) such that a1a

−1
2 generates B, and set b = a−1u(a). Thus

b = (b1, . . . , bp, 1, . . . , 1), where bi ∈ B for 1 ≤ i ≤ p, b1b2 . . . bp = 1, and b2 generates B.
Since |B| is prime to p, the sequence b1, . . . , bp is not constant modulo q for any q

∣∣ |B|.
We regard b as an element of Bp ∩ K, which is a subgroup invariant under the action of
H0. By Lemma 5.2, K contains the group of all (b1, . . . , bp, 1, . . . , 1) such that bi ∈ B and
b1 · · · bp = 1. Since the action of H on Ω is 2-transitive, it now follows that

K ≥
{

(a1, . . . , an) ∈ Bn
∣∣ a1 · · · an = 1

}
= Ker(Φ) .

Set R = Im(Φ). Thus K = {a ∈ KB |Φ(a) ∈ R}, and this translates to the description of
K given above (where t = |B|). �

The possibilities in Table 4.1 where there is no G0, corresponding to point (a) in Theorem
4.1, arise in an analysis of subgroups of GLn(p) which lie in G ∧p and whose action on the
associated module is minimally active. Using Aschbacher’s classification of the maximal

subgroups of GLn(p), we restrict the options for G, leaving either almost simple groups or a
few other possibilities. The next proposition performs that reduction.

Proposition 5.4. Assume that G ∈ G ∧p , let V be a minimally active, faithful, indecomposable
FpG-module, and set n = dim(V ). Then one of the following holds.

(a) The image of G in PGL(V ) is almost simple, and p
∣∣ |F ∗(G)|.

(b) G ≤ Cp−1 o Sn (n ≥ p) and acts as a group of monomial matrices.

(c) p = 3, G ∼= 21+2
− .S3

∼= Q8.S3
∼= GL2(3), and either n = 2 and V is simple, or n = 4 and

V is non-simple of type 2/2.
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(d) p = 5, n = 4, O5′(G) ∼= C4 ◦ 21+4 or 21+4
− , and G/O5′(G) ∼= S6

∼= Sp4(2), S5
∼= SO−4 (2),

or C5 o C4. (Note that C4 ◦ 21+4
+
∼= C4 ◦ 21+4

− . If O5′(G) ∼= 21+4
− then G/O5′(G) is not

S6.)

(e) p = 7, n = 8, O7′(G) ∼= C3×21+6
+ or 21+6

+ , and G/O7′(G) ∼= S8
∼= SO+

6 (2), S7, PGL2(7),
or C7 o C6.

Proof. Fix U ∈ Sylp(G). By assumption, U 5 G, |U| = p, and |AutG(U)| = p− 1.

Case 1: Assume first that the image of G in PGL(V ) is almost simple, and set G0 =
F ∗(G) and Γ = G0/Z(G0). Thus G0 is quasisimple, Γ is simple, and we must show that
p
∣∣ |Γ|.
Assume otherwise; then p

∣∣ |Out(G0)|, and hence p
∣∣ |Out(Γ)|. Since p is an odd prime

(and clearly Γ 6∼= A6), this is impossible when Γ is an alternating or sporadic group [GL,
§ I.5]. Hence Γ is of Lie type. From the tables in [GL, § I.7] it follows that p - |Outdiag(Γ)|,
and hence that Out(Γ) possesses a normal p-complement. But then AutG(U) = 1, which
contradicts our assumptions on G.

Case 2: Assume that V is a simple FpG-module, and that the image of G in PGL(V )
is not almost simple. By the main theorem in [A1], G is contained in one of an explicit list
of geometrically defined subgroups of GLn(p), which fall into eight classes Ci for 1 ≤ i ≤ 8.
Of these, C8 consists of the subgroups Spn(p) (if n is even) and GOn(p) (for all choices of
quadratic form). If G ≤ GL(Fnp , q) for some symplectic or quadratic form q, then G is
contained in a subgroup in one of the classes Ci for this classical group.

Assume that G ≤ G ∈ Ci for i ≤ 7. Since V is simple, i 6= 1. Since p is a prime, C5 = ∅.
If i = 3, then G ≤ GLm(pk) where mk = n and k > 1, which is impossible since each Jordan
block over Fpk splits as a sum of k Jordan blocks over Fp. If i = 4 or 7, then G is contained
in a tensor product or wreath tensor product of representations, which again implies that
no element of order p acts with exactly one non-trivial Jordan block.

Now assume that i = 2, so that G ≤ G ∼= GLm(p) o Sk for some m, k such that mk = n
and k > 1. If m = 1, then we are in the situation of (b). So assume that m ≥ 2, set
H = G ∩ (GLm(p))k, and let Hi ≤ GLm(p) be the image of H under projection to the i-th
factor (1 ≤ i ≤ k). The Hi are all isomorphic, since otherwise G/H would not permute
them transitively, contradicting the assumption that V is simple. If p

∣∣|Hi| for all i, then
since p2 - |G|, the elements of order p in G act with m ≥ 2 non-trivial Jordan blocks, a
contradiction. Thus there is an element of order p which non-trivially permutes some set of
the Hi, this acts on V with k ≥ 2 non-trivial Jordan blocks, which again is a contradiction.

We are left with the case where G ≤ G ∈ C6. Then for some prime r|(p − 1) and some

k ≥ 1, n = rk and G = NGLn(p)(K) where K ∼= Cp−1 ◦ r
1+2k
± acts as a group of monomial

matrices whose non-zero entries are r-th roots of unity. Also, G/K ∼= C
Out(K)

(Cp−1) is

isomorphic to Sp2k(r), or (if r = 2 and 4 - (p− 1)) to GO±2k(r). In particular, p
∣∣ |Sp2k(r)|.

Set k = Fp, or k = Fp2 if r = 2. The action of the subgroup (k×◦r1+2k).(Sp2k−2(r)×Sp2(r))

on k⊗FpV factors as a tensor product V ⊗kW , where (k×◦r1+2(k−1)).Sp2k−2(r) acts on V with

dimk(V ) = rk−1, and (k× ◦ r1+2).Sp2(r) acts on W with dimk(W ) = r. So if p
∣∣|Sp2k−2(r)|,

then the Jordan blocks for elements of order p occur in multiples of r, which is impossible
since there is a unique non-trivial block. We conclude that p|(r2k − 1), so p|(rk ± 1), and
dim(V ) = rk ≡ ±1 (mod p).
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For each non-central element x ∈ K, CSp2k(r)(x) has index r2k − 1 in the symplectic

group and hence has order prime to p. Thus C
K

(U) = Z(K) = Autsc(V ), and N
KU

(U) =

UAutsc(V ) ∼= Cp(p−1). Also, V is irreducible as an FpK-module and hence as an Fp[KU]-

module, and the KU-Green correspondent of V is indecomposable as an Fp[UAutsc(V )]-
module and hence of dimension at most p. Since dim(V ) ≡ ±1 (mod p), the Green corre-
spondent either has dimension 1, in which case dim(V ) = p+ 1 since V is minimally active,
or it has dimension p− 1, in which case dim(V ) = p− 1.

Thus p = dim(V ) ± 1 = rk ± 1, which is possible only if r = 2 and p is a Fermat or

Mersenne prime. The action of U ∼= Cp on the symplectic space K/Autsc(V ) ∼= (F2)2k has

at most 2k eigenvalues (in the algebraic closure F2), and since |AutG(U)| = p−1, they must
include all (p− 1)-th roots of unity other than 1. Thus p− 1 ≤ 2k, so (p, k) = (3, 1), (5, 2),
or (7, 3), which correspond to cases (c)–(e) listed above. Note that 7 - |O−6 (2)|, so this case
cannot occur.

Set G0 = G ∩ K, and regard K/Z(K) ∼= F2k
2 as an F2[G/G0]-module. Since G contains

U ∼= Cp and |AutG(U)| = p − 1 (and since 2k = p − 1 in each case), K/Z(K) is a simple

module. Hence either G0 ≤ Z(K), or G0Z(K) = G. By Lemma 5.1 (and since |AutG(U)| =
p−1), we have G/G0

∼= S3 in case (c); G/G0
∼= S6, S5, or C5oC4 in case (d); or G/G0

∼= S8,

S7, PGL2(7), or C7 o C6 in case (e). So G0 � Z(K), since otherwise, either the image of
G in PGL(V ) would be almost simple or U would be normal in G. We are left with the
possibilities listed in the proposition.

Case 3: Now assume that V is not simple. Let 0 = V0 < V1 < · · · < Vk = V be FpG-
submodules such that Wi = Vi/Vi−1 is simple for each 1 ≤ i ≤ k. Set Hi = CG(Wi) for each
i. Thus G/Hi acts faithfully on Wi. Since Op(G) = 1 by assumption, G acts faithfully on

W1 ⊕ · · · ⊕Wk (cf. [Go, Theorem 5.3.2]), so
⋂k
i=1Hi = 1.

If H E G and p
∣∣ |H|, then since p2 - |G|, H ≥ Op′(G). Hence there is some 1 ≤ ` ≤ k such

that p - |H`|. Then V = CV (H`) ⊕ [H`, V ] as FpG-modules, dim(CV (H`)) ≥ dim(W`) > 0,
and V is indecomposable, so [H`, V ] = 0 and hence H` = 1. Thus G acts faithfully on W`,
and (G,W`) is one of the pairs listed in cases (a)–(e).

Set K = Op′(G). Let IrrV (K) be the set of irreducible FpK-characters which appear as
summands of V |K , and similarly for IrrWi

(K). For each χ ∈ IrrV (K), let Vχ ≤ V |K be
the submodule generated by all irreducible submodules with character χ. Thus V |K is the
direct sum (as FpK-modules) of the Vχ for χ ∈ IrrV (K). Since V is FpG-indecomposable,
the action of G on IrrV (K) induced by conjugation must be transitive. In particular, since
the subsets IrrWi

(K) are non-empty and G-invariant, we have IrrWi
(K) = IrrV (K) for each

1 ≤ i ≤ k.

If the image of G in PGL(W`) is almost simple, then K is cyclic of order dividing p − 1,
and IrrW`

(K) = IrrV (K) contains just one character. Hence K acts on V via multiplication
by scalars, G/K is almost simple, and (G, V ) is as in case (a).

Now assume that (G,W`) is in one of the cases (b)–(e). Let G be the maximal group listed

in that case (thus G ≤ G), and set K = Op′(G). In case (b), G/K acts 2-transitively on

the set IrrW`
(K) by Proposition 5.3, so after restriction to K, its elements are all distinct.

