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In this article, we consider control of fusion, quotients, and
p-soluble fusion systems. For control of fusion, we prove the
three main theorems in the literature in a new, largely elementary
way, significantly shortening their proofs. To prove one of these,
and a theorem of Aschbacher that the product of strongly closed
subgroups is strongly closed, we produce a consolidated treatment
of quotients, collating and expanding the constructions previously
available; we include analogues of the isomorphism theorems
for fusion systems. We move on to p-soluble fusion systems,
and prove that they are constrained, allowing us to effectively
characterize fusion systems of p-soluble groups. This leads us to
recast Thompson Factorization for Q d(p)-free fusion systems, and
consider it for more general fusion systems.
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1. Introduction

The theory of fusion systems, which was started by Puig but lay unpublished for decades, attempts
to formalize the concepts of local finite group theory, and extend such results to the sphere of blocks
of finite groups. It has attracted considerable and growing attention over the course of the last decade,
but several basic questions remain unresolved in the field. In addition, some of the results in the
literature permit considerable shortenings in their proofs; the improved exposition will make clear
the reasons behind the results. In Section 2 we will define the terms that we use in this introduction.

The purpose of this article is three-fold: to provide elementary proofs of some theorems in con-
trol of fusion, to provide a complete treatment of the theory of morphisms and quotients, and to
examine p-soluble fusion systems. Theorems A to D have been proved in the literature, but here we
provide elementary proofs. Sections 5 and 6 is a thorough treatment of morphisms and quotients,
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including analogues for fusion systems of the isomorphism theorems. The final two sections give the
first treatment of p-soluble fusion systems available in the literature. We prove directly that they are
constrained (this was proved via the generalized Fitting subsystem in [3]), and then determine those
saturated fusion systems that come from p-soluble groups using a purely internal characterization.

Theorem A. (See Stancu [13, Proposition 6.2].) Let F be a saturated fusion system on a finite p-group P , and
let Q be a subgroup of P . Then F = NF (Q ) if and only if F Q (Q ) is a weakly normal subsystem of F .

The proof given here is the first proof that does not rely on a non-trivial result: in [13], this result
was given as a corollary to what is here Theorem C; in [11], this result was a corollary of what is
here Theorem B; and in [3], the proof of this result requires the non-trivial fact that a constrained
fusion system is the fusion system of a finite group (see [5, Proposition C]). Here we will prove it by
elementary means, using the extension of the Frattini argument to fusion systems, as proved in [4].

Using Theorem A, we derive Theorem B as a consequence.

Theorem B. (See Linckelmann [11, Theorem 9.1].) Let F be a saturated fusion system on a finite p-group P ,
and let E be a weakly normal subsystem, on a subgroup Q of P . Suppose that E = NE (R) for some subgroup R,
and let S be the subgroup of Q generated by all F -conjugates of R. Then F = NF (S).

Finally, using a result of Aschbacher’s on an equivalent condition to fusion being controlled by a
subgroup, we derive Stancu’s main theorem of [13].

Theorem C. (See Stancu [13, Theorem 4.8].) Let F be a saturated fusion system on a finite p-group P , and let
Q be a subgroup of P . Then F = NF (Q ) if and only if Q is strongly F -closed, and there is a central series

1 = Q 0 � Q 1 � · · · � Q n = Q

with each of the Q i weakly F -closed.

Moving away from control of fusion – i.e., a subgroup Q such that F = NF (Q ) – we will reprove
a theorem of Aschbacher from [3].

Theorem D. (See Aschbacher [3, Theorem 2].) Let F be a fusion system. Then the product of two strongly
F -closed subgroups is strongly F -closed.

The proof of this result in [3] is quite difficult, and requires considerable preliminaries. Here we
will produce an extremely short and trivial proof of the result. However, in order to do so, we must
consider factor systems, a subject that has not yet been fully understood, with differing accounts
of it in the literature (see [12,13,11,4] for four, all different to various extents, approaches). Here
we combine the various approaches to produce the first comprehensive treatment of the subject in
Section 5, including the versions for fusion systems of the isomorphism theorems.

Theorem E. Let F be a saturated fusion system on a finite p-group P , and let Q and R be strongly F -closed
subgroups with Q � R. Let E be a saturated subsystem of F , defined on the subgroup S of P . Write E Q /Q
for the image of E in F /Q . We have the isomorphisms

E Q /Q ∼= E /(S ∩ Q ) and (F /R)/(Q /R) ∼= F /Q .