(By the description of K in Proposition 5.3, they cannot be pairwise isomorphic.) Hence
dim(V ) ≥ 2 dim(W`) ≥ 2p, which contradicts Proposition 3.7(c) (dim(V ) ≤ p+ 1).
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In each of cases (c)–(e), W`|K is FpK-simple, so IrrV (K) contains only its character. Hence
dim(V ) = m dim(W`) = m(p − 1) for some m ≥ 2. Since dim(V ) ≤ p + 1 by Proposition
3.7(c), this is possible only when p = 3 and m = 2, as described in case (c). �

We finish the section with a computation which was used in the proof of Theorem 4.1
to show that the representations in case (e) of Proposition 5.4 cannot be used to construct
simple fusion systems.

Lemma 5.5. Set G0 = 21+6
+ , let V be the unique faithful, irreducible F7[G0]-module, and set

G = NGL(V )(G0). Fix U ∈ Syl7(G). Then G/G0
∼= C3×SO+

6 (2) ∼= C3×S8, |NG(U)/U| = 62,
and µV (G∨) = ∆3 (see Notation 2.9).

Proof. Since V is the unique faithful, irreducible F7[G0]-module, OutG(G0) = Out(G0) ∼=
SO+

6 (2) ∼= S8, where G0/Z(G0) is the natural module for S8. Since CGL(V )(G0) = Autsc(V ) ∼=
C6, this proves that G/G0

∼= C3 × S8. Set Z = Z(G0), Ẑ = Autsc(V ) ∼= C3 × Z, and

Ĝ0 = G0Ẑ ∼= C3 ×G0.

Now, OutG(G0) is contained in the symplectic group Sp6(2), which acts transitively on

the 63 involutions in Ĝ0/Ẑ ∼= G0/Z. Since 72 - |Sp6(2)|, this means that CG(x) has order

prime to 7 for each x ∈ Ĝ0rẐ, and hence that CG(U) = U × Ẑ and |NG(U)/U| = 62. So
by Proposition 3.13(b), |G∨/U| = |µV (G∨)| = 6, and hence µV (G∨) = ∆m for some m.

Fix g ∈ G∨ such that cg has order 6 in AutG(U). Then g6 = 1 since |G∨/U| = 6.

Identify G0 = H ◦H ◦H (central product) and V = W ⊗W ⊗W , where H ∼= D8, W is a
faithful, irreducible F7H-module (dim(W ) = 2), and where G0 acts on V as the tensor power
of the H-action on W . Choose h0 ∈ NAut(W )(H)rH of order 2 (since GL2(7) contains an
extension of F×49 by a field automorphism, NAut(W )(H) contains a dihedral subgroup of order
16). Define h ∈ G = NGL(V )(G0) by setting h(w1⊗w2⊗w3) = h0(w2)⊗h0(w3)⊗h0(w1). Since

the action of h on G0/Z ∼= C6
2 permutes a basis transitively, the image of h in G/Ĝ0

∼= S8

is a 6-cycle, thus conjugate to the image of g. Also, |h| = 6, and χV (h) = 0 since V has a
basis permuted by h with cycles of length 6 and 2.

Since CG0/Z(h3) = [h3, G0/Z] (both of rank 3), Ĝ0/Ẑ ∼= G0/Z ∼= C6
2 is projective and

hence cohomologically trivial as an F2[〈h〉]-module. Hence all subgroups of Ĝ0〈h〉/Ẑ com-

plementary to Ĝ0/Ẑ are conjugate to each other. We already saw that g is G-conjugate

to some element of order 6 in the coset hĜ0, and hence g is conjugate to hz for some

z ∈ Ẑ = Autsc(V ). Thus for some 6th root of unity ζ, χV (g) = χV (hz) = ζ·χV (h) = 0.
Proposition 3.13(c.ii) now implies that µV (G∨) = ∆3. �

6. PSL2(p)

Recall Definition 0.1: for a finite simple group L, we say that a finite group G is of type L
if Z(G) is cyclic and F ∗(G)/Z(G) ∼= L. This concept provides a convenient way to organize
the search for all pairs (G, V ), where G ∈ G ∧p , V is minimally active, and the image of G in
PGL(V ) is almost simple. So in the remaining sections, we go systematically through the
list of non-abelian simple groups L, and list for each prime p the groups G ∈ G ∧p of type L
and their indecomposable, minimally active modules.

In this section, we handle the case where L is a simple group of Lie type in defining
characteristic p. If L ∈ Gp, then L is isomorphic to PSL2(p), as all other groups of Lie type
have Sylow p-subgroups of order greater than p. We are thus reduced to the cases where G0
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is isomorphic to PSL2(p) or SL2(p), and consider the simple and indecomposable modules
for SL2(p).

There are p different simple modules V1, . . . , Vp for SL2(p), where dim(Vi) = i. (One way
to construct them is to let V2 be the natural module, and set Vi = Si−1(V2) for 3 ≤ i ≤ p.)
Hence by Proposition 3.7(c), the dimension of each indecomposable minimally active FpG-
module is at most p+ 1. To determine all such modules, we describe the projective covers of
the Vi, referring to [Al, pp. 75–79] for more detail. (Although Alperin’s descriptions are only
for an algebraically closed field, since all simple modules are defined over Fp the projectives
must be so as well.)

The module Vp is projective of dimension p. For 2 ≤ i ≤ p− 2, the projective cover of Vi
is of shape

Vi/(Vp−1−i ⊕ Vp+1−i)/Vi,

while the projective covers of V1 and Vp−1 are of shape V1/Vp−2/V1 and Vp−1/V2/Vp−1, re-
spectively. Here ‘/’ delineates the radical layers, with the socle appearing on the right, so
that B is the submodule and A the quotient in A/B.

This yields indecomposable modules Vi/Vp−1−i (for each 1 ≤ i ≤ p − 2) and Vi/Vp+1−i
(each 2 ≤ i ≤ p− 1), of dimension p− 1 and p+ 1 respectively (and they are all minimally
active by Lemma 3.8). Any minimally active indecomposable modules not yet found must
have dimension p or p + 1. If dim(V ) = p, then V is projective by Proposition 3.7(a), so
V ∼= Vp or V is the projective cover of the trivial module V1/Vp−2/V1 as described above.

If V has dimension p+ 1 and has at least three composition factors, then there are either
three factors including a copy of V2, or four factors including two copies of V1. In the former
case, either V or V ∗ has a simple socle, and so is a quotient module of one of the projectives
above, which by inspection cannot occur. If there are four composition factors, then two are
trivial, so at least one of the other two must have non-trivial 1-cohomology. By Lemma 3.11,
Vp−2 is the only such module, so V would have this and three trivial modules as composition
factors, which is impossible by the above discussion.

We have now shown that each minimally active indecomposable module V is of one of the
following types:

• V ∼= Vi for i > 1;

• V ∼= Vi/Vp±1−i; or

• V ∼= V1/Vp−2/V1 the projective cover of the trivial module V1.

Also, the action of SL2(p) on each Vi extends to one of GL2(p) (being a symmetric power of
the natural module).

We claim that the action of G0 = SL2(p) on each of the non-simple indecomposable
modules listed above also extends to an action of G = GL2(p). To see this, fix i, and let
U1, . . . , Up−1 be the distinct simple G-modules whose restriction to G0 is isomorphic to Vi.
(These are obtained by taking one such module, and tensoring it by each of the 1-dimensional
G/G0-modules.) By Frobenius reciprocity, the induced module Vi|G is isomorphic to the
direct sum of the Uj. Hence the natural projection of P (Vi)|G onto Vi|G (where P (−) denotes

projective cover) lifts to a homomorphism Φ =
⊕p−1

j=1 Φj from P (Vi)|G to
⊕p−1

j=1 P (Uj). Since

by definition, the kernel of the natural projection P (Uj) −−−→ Uj is contained in the radical
of P (Uj) and hence in all maximal submodules, Im(Φ1) = P (U1), Im(Φ2|Ker(Φ1)) = P (U2),
etc. Thus Φ is onto. Also, dim(P (Uj)) ≥ dim(P (Vi)) for each j since P (Uj)|G0 contains
P (Vi) as a direct summand. So by comparing dimensions, we see that Φ is an isomorphism
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and P (Uj)|G0
∼= P (Vi). Thus for each i, the action of G0 on P (Vi) extends to G, and hence

the same holds for the quotient modules of these projective covers listed above.

We next determine the normalizerNGL(V )(G0), when V is one of theG0-modules just listed.
We first consider the centralizer CGL(V )(G0), which obviously contains the scalar matrices
Autsc(V ). If V is a simple FpG0-module, then it is absolutely simple by Lemma 3.4(c), and
hence CGL(V )(G0) = Autsc(V ) by Schur’s lemma. If V acts indecomposably with socle Vi
and quotient Vp±1−i (both simple), and g ∈ CGL(V )(G0), then g stabilizes Vi, and g|Vi = u·Id
and g ≡ u′·Id (mod Vi) for some u, u′ ∈ F×p . Also, u = u′ since V is indecomposable,
and g has the form g(x) = ux + ψ(x + Vi) for some ψ ∈ HomG0(V/Vi, Vi). Thus either
CGL(V )(G0) = Autsc(V ), or V/Vi ∼= Vi (so i = (p ± 1)/2) and CGL(V )(G0) ∼= Autsc(V ) × Cp.
A similar argument proves that CGL(V )(G0) = Autsc(V )×Cp when V is the projective cover
of the trivial module.

Thus CGL(V )(G0)·G0 = G0 ◦ Autsc(V ) or (G0 ◦ Autsc(V )) × Cp in all cases. Also, since
NGL(V )(G0)/G0·CGL(V )(G0) is a subgroup of Out(G0) ∼= C2, the normalizer NGL(V )(G0) con-

tains CGL(V )(G0)·G0 with index at most 2. Thus G ≤ G, where G (as defined in Section 4)
has index 1 or p in NGL(V )(G0), and in all cases has the form (G0 ◦ Autsc(V )).2. (As noted
above, the action of SL2(p) or PSL2(p) on V always extends to the outer automorphism.)

By Proposition 3.13(a), it is only the (p+ 1)-dimensional modules that might not produce
reduced fusion systems. To know whether they do or not, we need to understand the two
modules in the socle of V |N (recall N = NG(U)).

Assume that V is an extension of Vi (the submodule) by Vj, where i + j = p + 1. Let
ζ ∈ F×p be a generator, and fix the following elements in GL2(p):

g =

(
ζ 0
0 1

)
, h =

(
1 0
0 ζ

)
, u =

(
1 1
0 1

)
.

Thus U = 〈u〉, gu = uζ , and hu = uζ
−1

. On the natural module V2, g acts with eigenvalues
{ζ, 1} and h with eigenvalues {1, ζ}, beginning with those of the socle.

Identify Vi = Symi−1(V2) and Vj = Symj−1(V2). Then g, h have eigenvalues on Vi and Vj
as follows:

Vi Vj

g ζ i−1, ζ i−2, . . . , ζ, 1 ζj−1, ζj−2, . . . , ζ, 1

h 1, ζ, ζ2, . . . , ζ i−1 1, ζ, ζ2, . . . , ζj−1

(in each case from socle to top). In general, these actions of g and h don’t extend to an

action on V (while the action of gh−1 ∈ SL2(p) does extend). So let z = ζ·IdVj , let ĝ, ĥ have
the actions of g, h on Vi, but the actions of gzi−1 and hzi−1 on Vj. Since (i− 1) + (j− 1) ≡ 0
(mod p− 1), we get the following eigenvalues:

Vi Vj

ĝ ζ i−1, ζ i−2, . . . , ζ, 1 1, ζ−1, ζ−2, . . . , ζ−j+1

ĥ 1, ζ, ζ2, . . . , ζ i−1 ζ i−1, ζ i, ζ i+1, . . . , 1

Then ĝ and ĥ have the same action on the top of Vi and the socle of Vj, so they do extend

to actions on V . In particular, ĝ ∈ G∨ and µV (ĝ) = (ζ, ζ i−1), while h∗
def
= ĥ ◦ ζ1−i·IdV ∈ G∨

and µV (h∗) = (ζ−1, ζ1−i).
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We conclude that µV (G∨) = ∆i−1. Thus each of the ∆k except ∆0 can appear as µV (G∨)

for some choice of V . When i = p− 1 and j = 2, we get µV (G∨) = ∆−1.

This yields the following proposition.

Proposition 6.1. Let G ∈ G ∧p be a group of type PSL2(p), and let V be a non-trivial,
minimally active module for G. Then one of the following holds:

(i) V |G0
∼= Vi is simple for i ≥ 2;

(ii) V |G0
∼= Vp−1−i/Vi is indecomposable of dimension p− 1;

(iii) V |G0 is projective of dimension p, of the form V1/Vp−2/V1;

(iv) V |G0
∼= Vp+1−i/Vi is indecomposable of dimension p+ 1.

Furthermore, G is contained in (G0 ◦ Z(GL(V ))) .2. In case (iv), µV (G) ≤ ∆i, and hence
µV (G) = ∆−1 only when i = p− 1.

7. Sporadic groups

In this short section, we determine all minimally active modules for those sporadic groups
(and their extensions) which lie in G ∧p . For the reader’s convenience, we include a table
listing, for each simple sporadic group G0, all primes p for which the Sylow p-subgroup has
order p. Those primes for which G0 ∈ G ∧p are in bold, and the other primes for which
Aut(G0) ∈ G ∧p are in italics.

Group Primes Group Primes Group Primes

M11 5; 11 HS 7; 11 Ru 7, 13; 29

M12 5; 11 McL 7 ; 11 ON 5, 11; 31 ; 19

M22 5; 11 ; 7 Suz 7, 11; 13 Fi22 7; 11,13

M23 5; 7,11,23 Co3 7; 11,23 Fi23 7, 11, 17; 13,23

M24 5, 11; 7,23 Co2 7, 11; 23 Fi′24 11, 13, 17; 29 ; 23

J1 3, 7, 11; 5,19 Co1 11, 13; 23 Ly 7; 11,31,37,67

J2 7 He 17 B 11, 13, 17, 19; 23,31,47

J3 5,19 ; 17 HN 7, 11; 19 M 17, 19, 29, 41;23,31,47,59,71

J4 5, 23;7,29,31,37,43 Th 13, 19; 31

By [Cr2], if G is a sporadic simple group and p
∣∣ |G|, then with a few exceptions when p = 3

(none of which are in G3), G = 〈t, y〉 where |t| = 2 and |y| = p. So by Proposition 3.9(b),

for each central extension G̃ of G of degree prime to p, each minimally active FpG̃-module
has dimension at most 2p− 2.

The table [Js, Table 1] provides a helpful list of the minimal degrees for sporadic groups
for each prime. This allows us to eliminate almost all cases from the above table, just by
applying the bound dim(V ) ≤ 2p− 2. We are left with the following possibilities for G0 (or
for G0.2 when G0 /∈ G ∧p ):
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Prime Possibilities for G0 or G0.2

7 2·J2, 6·Suz

11 M12.2, 2·M12.2, J1, M22.2, 2·M22.2, [6·Suz]

13 [6·Suz.2], 2·Co1

19 [3·J3.2]

Since our modules are defined over Fp and are minimally active, Z(G0) must act via
multiplication by scalars, and hence |Z(G0)|

∣∣ (p− 1) and Z(G0) is central in G in all cases.
This criterion allows us to eliminate the three entries in brackets in the above table. Note
that the outer automorphisms of 6·Suz and 3·J3 invert the centres: as described, e.g., in the
tables in [GL, § I.1.5].

When p = 7 and G0 = 2·J2, the two 6-dimensional modules over the algebraically closed
field amalgamate into a single 12-dimensional module over F7: this can be seen either by
computer or from the Brauer character table on [JLPW, p.105], where we see that there are
irrationalities in the Brauer character of this representation, which from [JLPW, p.289] we
see require F49.

By Proposition 3.9, if an FpG-module V is minimally active (for G ∈ Gp), and dim(V ) > p,
then dim(V ) − p divides |NG(U)/U|, and dim(V ) = p + 1 if NG(U)/U is abelian. We can
thus eliminate the FpG-modules in the following dimensions:

p Group dim(V ) dim(V )− p NG(U)/U

7 6·Suz 12 5 6·((3× A4).2)

11 J1 14 3 10

11 M12.2 16 5 10

11 M22.2 20 9 10

13 2·Co1 24 11 2·((6× A4).2)

We are left with the following cases, all for p = 11. For J1, there is one 7-dimensional
module. For 2·M12.2, there are two pairs of modules of dimension 10 and one pair of
dimension 12 (where the modules in each pair are isomorphic after restriction to 2·M12).
For 2·M22.2, there are two pairs of modules of dimension 10. All of these modules are
minimally active.

We have nearly proved the following proposition.

Proposition 7.1. Let G ∈ G ∧p be a group of sporadic type, and let V be a non-trivial,
minimally active indecomposable module for G. Let G0 = E(G) be the unique quasisimple
normal subgroup of G. Then p = 11, and one of the following holds:

(i) G0
∼= 2·M12, G/Z(G) ∼= M12:2, and dim(V ) = 10 (two possible F11G0-modules) or 12

(one such module); or

(ii) G0
∼= 2·M22, G/Z(G) ∼= M22:2, and dim(V ) = 10 (two possible F11G0-modules); or

(iii) G0
∼= G/Z(G) ∼= J1, and dim(V ) = 7 (one module).

Proof. If V is simple, then we are done. So assume that V is indecomposable and not
simple. In particular, dim(V ) ≤ p + 1 by Proposition 3.7(c). Hence V has one non-trivial
composition factor W of dimension at most p and the others are trivial. Then Z(G0) = 1,
so G0

∼= J1, dim(W ) = 7, W is self-dual since it is the only module in that dimension, and
hence H1(G0;W ) = 0 by Lemma 3.11. So this case is impossible. �
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8. Alternating groups

In this section we determine all minimally active modules for almost quasisimple groups
associated to the alternating groups.

Proposition 8.1. Let G ∈ G ∧p be a group of type An for n ≥ 5, and set G0 = E(G). Let V
be a non-trivial, minimally active indecomposable module for G. Then one of the following
holds:

(i) G0
∼= Ap, G/Z(G) ∼= Sp, and V |G0 is a subquotient of the permutation module, which

has structure 1/W/1 for W of dimension p− 2;

(ii) G0
∼= Ap+1, G/Z(G) ∼= Sp+1, and V |G0 is the p-dimensional non-trivial summand of

the permutation module;

(iii) G0
∼= An, G/Z(G) ∼= An or Sn for p + 2 ≤ n ≤ 2p − 1, and V |G0 is the (n − 1)-

dimensional summand of the permutation module;

(iv) p = 5, G0
∼= A5

∼= PSL2(5), G/Z(G) ∼= S5
∼= PGL2(5), and V is one of the modules

described in Proposition 6.1 other than those in (i);

(v) p = 5, G0
∼= 2·A5

∼= SL2(5), G/Z(G) ∼= S5, and V is as in Proposition 6.1;

(vi) p = 5, G0
∼= 2·A6, G/Z(G) ∼= S6, and dim(V ) = 4 (two modules);

(vii) p = 7, G0
∼= 2·A7, G/Z(G) ∼= S7, and dim(V ) = 4;

(viii) p = 7, G0
∼= 2·A8 or 2·A9, G/Z(G) ∼= S8 or A9, and dim(V ) = 8 (one or two

F7G0-modules, respectively); or

(ix) p = 7, G0
∼= 2·A7, G/Z(G) ∼= S7, dim(V ) = 8, and V has the form W/W where W is

as in (vii).

Proof. By a result of Miller [Mi, pp.29–30], for each 3 < p ≤ n, An is generated by an element
t of order 2 and an element x of order p (and this is easily seen to hold when (p, n) = (3, 5)).
Thus by Proposition 3.9(b), each minimally active FpAn- or Fp[2·An]-module has dimension
at most 2p−2. Our knowledge of small-dimensional representations of these groups is rather
extensive, which makes these cases relatively easy to handle.

The smallest (faithful) simple module for Sn is the module arising from the permutation
module, having dimension n − 1 − κn, where κn = 0 if p - n and κn = 1 if p | n. By [Jam,
Theorem 7 and Table 1] or [BK, Lemma 1.18], if p ≥ 7 and n ≥ 9, or p = 5 and n ≥ 11, the
dimension of each larger FpSn-module is strictly greater than n(n− 5)/2, and hence that of
each larger FpAn-module is greater than n(n − 5)/4. For each pair (p, n) such that n ≥ 10
and p ≤ n < 2p, n(n − 5)/4 > 2p − 2 except when p = n = 11, and the smallest faithful
F11A11-module other than those in point (i) has dimension 36 (see [JLPW]). We are thus
reduced to checking the cases 5 ≤ n ≤ 9.

For n ≥ 12, the smallest faithful representation of 2·An is of dimension 2b(n−2−κn)/2c, where
κn is as above (see, e.g., [KT]). If V is minimally active, we have dim(V ) ≤ 2p− 2 ≤ 2n− 2.
Hence

2n− 2 ≥ 2b(n−2−κn)/2c,

which yields n ≤ 11. (Note that since n < 2p, κn = 0 whenever n 6= p, in particular, when
n is not prime.)