We end with a discussion of p-soluble systems, which has not been considered in the literature
before, although there are some unpublished notes on the subject by various authors. Broadly speak-
ing, a fusion system is called p-soluble if repeated quotienting out by Op(F ) eventually exhausts the
group: a formal definition will be given in Section 7. The main result in this section is the following.
(In the context of the generalized Fitting subsystem, this is also proved in [3].)
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Theorem F (Aschbacher). Let F be a saturated fusion system on the finite p-group P . If F is p-soluble, then

CP
(
Op(F )

)
� Op(F ).

In particular, F is a constrained fusion system, so is the fusion system of a finite group.

In light of the fact that saturated subsystems of p-soluble systems are p-soluble, this gives an easy
proof of the known fact that all fusion systems of p-blocks of p-soluble groups are fusion systems of
finite groups.

In the final section, we consider the fusion systems of p-soluble groups; these can be effectively
characterized internally.

Theorem G. Let F be a saturated fusion system, and write Q = Op(F ). Then F is the fusion system of a
p-soluble group if and only if F is constrained and AutF (Q ) is p-soluble.

Using this, we make some remarks on extending Thompson Factorization to constrained fusion
systems, and how such results differ from the versions for groups.

We begin in the next section with the definitions and concepts from fusion systems that we need.
Because the notation and terminology has not yet crystallized, we will define everything to avoid
ambiguity; this section contains Alperin’s fusion theorem. After a preliminary section we set about
proving the first two theorems given above. In the final sections, from Section 5 onwards, we intro-
duce and study factor systems, prove Theorems C and D, and then consider p-soluble systems. Note
that our maps will be composed from left to right.

2. Fusion systems

Here we collect the very basic concepts in the field of fusion systems. We begin by defining fusion
systems: for more background see [11] (note that fusion systems there are saturated fusion systems
here) or [7]. If g is an element of a group G , denote by cg the map induced by conjugation by g .

Definition 2.1. Let P be a finite p-group. A fusion system F on P is a category, whose objects are the
set of all subgroups of P , and whose morphisms HomF (Q , R) are injective homomorphisms Q → R
(with composition in the category the usual composition), satisfying the following three axioms:

(i) for each g ∈ P with Q g � R , the associated conjugation map cg : Q → R is in HomF (Q , R);
(ii) for each φ ∈ HomF (Q , R), the isomorphism Q → Q φ lies in HomF (Q , Q φ); and

(iii) if φ ∈ HomF (Q , R) is an isomorphism, then its inverse φ−1 : R → Q lies in HomF (R, Q ).

We write AutF (Q ) for the set (in fact group) HomF (Q , Q ).

Observe that it is a consequence of the first axiom that if Q is a subgroup of R then the inclusion
map from Q into R is a morphism in F . If G is a finite group with Sylow p-subgroup P , we write
F P (G) for the fusion system obtained from conjugation by elements of G on the subgroups of P . We
also note the universal fusion system U (P ) on a finite p-group P , where HomU (P )(Q , R) is the set of all
injective homomorphisms from Q to R . Obviously any fusion system is a subsystem of the universal
fusion system.

Definition 2.2. Let P be a finite p-group, and let Q be a subgroup of P . Let F be a fusion system
on P . We say that Q is fully F -normalized if, whenever φ : Q → R is an isomorphism in F , we have
that |NP (Q )| � |NP (R)|. If the fusion system involved is clear from the context, we will simply say
fully normalized.
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Definition 2.3. Let P be a finite p-group, and let F be a fusion system on P . We say that F is
saturated if

(i) AutP (P ) is a Sylow p-subgroup of AutF (P ), and
(ii) every morphism φ : Q → P in F such that Q φ is fully normalized extends to a morphism

φ̄ : Nφ → P , where

Nφ = {
x ∈ NP (Q ): there exists y ∈ NP (Q φ) such that

(
gx)φ = (gφ)y for all g ∈ Q

}
.

Note that, if φ : Q → R is an F -isomorphism, then Nφ is the inverse image under the map
δQ : NP (Q ) → Aut(Q ) of the subgroup AutP (Q ) ∩ φ AutP (R)φ−1, and that Q CP (Q ) is always con-
tained within Nφ .

Definition 2.4. Let F be a fusion system on the finite p-group P . Let Q be a subgroup of P , and let
K be a subgroup of Aut(Q ).

(i) The subgroup NK
P (Q ), the K -normalizer of Q in P , is the set of all g ∈ NP (Q ) such that g induces

by conjugation an automorphism of Q that lies in K . Write AutP (Q ) for the subgroup of Aut(Q )

of automorphisms induced by elements of P , and AutK
P (Q ) = K ∩ AutP (Q ).

(ii) The fusion system NK
F (Q ) is the category whose objects are all subgroups of NK

P (Q ), and whose
morphisms HomNK

F (Q )(R, S) are

{
φ ∈ HomF (R, S): there is φ̄ ∈ HomF (Q R, Q S) with φ̄|R = φ and φ̄|Q ∈ K

}
.