We can get yet more restrictions based on Green correspondence. Assume that G is a
central extension of An for p ≤ n ≤ 2p − 1, and let V be an indecomposable minimally
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active FpG-module. Recall (Proposition 3.7(c,e)) that the Green correspondent of V is an
absolutely simple NG(U)/U-module.

(1) If p ≤ n ≤ p+ 2, then NAn(U)/U is cyclic of order p− 1 or (p− 1)/2, so NG(U)/U is
abelian, and dim(V ) ≤ p+ 1 by Proposition 3.9(a).

(2) If n = p+3, then NAn(U)/U ∼= C3oCp−1. Hence NG(U)/U has an abelian subgroup of
index 2, so its irreducible representations have dimension at most 2, and dim(V ) ≤ p+2.

(3) If n = p + 4 and G = 2·An (and acts faithfully on V ), then NG(U)/U contains a
subgroup H ∼= B ◦ 2·A4 with index 2, where B is abelian. Since the absolutely irre-
ducible representations of H on which the central involution acts non-trivially are all
2-dimensional, either dim(V ) ≤ p, or dim(V ) = p+ 2 or p+ 4.

G0 p dimen. p dimen. G0 p dimen. p dimen.

A5 3 3∗, 3∗ 5 Prop.6.1 2·A5 3 2∗, 2∗ 5 Prop.6.1

A6 5 8(1) 2·A6 5 4,4

3·A6 5 3 - (p− 1) 6·A6 5 6 - (p− 1)

A7 5 8(1) 7 10(1) 2·A7 5 4∗, 4∗ 7 4

3·A7 5 3 - (p− 1) 7 6†, 9† 6·A7 5 6 - (p− 1) 7 6†, 6†

A8 5 none 7 none 2·A8 5 8(2) 7 8

A9 5 none 7 none 2·A9 5 8(3), 8(3) 7 8,8

2·A10 7 none 2·A11 7 8 11 16(1)

Table 8.1. Modules of dimension ≤ 2p− 2 for quasisimple alternating groups

Thus we can restrict attention to faithful representations of 2·An for n ≤ 11 and of An for
n ≤ 9, as well as those of 3·An and 6·An for n = 6, 7. All simple modules for all primes are
known for these alternating groups, and we can simply check them one by one and prime
by prime. This is done in Table 8.1, where (based on [JLPW]) we list dimensions of all

irreducible FpG0-modules of dimension at most 2p− 2 when G0 is a central extension of An
for p ≤ n ≤ 2p− 1, except for the natural modules for An described in points (i)–(iii).

For the modules listed in the table, an asterisk (−)∗ means that it is not realized over
Fp (hence does not give rise to any minimally active FpG0-module); a dagger (−)† means
that the module does not extend to Sn (when n = p or p + 1), and a superscript (−)(i)

for i = 1, 2, 3 means that it is not minimally active by point (i) above. Note that the
groups 3·S7 and 6·S7 are “twisted” in the sense that their outer automorphisms invert
their centres, so there are no indecomposable modules for these groups over F7. The re-
maining modules (aside from the case (n, p) = (5, 5) of points (iv) and (v)) are shown in
boldface, and are, in fact, minimally active, as can be seen by using the Magma command
IndecomposableSummands(Restriction(V,U)) to check the block sizes. These are precisely
the modules listed in points (vi)–(viii).

Now assume that V is indecomposable but not simple. By Proposition 3.7(c), dim(V ) ≤
p+ 1. If one or more of the simple components of V is 1-dimensional, then G0

∼= An, and V
contains a simple composition factor V0 of dimension p − 2 by Lemma 3.11. Hence we are
in the situation of (i).
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The only remaining possibility is the case where p = 7 and G0
∼= 2·A7, and V is an

indecomposable extension of the 4-dimensional module in Table 8.1 by itself. By [Al, Propo-
sition 21.7], there is at most one such extension. From the tables in [JLPW], we see that
the restriction to 2·A7 of the simple 8-dimensional 2·A8-module of case (viii) has this form.
Hence there is a module of this type, and it is the restriction of a 2·S7-module. �

9. Groups of Lie type: notation and preliminaries

We continue our notation that G is a finite group, U is a Sylow p-subgroup of G, and
x ∈ U has order p, writing N = NG(U) and C = CG(U), with C = U× C ′.

In this section we consider groups of Lie type, and use induction to reduce the problem
of classifying minimally active modules to a small set of situations, essentially where the
centralizer is abelian. We start with a brief overview of the orders of finite simple groups
of Lie type, using [GL] or [MT] as a reference. We assume a passing familiarity with basic
concepts from algebraic groups, such as simple connectivity (see [GLS3] for a brief outline
of the background assumed, and [MT] for more details). It will be useful, in many cases, to
write SL±n (q) or E±6 (q), where

SL+
n (q) = SLn(q), SL−n (q) = SUn(q), E+

6 (q) = E6(q), E−6 (q) = 2E6(q).

If G = rG(q) is a finite group of Lie type of universal type, then its order is

|G| = qN
∏
d

Φd(q)
ad ,

a power of q times a product of cyclotomic polynomials. However, to get the order of the
associated simple group (if there is one), we must divide this order by z = |Z(G)|, an integer.
The polynomials in q are given in Tables 9.1 and 9.2. We have dealt with the case where
p | q in Section 6, where we saw that the only possibility is SL2(p). So we assume for the
rest of the paper that gcd(p, q) = 1.

G |G|q′ |Z(G)| d with ad = 1

SL2(q) (q − 1)(q + 1) (2, q − 1) 1, 2

SLεn(q)

(n ≥ 3)

n∏
i=2

((εq)i − 1) (n, q − ε) bn/2c+1,...,n−2,n− 1, n

Sp2n(q),
Spin2n+1(q)

n∏
i=1

(q2i − 1) (2, q − 1) bn/2c+1,...,n−1,n (odd only)
n+1,...,2n−2,2n (even only)

Spin+
2n(q) (qn − 1)

n−1∏
i=1

(q2i − 1) (4, qn − 1) or
(2, q − 1)2

bn/2c+1,...,n− 1, n (odd only)
n+1,...,2n−4,2n− 2 (even only)

Spin−2n(q) (qn + 1)
n−1∏
i=1

(q2i − 1) (4, qn + 1) bn/2c+1,...,n− 1 (odd only)
n,...,2n−4,2n− 2, 2n (even only)

Table 9.1. Orders of classical groups of Lie type (regular d in bold)
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G |G|q′ |Z(G)| d with ad = 1
2B2(q) Φ1Φ4 1 1, 4′, 4′′

2G2(q) Φ1Φ2Φ6 1 1, 2, 6′, 6′′

2F4(q) Φ2
1Φ2

2Φ2
4Φ6Φ12 1 6, 12′, 12′′

G2(q) Φ2
1Φ2

2Φ3Φ6 1 3, 6
3D4(q) Φ2

1Φ2
2Φ2

3Φ2
6Φ12 1 12

F4(q) Φ4
1Φ4

2Φ2
3Φ2

4Φ2
6Φ8Φ12 1 8, 12

E6(q) Φ6
1Φ4

2Φ3
3Φ2

4Φ5Φ2
6Φ8Φ9Φ12 (3, q − 1) 5,8, 9, 12

2E6(q) Φ4
1Φ6

2Φ2
3Φ2

4Φ3
6Φ8Φ10Φ12Φ18 (3, q + 1) 8, 10,12, 18

E7(q) Φ7
1Φ7

2Φ3
3Φ2

4Φ5Φ3
6Φ7

Φ8Φ9Φ10Φ12Φ14Φ18
(2, q − 1) 5,7, 8,9, 10,12,14, 18

E8(q) Φ8
1Φ8

2Φ4
3Φ4

4Φ2
5Φ4

6Φ7Φ2
8Φ9

Φ2
10Φ2

12Φ14Φ15Φ18Φ20Φ24Φ30
1 7,9,14,15, 18,20, 24, 30

Table 9.2. Orders of exceptional groups of Lie type (regular d in bold)

In Table 9.2, the values d = 4′, 4′′, etc. represent the factorizations of the cyclotomic
polynomials Φd(q):

G = 2B2(q) q = 22m+1 d = 4 Φ4(q) = (q +
√

2q + 1)(q −
√

2q + 1)

G = 2G2(q) q = 32m+1 d = 6 Φ6(q) = (q +
√

3q + 1)(q −
√

3q + 1)

G = 2F4(q) q = 22m+1 d = 12 Φ12(q) = (q2 + q
√

2q + q +
√

2q + 1)

·(q2 − q
√

2q + q −
√

2q + 1).

These factors are the orders of the largest cyclic subgroups in G of order dividing Φd(q).

We claim that

G/Z(G) ∈ Gp =⇒ p - z and hence G ∈ Gp. (1)

Assume otherwise: let G = rG(q) be a counterexample. Since p is odd and p | z, z is not
a power of 2, and hence G = An or E6. If G = E6, then z = (3, q ± 1), so p = 3, which is
impossible since 34

∣∣ (q2 − 1)4
∣∣ |G| for all q prime to 3 (Table 9.2). Thus G = SLεn(q) and

p | z = (n, q − ε). So n ≥ 3 and (q − ε)3 - |G|, which by Table 9.1 implies n = p = 3. But
then 3 | (q − ε) implies 32 | (q3 − ε), so 33

∣∣ |G| and 32
∣∣ |G/Z(G)|. This proves (1). In

particular, since G ∈ Gp,

there exists a unique d such that p | Φd(q), and for this d, p2 - Φd(q), and ad = 1. (2)

We now want to understand the subgroups N = NG(U) and C = CG(U), which are closely
related to the integer d, and not really dependent on the prime p.

We start by assuming that G is simply connected, e.g., SLn. In this case, a theorem
of Steinberg (see [MT, Theorem 14.16]) states that, for each semisimple element s ∈ G,
the centralizer CG(s) is connected. A semisimple element s ∈ G is regular if, inside the
corresponding algebraic group G, dim(CG(s)) is minimal among all semisimple elements, so
equal to the rank of G. By [MT, Corollary 14.10], if s is regular then CG(s)0 = T for any
maximal torus T containing s, and hence s is contained inside a unique maximal torus T
and CG(s) = T.

Let F be a Frobenius endomorphism such that G = GF , and assume for the moment that
G is not a Ree or Suzuki group. To continue we need one fact from the theory of d-tori.
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Rather than giving a formal definition of d-tori here, we instead refer to [MT, Section 25],
and in particular to [MT, Definition 25.6]. The property we need is that by [MT, Theorems
25.14 and 25.19], if ad = 1, then for the finite group G = GF , there exists a cyclic torus
Td = TFd (called a Sylow d-torus), where Td is an F -stable torus in G, such that U ≤ Td and
CG(U) = CG(Td).

Let Td = 〈s〉. If s is regular then we know that CG(s) is a maximal torus of G, and so
CG(U) = CG(s) ≤ CG(s) is abelian. Note that in general, if s is regular then, although
CG(s) is a torus, we have CG(s) ≥ Td, with equality if and only if Td is a maximal torus.
This last statement is true if and only if φ(d) = rank(G).

If G is a Suzuki or Ree group then the maximal subgroups of G are known (see for example
[Wi2]), so we can deduce the same result for those groups and for our particular primes p,
and get CG(U) abelian in all cases for Table 9.2. (The d-torus theory can be extended to
these groups with some complications coming from the fact that cyclotomic polynomials
split, but it is easier for us to use the lists of maximal subgroups directly to prove that
CG(U) is abelian.)

We have now shown the following:

Proposition 9.1. Let G = rG(q) be the universal form of a group of Lie type (so a qua-
sisimple group as given in Tables 9.1 and 9.2), and suppose that G ∈ Gp and p - q. Let d be
the multiplicative order of q modulo p. If d is a regular number for G then CG(U) is abelian.

The numbers d that yield regular elements s for a given group G and Frobenius endomor-
phism F were computed by Springer in [Sp, Section 5, 6.9–6.11]. They are given in Tables
9.1 and 9.2, where we list all d such that ad = 1 (i.e., such that the Sylow Φd-subgroup has
order p), and among them list in bold the d that are regular.

In view of Proposition 9.1, we would like to always be in the situation that d is a regular
number, but from Tables 9.1 and 9.2 we see that this is not true. However, as we will see,
there is always a subgroup H of G, also a group of Lie type, such that U ≤ H and d is
regular for H.

For classical groups at least, we also need to understand the structure of NG(U), not just

of CG(U), although this is easy and again depends only on d. For d a positive integer, let d

be defined by d = 2d if d is odd, d = d/2 if d is even but 4 - d, and d = d if 4 | d. Note that

if d is the multiplicative order of q modulo p, then d is the order of −q modulo p.

For SL2(q), the automizer is always of order 2. For SLn(q) and SUn(q) for n ≥ 3, by [FS1,

Proposition (3D)], |N/C| = d or d, respectively. For the other classical groups, by [FS2,
p.128], |N/C| equals 2d if d is odd or d if d is even, i.e., lcm(d, 2) in all cases.

The order of N/C, when p | Φd(q), is summarized for the classical groups in Table 9.3.

Group |N/C| when p | Φd(q)

PSL2(q) 2

PSLn(q) (n ≥ 3) d

PSUn(q) d

PSp2n(q) or PΩ±m(q) lcm(2, d)

Table 9.3

When we work with cyclotomic polynomials, the following relations are useful:
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(i) for all n > 1, Φn(q) | (qn − 1)/(q − 1);

(ii) if n is even but 4 - n, then Φn(q) | (qn/2 + 1)/(q + 1); and

(iii) if 4 | n then Φn(q) | qn/2 + 1.

We are now ready to work with the individual groups: first the classical groups and then
the exceptional groups.

10. Determination for classical groups

In this section, we classify minimally active modules for classical groups and their exten-
sions in G ∧p when p is not the defining characteristic. Throughout this section, G = G(q) is a
group of Lie type, p - q is a prime dividing |G|, U is a Sylow p-subgroup of G with generator
x, and

p has order d modulo q, so that p | Φd(q).

Let V be a minimally active module for G. In Table 10.1, we list the minimal possible
dimension l(G) for a faithful FpG-module, as determined in [LS], [SZ], or [GT].

G Lower bound for dimension Ref. Exceptions

SL2(q) (q − 1)/z (z = (2, q − 1)) [LS]
l(SL2(4)) = 2
l(SL2(9)) = 3

SLn(q) qn−1 − 1 [LS]
l(SL3(2)) = 2
l(SL3(4)) = 4

(n ≥ 3) q(qn−1 − 1)/(q − 1)− 1 [GT]
l(SL4(2)) = 7
l(SL4(3)) = 26

SUn(q)
(n ≥ 3)

(qn − q)/(q + 1) (n odd)

(qn − 1)/(q + 1) (n even)
[LS]

l(SU4(2)) = 4
l(SU4(3)) = 6

Sp2n(q)
(qn − 1)/2 (2 - q)

q(qn − 1)(qn−1 − 1)
/

2(q + 1) (2 | q)
[SZ] l(Sp4(2)′) = 2

Spin2n+1(q)
(n ≥ 3, 2 - q) qn−1(qn−1 − 1) [LS] l(Spin7(3)) = 27

Spin+
2n(q)

(n ≥ 4)
qn−2(qn−1 − 1) [LS] l(Spin+

8 (2)) = 8

Spin−2n(q)
(n ≥ 4)

(qn−1 + 1)(qn−2 − 1) [LS] —

Table 10.1. Minimal representation dimensions of classical groups

We begin with the linear groups.

Proposition 10.1. Let G ∈ G ∧p be a group of type PSLn(q), where n ≥ 2 and p - q, and
set G0 = E(G). Let V be a non-trivial, minimally active FpG-module. Then one of the
following holds:

(i) G0 is a central extension of PSL2(4) ∼= A5, PSL2(5) ∼= A5, PSL2(9) ∼= A6 or PSL4(2) ∼=
A8, and the modules are as in Proposition 8.1;

(ii) G0 is a central extension of PSL2(7) ∼= PSL3(2), p = 7, and V is one of the modules
in Proposition 6.1;
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(iii) G0
∼= SL2(8), G/Z(G) ∼= SL2(8):3, p = 7, and dim(V ) = 7, 8;

(iv) G0
∼= 6·PSL3(4), G/Z(G) ∼= PSL3(4).2, p = 7, and dim(V ) = 6.

Proof. In all cases, we fix n and q = rt, where r is prime and t ≥ 1, such that G is of type
PSLn(q). If (n, q) = (2, 4), (2, 5), (2, 9), or (4, 2), then PSLn(q) is an alternating group, and
we are in the situation of (i). So we assume from now on that (n, q) is not one of these pairs.
Since PSL3(2) ∼= PSL2(7), we can also assume that (n, q) 6= (3, 2).

Among the remaining cases, SLn(q) is the universal central extension of PSLn(q) with
only one exception: PSL3(4) has an “exceptional cover”: a central extension of the form
42·SL3(4) [Wi2, § 3.12]. In all other cases, if p | Φd(q) for regular d, then CG0(U) is abelian by
Proposition 9.1, and hence by Proposition 3.9(a), dim(V ) ≤ 2p− 1 for each indecomposable
minimally active FpG0-module V .

Case 1: We start with the groups of type PSL2(q), where q = rt. Thus p | Φd(q)
where d = 1, 2, and the normalizer NG0(U) is dihedral of order Φd(q) or quaternion of order
2·Φd(q), containing CG0(U) as a cyclic subgroup of index 2. Hence if V is minimally active,
then dim(V ) ≤ p+ 2 by Proposition 3.9(a).

In the group Aut(SL2(rt)), the automizer of U has order at most 2t, so that if G ∈ G ∧p
then p ≤ 2t + 1. On the other hand, the smallest dimension for V is (rt − 1)/2 for r odd
and rt − 1 for r even, so that dim(V ) ≤ p+ 2 becomes

rt ≤ dim(V ) + 1 ≤ p+ 3 ≤ 2t+ 4 if r = 2

rt ≤ 2 dim(V ) + 1 ≤ 2(p+ 2) + 1 ≤ 4t+ 7 if r > 2.

If r = 2, then t ≤ 3; while if r is odd, then either t = 2 and r = 3, or t = 1 and r ≤ 11.

WhenG0
∼= PSL2(11) and p = 3, there is a 5-dimensional F3G0-module V , butNG0(U)/U ∼=

C2
2 is abelian in this case, so V is not minimally active by Proposition 3.9(a). Since we have

already dealt with the alternating groups PSL2(4) ∼= PSL2(5) ∼= A5 and PSL2(9) ∼= A6, and
do not need to deal with solvable groups, we are left with the groups PSL2(7) with p = 3,
and PSL2(8) with p = 7.

For G ∼= SL2(7) and p = 3, the modules of dimension 3 are not defined over F3, but only
over F9. For G ∼= SL2(8) and p = 7, there are four 7-dimensional modules of which only one
extends to SL2(8):3 ∈ G ∧7 , and one 8-dimensional module which also extends to SL2(8):3.
Both of these are minimally active.

Case 2: We next consider the groups of type PSLn(q) for n ≥ 3, where p | Φd(q) for some
bn

2
c+ 1 ≤ d ≤ n− 1. By Table 10.1, dim(V ) ≥ q(qn−1 − 1)/(q − 1)− 1 with the exceptions

in Table 10.1, which (aside from cases that we already eliminated) are

(n, q, p) ∈ {(3, 4, 5), (4, 3, 13)}.
(Here we consider those PSLn(q) in the table, together with p such that p | Φd(q) with
bn

2
c + 1 ≤ d ≤ n − 1 and p2 - |PSLn(q)|.) Furthermore, if V is the reduction modulo p of

a complex character (this is true if dim(V ) ≥ p + 1 by Proposition 3.7(d)) then dim(V ) ≥
q(qn−1 − 1)/(q − 1) with the exceptions above.

Suppose firstly that d = n − 1. If (n, q, p) = (3, 4, 5), then U ∼= C5 is self-centralizing
in PSL3(4), so that CG0(U) is abelian when G0 is any central extension. Hence CG(U) is
abelian and dim(V ) ≤ 2p− 1 in all cases. With the exceptions above, we get

q(qn−1 − 1)/(q − 1)− 1 ≤ dim(V ) ≤ 2p− 1 ≤ 2Φn−1(q)− 1 ≤ 2(qn−1 − 1)/(q − 1)− 1.

Thus q = 2 and dim(V ) = 2p−1, whence dim(V ) > p and so V is the reduction of a complex
character. So dim(V ) ≥ q(qn−1 − 1)/(q − 1) by Table 10.1, which is a contradiction.
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If G0/Z(G0) ∼= PSL3(4) and p = 5, then the smallest projective representation has di-
mension 6 (see [JLPW]), but this is for 6.PSL3(4), and as the centre has size 6 the two
6-dimensional modules are not realizable over F5, so there are no minimally active modules.
For G0 a central extension of PSL4(3) and p = 13 = Φ3(3), dim(V ) ≥ 2p and so there are
no minimally active modules (since d = 3 is regular).

If bn/2c + 1 ≤ d < n − 1 and V is minimally active for SLn(q), then n ≥ 5, and there
is H ∼= SLn−1(q) such that U ≤ H, where V |H is also minimally active. So by what was
just shown, H ∼= SL4(2) and p = 7, and G0

∼= SL5(2). In this case, NG0(U)/U ∼= 3 × S3,
so the Green correspondent of V has dimension at most 2, and dim(V ) ≤ p + 2 = 9, which
contradicts both bounds in Table 10.1.

Case 3: We now assume G is of type PSLn(q), where n ≥ 3 and p | Φn(q). If G ∈ G ∧p ,
then by allowing for a possible graph automorphism and a field automorphism of order t,
we have that |AutG(U)| ≤ 2nt, so p ≤ 2nt+ 1. On the other hand, by Table 10.1, with the
exceptions of SL3(2) and SL3(4), the dimension of any minimally active module V is at least
rt(n−1) − 1 (as the group is SLn(rt).2.t), whence dim(V ) < 2p (which also holds when G0 is
a central extension of PSL3(4) and p = 7) becomes

r2nt/3 ≤ rt(n−1) ≤ dim(V ) + 1 < 2p+ 1 ≤ 4nt+ 3.

Set ` = nt ≥ 3. Then r2`/3 ≤ 4` + 2, and from this we see that r = 2 implies ` < 9 (hence
t ≤ 2), r = 3 implies ` < 6 (hence t = 1), and r ≥ 5 is impossible. Upon returning to the
inequality rt(n−1) ≤ 4nt + 3, we have q = rt = 4 implies n = 3, q = 3 implies n = 3, and
q = 2 implies n ≤ 5. Since we are assuming that (n, q) 6= (3, 2) or (4, 2), we are left with the
following possibilities:

(n, q) (5, 2) (3, 3) (3, 4)

Φn(q) 31 13 21

Note that this list includes the remaining exception to the Landazuri–Seitz bounds.

We can eliminate groups of type PSL5(2) for p = 31 since Aut(PSL2(5)) /∈ G ∧31, and those
of type PSL3(3) for p = 13 since Aut(PSL3(3)) /∈ G ∧13. It remains to consider PSL3(4) and
its covers when p = 7. In this case, since NPSL3(4)(U)/U has order 3, NG(U)/U is abelian
in all cases, and hence dim(V ) ≤ p + 1 = 8 by Proposition 3.9(a). We have modules of
dimension 8 for 41·PSL3(4) (but these cannot be defined over F7 as the centre has order 4),
and of dimension 6 for 6·PSL3(4), which are indecomposable on restriction to U. �

We now turn to unitary groups.

Proposition 10.2. Let G ∈ G ∧p be a group of type PSUn(q), where n ≥ 3 and p - q, and
set G0 = E(G). Let V be a non-trivial, minimally active FpG-module. Then one of the
following holds: either

(i) G0
∼= PSU3(3), G/Z(G) ∼= PSU3(3).2, p = 7, and dim(V ) = 6, 7; or

(ii) G0
∼= PSU3(4), G/Z(G) ∼= PSU3(4):4, p = 13, and dim(V ) = 12; or

(iii) G0
∼= G/Z(G) ∼= PSU4(2), p = 5, and dim(V ) = 6; or

(iv) G0
∼= 61·PSU4(3), G/Z(G) ∼= PSU4(3).22 (G contains the complex reflection group

G34), p = 7, and dim(V ) = 6; or

(v) G0
∼= PSU5(2), G/Z(G) ∼= PSU5(2).2, p = 11, and dim(V ) = 10.

Proof. Let G be of type PSUn(q), where q = rt and r is prime. Since SU3(2) is solvable, we
assume (n, q) 6= (3, 2). Among the other cases, SUn(q) is the universal central extension of
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PSUn(q) with exactly three exceptions: PSU4(2), PSU6(2), and PSU4(3) [Wi2, § 3.12]. In
all other cases, if p | Φd(q) for regular d, then CG0(U) is abelian, and dim(V ) ≤ 2p− 1 when
V is indecomposable and minimally active, by Propositions 9.1 and 3.9(a).

By Table 10.1, dim(V ) ≥ (qn − q)/(q + 1) (whether n is even or odd), with just two
exceptions.

Case 1: Assume that p | Φd(−q) = Φ
d
(q) for some bn/2c + 1 ≤ d ≤ n − 1. If d = n − 1,

then by the above remarks, either G0/Z(G0) ∼= PSU4(2), PSU4(3), or PSU6(2), or

q(qn−1 − 1)/(q + 1) ≤ dim(V ) < 2p ≤ 2(qn−1 + 1)/(q + 1).

From this, it follows immediately that q = 2 and dim(V ) = 2p−1. Since V is minimally active
and CG0(U) is abelian, this last condition implies that |AutG0(U)| = p − 1 by Proposition
3.9(a). Hence n− 1 ≥ p− 1, so n ≥ p > (2n−1 − 1)/3, and n ≤ 4. But the group SU3(2) is
solvable, and 32

∣∣ |PSU4(2)| (3 = Φ3(−2)), so both of these are eliminated.

This leaves the two other exceptional cases. If G0/Z(G0) ∼= PSU6(2) and p | Φ5(−2) =
11, then U is self-centralizing in PSU6(2), and so CG0(U) is abelian for each cover U.
Thus dim(V ) ≤ 2p − 1 = 21, which contradicts Table 10.1. If G0/Z(G0) ∼= PSU4(3) and
p | Φ3(−3) = 7, then since |NG0(U)/U| = 3, dim(V ) ≤ p + 1 = 8 when V is minimally
active (Proposition 3.9(a)). By [JLPW, p.137], there is a single 6-dimensional module for
G0
∼= 61·PSU4(3) over F7 (using ATLAS notation for the central extension), it extends to

61·PSU4(3).22 ∈ G ∧7 , and all other modules are of dimension larger than 8.

If bn/2c+1 ≤ d < n−1, then n ≥ 5, and there is H < G0 such that H/Z(H) ∼= PSUn−1(q)
such that U ≤ H and V |H is still indecomposable and minimally active. Hence (n, q) = (5, 3),
p = 7, and H ∼= 61.SU4(3). Since this central extension is not a subgroup of SU5(3) (and
this group has no central extensions), there are no minimally active modules for p = 7 and
G = SU5(3).

Case 2: Now assume that p | Φn(−q) = Φn(q), so that |AutG(U)| ≤ 2nt by Table 9.3.
Thus p ≤ 2nt+ 1 and dim(V ) < 2p imply (with the three exceptions noted above)

rt(rt(n−1) − 1) ≤ (4nt+ 2)(rt + 1)

and hence (since n ≥ 3)

r2tn/3 ≤ rt(n−1) ≤ 1 + (4nt+ 2)(1 + 1
rt

) ≤ (4nt+ 3)(1 + 1
r
).

Set ` = nt; we thus have r2`/3 ≤ r+1
r

(4` + 3). When r = 2, this implies ` < 9 and hence
t ≤ 2; when r = 3 it implies ` < 6 and hence t = 1, and there are no solutions for r ≥ 5 and
` ≥ 3. If we now go back to the original inequality, we see that the only solutions (including
the exceptional cases) are the following ones:

(n, q) (4, 2) (5, 2) (6, 2) (3, 3) (3, 4) (4, 3)

Φn(−q) 5 11 7 7 13 10

Here, we omit the pair (n, q) = (3, 2) since SU3(2) is solvable.

• For PSU4(2) and p = 5, there are two 5-dimensional modules whose irrationalities
in their Brauer characters [JLPW, p.62] imply that they need F25 from [JLPW,
p.288], and there is a single 6-dimensional module, which is minimally active for
PSU4(2) ∈ G ∧5 .

• For PSU5(2) and p = 11, we see from [JLPW, p.184] that there is a module of dimension
10 = p − 1 and two of dimension 11, amalgamating over PSU5(2).2 ∈ G ∧11. So the
proposition holds in these cases.
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• For PSU6(2), the Landazuri–Seitz bound gives dim(V ) ≥ 21, so there are no minimally
active modules when p = 7.

• For PSU3(3) and p = 7, we need PSU3(3).2 to be in G ∧7 . By [JLPW, p.24] there is a
single module for G0 = PSU3(3) of dimension 6 and one of dimension 7 (the two
other dual modules of dimension 7 amalgamate for G).

• For PSU3(4) and p = 13, there is by [JLPW, p.73] a single module of dimension 12,
extendible to PSU3(4).4 ∈ G ∧13, and four modules of dimension 13, amalgamating into
a single 52-dimensional for PSU3(4).4.

• For PSU4(3) and p = 5, there are many covers, as the Schur multiplier is of order 36.
However, for our module to be definable over F5, the centre of G must have order
dividing 4, and so G0 is a quotient group of SU4(3), and its smallest simple module
has dimension 20 [JLPW, p.128]. Thus dim(V ) ≤ 2p − 1 = 9 by Propositions 9.1
and 3.9(a), a contradiction.

This completes the proof. �

We next consider the symplectic groups.

Proposition 10.3. Let G ∈ G ∧p be a group of type PSp2n(q), where n ≥ 2 and p - q, and
set G0 = E(G). Let V be a non-trivial, minimally active FpG-module. Then one of the
following holds: either

(i) G is of type Sp4(2)′ ∼= A6 and p = 5, and V is as in Proposition 8.1; or

(ii) G0
∼= G/Z(G) ∼= PSp4(3) ∼= PSU4(2), p = 5, and dim(V ) = 6; or

(iii) G0
∼= Sp4(4), G/Z(G) ∼= Sp4(4).4, p = 17, and dim(V ) = 18; or

(iv) G0
∼= G/Z(G) ∼= Sp6(2), p = 5 or p = 7, and dim(V ) = 7; or

(v) G0
∼= 2·Sp6(2), G/Z(G) ∼= Sp6(2), p = 7 and dim(V ) = 8.

Proof. In the first three cases, we assume that p | Φ2n(q), or (if n is odd) that p | Φn(q). In
particular, in these cases, p ≤ (qn± 1)/(q± 1) if n is odd, and p ≤ (qn + 1) if n is even. The
remaining possibilities (where d is not regular) are handled inductively in Case 4.

Since the group Sp4(2)′ ∼= A6 has already been handled in Proposition 8.1, we assume from
now on that (2n, q) 6= (4, 2). The only (other) case in which Sp2n(q) has a proper central
extension is the group Sp6(2).

Case 1: Suppose that q is even. By Table 10.1 (and since (2n, q) 6= (4, 2)), we have
dim(V ) ≥ q(qn− 1)(qn−1− 1)/2(q+ 1). When (2n, q) = (6, 2), we have p = 7 = Φ3(2) (since
Φ6(2) = 3 and Sp6(2) /∈ G3), U is self-centralizing in Sp6(2), so CG0(U) is abelian when G0

is any central extension of Sp6(2), and the bound dim(V ) < 2p still applies.

Suppose firstly that p | Φn(q), where n ≥ 3 is odd. The statement dim(V ) < 2p yields

q(qn − 1)(qn−1 − 1)/2(q + 1) < 2(qn − 1)/(q − 1).

If q ≥ 4 then this can never happen, but if q = 2 then this reduces to (2n−1 − 1) < 6, and
hence n = 3. Thus (2n, q) = (6, 2), and p = Φ3(2) = 7. In this case, Sp6(2) has a faithful
7-dimensional module and 2·Sp6(2) a faithful 8-dimensional module, and both are minimally
active.

If p | Φ2n(q), then since dim(V ) < 2p, we get

q(qn − 1)(qn−1 − 1)/2(q + 1) < 2(qn + 1),
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whence q(qn−1− 1)(qn− 1) < 4(q+ 1)(qn + 1), and q ≤ 4. If q = 4, then (4n− 1)(4n−1− 1) <
5(4n + 1), which is satisfied for n = 2 only. If q = 2, we have (2n− 1)(2n−1− 1) < 6(2n + 1),
which is satisfied for n ≤ 3 only, but Φ6(2) = 3, so the case (2n, q) = (6, 2) can be eliminated.
Since (2n, q) 6= (4, 2), we are left with the case G0

∼= Sp4(4) and p | Φ4(4) = 17. Then
Aut(G0) ∼= G0:4 ∈ G ∧17, and there is a (unique) 18-dimensional simple minimally active
F17G0-module for which the action extends to Aut(G0).

Case 2: If q is odd and n is odd, the smallest cross-characteristic representations are the
Weil representations, of dimension (qn − 1)/2 (see Table 10.1 and [GMST]). If p | Φn(q) or
Φ2n(q) then p ≤ (qn ± 1)/(q ± 1), whence the inequality dim(V ) < 2p yields

(qn − 1)/2 < 2(qn ± 1)/(q ± 1),

and hence q = 3.

If V is minimally active and G = Sp2n(3) (n odd) lies in G ∧p , and p | Φn(3), then since
there can be no graph or field automorphisms, AutG(U) has order 2n, so that p = 2n + 1.
On the other hand, dim(V ) ≥ (qn − 1)/2, and since q and n are both odd, we have that
(n, q) = (3, 3), yielding p = 2n+ 1 = 7 = Φ6(3) and V has dimension 13, larger than p+ 1.

Case 3: Assume that p | Φ2n(q), q is odd, and n is even. Assume that q = rt where r is
prime. If G = Sp2n(qt).t, where t is the order of a graph automorphism, then AutG(U) has
order at most 2nt, so that p ≤ 2nt + 1. Thus dim(V ) < 2p ≤ 4nt + 2, and using the fact
that dim(V ) ≥ (qn − 1)/2, we have that

rnt − 1 < 8nt+ 4.

As r ≥ 3 and n ≥ 2 is even, we have nt = 2, so t = 1 and (n, q) = (2, 3). But PSp4(3) ∼=
PSU4(2), so this case has already been done (Proposition 10.2).

Case 4: Now assume that G ∈ G ∧p is of type PSp2n(q), where p | Φd(q) for odd d < n or even
d < 2n (see Table 9.1), and that there is an indecomposable minimally active FpG-module
V . Then there is H < G of type PSp2n−2(q) with H ∈ G ∧p , and V |H is again minimally
active. So we can assume inductively that some indecomposable summand of V |H is already
on our list.

Thus we next consider groups of type Sp6(2) (p = 5), PSp6(3) (p = 5), Sp6(4) (p = 17),
and Sp8(2) (p = 7). Since Aut(Sp6(4)) /∈ G ∧17, we can eliminate this case.

Assume G is of type Sp6(2) and p = 5. Then NG0/Z(G0)(U) ∼= 5:4 × S3, contained in the
subgroup Ω+

6 (2) ∼= S8 in Sp6(2). Hence NG0/Z(G0)(U)/U contains a cyclic subgroup of index
2, and NG0(U)/U contains an abelian subgroup of index 2. So by Green correspondence, if
V is indecomposable and minimally active, then dim(V ) ≤ p + 2 = 7. By [JLPW], there is
a 7-dimensional module for Sp6(2), and it is minimally active.

If G is of type PSp6(3) and p = 5, the smallest faithful module has dimension at least
13 by Table 10.1, more than twice that of the minimally active module for Sp4(3), so by
Proposition 3.10, there are no minimally active FpG-modules. Similarly, if G is of type Sp8(2)
and p = 5 or 7, then dim(V ) ≥ 28 by Table 10.1, this is more than twice the dimension of
the modules we found for Sp6(2), so this is again impossible by Proposition 3.10. �

It remains to handle the orthogonal groups.

Proposition 10.4. Let G ∈ G ∧p be a group of type Ω2n+1(q) for q odd and n ≥ 3, or of

type PΩ±2n(q) for n ≥ 4, where p - q in all cases. Set G0 = E(G). Let V be a non-trivial,
minimally active FpG-module. Then p = 7, G0

∼= 2·Ω+
8 (2), G/Z(G) ∼= Ω+

8 (2) or Ω+
8 (2).2,

and dim(V ) = 8.
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Proof. Case 1: Assume that G0/Z(G0) ∼= Ω2n+1(q) (where q is odd). By Table 10.1, if
V is a minimally active module for G0 or one of its covers, then dim(V ) ≥ qn−1(qn−1 − 1),
except possibly for Ω7(3), which will be handled separately. As with symplectic groups, we
use an inductive argument to reduce to the case where p | Φd(q) for d = n, 2n, starting with
the base case of the induction, Ω5(q) = Sp4(q).

If p | Φn(q), then p ≤ (qn − 1)/(q − 1), and so dim(V ) < 2p becomes

qn−1(qn−1 − 1) <
2(qn − 1)

q − 1
=⇒ 2q2 ≤ qn−1(q − 1) <

2(qn − 1)

qn−1 − 1
≤ 2(1 + q),

which has no solutions.

If p | Φ2n(q), then p ≤ (qn + 1), and so dim(V ) < 2p becomes

qn−1(qn−1 − 1) ≤ 2(qn + 1),

yielding q2n−2 ≤ 2qn + qn−1 + 2 for n, q ≥ 3, again clearly having no solutions. Thus there
are no minimally active modules when p | Φn(q) or p | Φ2n(q). So by induction, and since
the only groups of type Ω5(q) ∼= PSp4(q) with minimally active modules are those for q = 3
(Proposition 10.3(ii)), the only cases left to consider are those where G0/Z(G0) ∼= Ω7(3) and
p = 5 | Φ4(3), 7 = Φ6(3), or 13 = Φ3(3).

When p = 5, Proposition 3.10, applied with H < G of type Ω5(q) = PSp4(q), says that the
dimension of a minimally active F5G0-module V is at most twice that of a minimally active
FpH-module (since Ω7(3) is generated by two conjugates of Ω5(3)). Thus dim(V ) ≤ 12 by
Proposition 10.3(ii), which is impossible by Table 10.1.

When p = 7 or 13, CΩ7(3)(U) is cyclic (of order 14 or 13, respectively), so the centralizer
of U is abelian in each cover of Ω7(3). Hence dim(V ) < 2p, which again contradicts Table
10.1.

Case 2: We move on to the case where G = Ω+
2n(q) (for n ≥ 4). Here we are concerned

with p | Φd(q), where by Table 9.1, d is regular when d = 2n − 2, or d ∈ {n − 1, n} is
odd. The Landazuri–Seitz bound from Table 10.1 is qn−2(qn−1 − 1), with Ω+

8 (2) the only
exception. This is also the only case which has an exceptional Schur multiplier.

If d = n− 1 or d = n, then p ≤ (qn − 1)/(q − 1), and dim(V ) < 2p implies

q2 ≤ qn−2(q − 1) < 2(qn − 1)/(qn−1 − 1) ≤ 2(1 + q).

This is satisfied only for Ω+
8 (2), which we need to consider separately in any case. If d =

2n− 2, then p ≤ (qn + 1), and we have

qn−2(qn−1 − 1) < 2(qn + 1) =⇒ q ≤ qn−3 < 2 + q−2 + 2q−n,

which again is only satisfied for Ω+
8 (2).

Now, Ω+
8 (2) ∈ Gp only for p = 7, CΩ+

8 (2)(U) = U in this case, and thus CG0(U) is abelian

when G0 is any central extension of Ω+
8 (2). Thus we can always assume that dim(V ) <

2p = 14. The smallest non-trivial representation of Ω+
8 (2) itself is of dimension 28, which is

too large. There is an 8-dimensional representation for the exceptional cover 2·Ω+
8 (2), it is

minimally active, and it extends to a module for 2·Ω+
8 (2).2 (the Weyl group of E8).

Since the only minimally active module is for the exceptional cover 2·Ω+
8 (2), it does not

extend to a minimally active module over a group of type Ω+
10(2).

Case 3: Finally, consider G of type Ω−2n(q) (again for n ≥ 4). By Table 9.1, d is regular
when d = 2n, 2n − 2, or n is even and d = n − 1, and we first consider p | Φd(q) for such
d. The Landazuri–Seitz bound gives dim(V ) ≥ (qn−1 + 1)(qn−2− 1) (Table 10.1), and we do
the same analysis as for the plus-type case.
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If d = n− 1, then p ≤ (qn−1 − 1)/(q − 1), and since dim(V ) < 2p,

(qn−1 + 1)(qn−2 − 1)(q − 1) < 2(qn−1 − 1),

so that (qn−2 − 1)(q − 1) < 2, which has no solutions when n ≥ 4. If d = 2n− 2 or 2n, then
p ≤ qn + 1, and since dim(V ) < 2p, we have

(qn−1 + 1)(qn−2 − 1) < 2(qn + 1) =⇒ q ≤ qn−3 < 2 + 3q−n + q−1 − q−2.

Thus (2n, q) = (8, 2). Also, p = Φ6(2) = 3 or p = Φ8(2) = 17, and since 32
∣∣ |Ω−8 (2)|, we

have p = 17. However, upon checking the Brauer character table from [JLPW, p.248], we
see that the smallest non-trivial module has dimension 34 = 2p, so this case does not occur.

We now must check the base case of our induction. For G0
∼= Ω−8 (q), G0 ∈ Gp only when

p | Φd(q) for d = 3, 4, 6, 8. We have already handled d = 3, 6, 8, but we are left with d = 4,
for which the centralizer of U might not be abelian. As with the Ω7(q) case, we take two
copies of H = SU4(q) ∼= Ω−6 (q) inside G0

∼= Ω−8 (q) that generate G, and apply Proposition
3.10 to get dim(V ) < 4p ≤ 4(q2 + 1). Thus the lower bound in Table 10.1 becomes

(q3 + 1)(q2 − 1) ≤ dim(V ) < 4(q2 + 1),

which clearly has no solutions, not even for q = 2. This completes the proof. �

11. Exceptional groups

In this section we treat the exceptional groups of Lie type. We maintain the notation of
the previous section, so that G is of type G(q), an exceptional group of Lie type, p - q is a
prime dividing G, a Sylow p-subgroup U has order p and is generated by x, and p has order
d modulo q, so that p | Φd(q). In Table 11.1, we list the minimal possible dimensions for V ,
as determined in [LS] or [SZ].

G Lower bound for dim(V ) Ref. Exceptions
2B2(q) (q − 1)

√
q/2 [LS] l(2B2(8)) = 8

2G2(q) q(q − 1) [LS] —
2F4(q) q4(q − 1)

√
q/2 [LS] —

G2(q) q(q2 − 1) [SZ]
l(G2(3)) = 14
l(G2(4)) = 12

3D4(q) q3(q2 − 1) [LS] —

F4(q)
q6(q2 − 1) (2 - q)

q7(q3 − 1)(q − 1) (2 | q)
[LS] l(F4(2)) ≥ 44

E±6 (q) q9(q2 − 1) [SZ] —

E7(q) q15(q2 − 1) [LS] —

E8(q) q27(q2 − 1) [LS] —

Table 11.1. Minimal representation dimensions of exceptional groups

Proposition 11.1. Let G ∈ G ∧p be such that E(G/Z(G)) is an exceptional simple group of
Lie type in defining characteristic different from p. Set G0 = E(G). Let V be a non-trivial,
minimally active FpG-module. Then one of the following holds: either

(i) G0
∼= 2B2(8), G/Z(G) ∼= 2B2(8):3, p = 13, and dim(V ) = 14; or
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(ii) G0
∼= SL2(8), G/Z(G) ∼= 2G2(3) ∼= SL2(8):3, p = 7, and dim(V ) = 7, 8; or

(iii) G0
∼= PSU3(3), G/Z(G) ∼= G2(2) ∼= PSU3(3):2, p = 7, and dim(V ) = 6, 7; or

(iv) G0
∼= G2(3), G/Z(G) ∼= G2(3).2, p = 13, and dim(V ) = 14.

Proof. In all cases, G0/Z(G0) is one of the exceptional groups listed in Tables 9.2 and 11.1,
and unless stated otherwise, p | Φd(q) for one of the d listed in the first table. Thus U ∈
Sylp(G0) has order p. As usual, V is assumed to be a minimally active FpG0-module.

Case 1: Assume that G0 is a Suzuki or Ree group or G0
∼= 3D4(q). In all of these cases,

d is regular by Table 9.2. Aside from 2B2(8), these groups have no exceptional covers [Wi2,
§ 4.2.4], so CG0(U) is abelian in all other cases, and dim(V ) < 2p.

If G0/Z(G0) is a Suzuki group 2B2(q), then p divides one of q − 1, q +
√

2q + 1 and

q−
√

2q+ 1. In particular, p ≤ q+
√

2q+ 1, and since dim(V ) ≥ (q− 1)
√
q/2 by Table 11.1,

(q − 1)
√
q/2 ≤ dim(V ) < 2p ≤ 2q + 2

√
2q + 2 =⇒ √

q <
√

8(1 + 1
q
) + 5/

√
q.

Hence there are no minimally active modules for q ≥ 32. For q = 8 we can just go through
the known character tables [JLPW]. If G0

∼= 2B2(8) (i.e., not an exceptional cover), then
of the three primes p = 5, 7, and 13 for which G0 ∈ Gp, there is a non-trivial FpG0-module
of dimension less than 2p only for p = 13: the two 14-dimensional simple modules in this
case are minimally active and each of them extends to G0:3 ∈ G ∧13. If G0

∼= 2·2B2(8),
then Out(G0) = 1 (since Out(2B2(8)) ∼= C3 acts faithfully on the Schur multiplier C2

2),
and G0 ∈ G ∧p only for p = 5. In this case, there is an 8-dimensional F5G0-module, but by
Proposition 3.9(a) and since CG0(U) is cyclic of order 10, it cannot be minimally active since
(8− 5) - (p− 1) = 4.

If G0 is a small Ree group 2G2(q), then p divides one of q − 1, q + 1, q −
√

3q + 1 or
q +
√

3q + 1. Together with the lower bound for dim(V ) in Table 11.1, this gives

q(q − 1) ≤ dim(V ) < 2p ≤ 2q + 2
√

3q + 2.

For q ≥ 27 we therefore can have no minimally active modules. For q = 3, we have that
2G2(3) ∼= SL2(8):3, and this case was covered in Proposition 10.1.

If G0 is a large Ree group 2F4(q), then p divides Φ6(q) or one of the two polynomials into
which Φ12(q) splits over Z[

√
2]. The Landazuri–Seitz bound for dim(V ) gives

q4 ≤ q4(q − 1)
√
q/2 ≤ dim(V ) < 2p ≤ 4q2 + 4q + 2.

So there are no minimally active modules if q ≥ 8. If q = 2, then G0 ∈ Gp only for p = 13,
NG0(U)/U is abelian in this case, so dim(V ) ≤ p+ 1 = 14, while dim(V ) ≥ 16 by the above
bound.

If G is a triality group G = 3D4(q), then by Table 9.2, p divides Φ12(q) = q4 − q2 + 1, and
together with the bound in Table 11.1, this implies that

q3(q2 − 1) ≤ dim(V ) < 2p ≤ 2q4 − 2q2 + 2,

and hence q = 2. But in this case, p = Φ12(2) = 13, and the smallest non-trivial module has
dimension 26 by [JLPW]. So there are no minimally active modules in any of these cases.

Case 2: We next consider the small exceptional groups G2(q) and F4(q). Again for these
groups, by Table 9.2 and Proposition 9.1, CG0(U) is abelian for all primes p such that
G0 ∈ Gp (unless possibly G0 is one of the exceptional covers 3·G2(3), 2·G2(4), or 2·F4(2)),
and hence dim(V ) < 2p.
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If G0 = G2(q), then p | Φ3(q) or p | Φ6(q), so in particular p ≤ q2 + q + 1. Together with
the Seitz–Zalesskii bound in Table 11.1, this gives

q(q2 − 1) ≤ dim(V ) < 2p ≤ 2q2 + 2q + 2,

for q ≥ 5, yielding no solutions. We have already dealt with the case G2(2) ∼= PSU3(3):2.

If G0/Z(G0) ∼= G2(3), then G0 ∈ Gp implies p = 7 or 13, and CG0(U) is abelian since
the Sylow 7- and 13-subgroups of G2(3) are self-centralizing. There are no non-trivial F7G0-
modules of degree less than 14, while there are 14-dimensional simple modules for G2(3):2
and p = 13 (see [JLPW]), and they are minimally active.

If G0/Z(G0) ∼= G2(4), then G0 ∈ Gp implies p = 7 or 13, and CG0(U) is abelian since the
centralizers of the Sylow 7- and 13-subgroups ofG2(4) are cyclic of order 21 or 13, respectively
[Atlas]. Thus dim(V ) < 2p, and by [JLPW], there are 12-dimensional modules for 2·G2(4)
over F7 and over F13 to be considered. When p = 7, this module cannot be minimally active
by Proposition 3.9(a) and since (12−7) - (p−1) = 6. When p = 13, we have |AutG0(U)| = 6,
so we need to extend to G = 2·G2(4).2. However, from the table on [JLPW, p.277], we see
that there are irrationalities in the Brauer character of this representation, and by [JLPW,
p.291], it is defined only over F132 .

For G0 = F4(q), the Landazuri–Seitz bounds in Table 11.1 gives the inequalities

q6 ≤ dim(V ) < 2p ≤ 2·max{Φ8(q),Φ12(q)} = 2q4 + 2

when q > 2, and 44 < 2·24 + 2 = 34 when q = 2. Since these have no solutions, G0 has no
minimally active modules.

Case 3: Assume that G0 = Eε
6(q) (the universal or adjoint group). If p

∣∣ Φd(εq) for d =
8, 9, 12, then CG0(U) is abelian (see Table 9.2), so dim(V ) < 2p, while dim(V ) ≥ q9(q2 − 1)
by Table 11.1. Thus

q9 ≤ q9(q2 − 1) < 2Φd(εq) ≤ 2Φ9(q) = q6 + q3 + 1,

which is impossible. This leaves p
∣∣ Φ5(εq), in which case U ≤ H < G for H of type PSLε6(q).

We already saw in the proofs of Propositions 10.1 (Case 2) and 10.2 (Case 1) that SLε6(q)
has no minimally active projective representations over Fp when p | Φ5(εq), and so G0 has
no minimally active modules.

If G0 is an exceptional cover 2·2E6(2) [Wi2, § 4.11], then G0 ∈ Gp only for p = 11, 13, 17, 19.
In the last three cases, the Sylow p-subgroup of 2E6(2) is self-centralizing, so CG0(U) is
abelian, dim(V ) < 2p, and the above argument applies. If p = 11 = Φ5(−2), then the above
comparison with U6(2) again applies.

Assume that G0 = E7(q) and p
∣∣ Φd(q). If d = 7, 9, 14, 18, then CG0(U) is abelian

(see Table 9.2), so dim(V ) < 2p, while dim(V ) ≥ q15(q2 − 1) > q15 by Table 11.1. Thus
q15 < 2Φd(q) ≤ 2Φ7(q) ≤ q7 − 1, which is impossible. If d = 5, 8, 10, 12, then U ≤ H < G0

for H ∼= E±6 (q), and we just showed that these groups have no minimally active modules
over Fp. So G0 has no minimally active modules.

Finally, assume that G0 = E8(q) and p
∣∣ Φd(q). If d = 15, 20, 24, 30, then CG0(U) is

abelian (see Table 9.2), so dim(V ) < 2p, while dim(V ) ≥ q27(q2 − 1) by Table 11.1. Since
Φd has degree 8 in each of these cases, one easily sees that we cannot have dim(V ) < 2p.
If d = 7, 9, 14, 18, then U ≤ H < G0 for H ∼= E7(q), and we just showed that these groups
have no minimally active modules over Fp. So again in this case, G0 has no minimally active
modules. �
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