The fusion system NK
F (Q ) is called the K -normalizer subsystem of Q in F .

Of particular interest are the cases K = Aut(Q ), in which case we write NF (Q ) and call this the
normalizer of Q in F , and K = 1, in which case we write CF (Q ) and call this the centralizer of Q
in F .

If Q is fully normalized and K � AutF (Q ) then NK
F (Q ) is saturated (see [11, Theorem 3.6]). If Q

is a subgroup of P , we are interested in the case where F = NF (Q ), in which case we say that the
subgroup is normal in F . Theorems A and C give equivalent conditions for a subgroup to be normal
in F . We need a few more of these results in the course of this article, but in order to state the first
one in Section 3 we need the concept of F -centric and F -radical subgroups.

Let F be a fusion system on a finite p-group P , and let Q be a subgroup of P . We say that Q
is F -centric if, whenever R is F -isomorphic to Q , then R contains its centralizer (or equivalently,
CP (R) = Z(R)). We say that Q is F -radical if Op(AutF (Q )) = Inn(Q ). A fusion system F is con-
strained if it contains a normal, F -centric subgroup. The fundamental theorem on such systems is the
following.

Theorem 2.5. (See [5, Proposition C].) Let F be a constrained saturated fusion system on a finite p-group P .
Then there is a unique finite group G such that

(i) O p′ (G) = 1,
(ii) CG(Op(G)) � Op(G), and

(iii) F = F P (G).

Using the concept of centric and radical subgroups, we also have a version for fusion systems of
Alperin’s fusion theorem.

Theorem 2.6 (Alperin’s fusion theorem). Let F be a saturated fusion system on a finite p-group P , and let
φ : Q → R be an isomorphism. Then there exist
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(i) a sequence of F -isomorphic subgroups Q = Q 0, Q 1, . . . , Q n = R,
(ii) a sequence S1, S2, . . . , Sn of fully normalized, F -radical, F -centric subgroups, with Q i−1, Q i � Si , and

(iii) a sequence of F -automorphisms φi of Si with Q i−1φi = Q i ,

such that

(φ1φ2 . . . φn)|Q = φ.

A proof may be found in, for example, [7, Theorem A.10], and a stronger version is in [11].
Now we define two types of subgroups: a subgroup Q is called weakly F -closed if Q is only F -

isomorphic to itself, and it is called strongly F -closed if whenever any F -morphism has domain a
subgroup of Q , it has image a subgroup of Q .

Definition 2.7. Let F be a fusion system on a finite p-group P , and let Q be a subgroup of P .
A subsystem E of F , on Q , is a subcategory of F that is a fusion system on Q . We say that E is F -
invariant if Q is strongly F -closed and, for each R � S � Q , φ ∈ HomE (R, S), and ψ ∈ HomF (S, P ),
we have that ψ−1φψ is a morphism in HomE (Rψ, Q ). If, in addition, E is saturated, we say that E
is weakly normal in F . We denote weak normality by E ≺ F . A saturated fusion system is simple if it
contains no non-trivial, proper, weakly normal subsystems.

An automorphism of F is an automorphism α of P such that, if φ : Q → R is a morphism in F ,
then the induced map φ′ : Q α → Rα also lies in F . The set of all automorphisms of F is denoted by
Aut(F ). If F is a saturated fusion system and E is a weakly normal subsystem, then E is said to be
characteristic if E φ = E for all φ ∈ Aut(F ). We denote this by E char F .

We have called this definition ‘weakly normal’, because (in what is becoming standard terminol-
ogy, at least at this point) ‘normal’ refers to the definition of normality given by Aschbacher in [4].
In [4], for a weakly normal subsystem E , defined on Q , to be normal in F , defined on P , it is re-
quired that every automorphism φ ∈ AutE (Q ) extends to an automorphism φ̄ ∈ AutF (Q CP (Q )) with
φ̄ acting trivially on Q CP (Q )/Q . This extra piece of information enables Aschbacher to develop [3,4]
a local theory of fusion systems, as well as prove the existence of normal subsystems acting like the
intersection of two normal subsystems, and the central product of two normal subsystems. The for-
mer of these is not known to exist for weakly normal subsystems, and the latter is known not to exist.
Here we will focus on weakly normal subsystems, because they share many properties of normal sub-
systems, and also they are the easiest to work with in situations of control of fusion and p-solubility.
(For example, it is easy to show that if F is a saturated fusion system on P , and Q is a subgroup
of P , then F Q (Q ) is a weakly normal subsystem of F if and only if it is a normal subsystem of F .)

Because we need to use a variant of the Frattini argument for fusion systems, we need the defini-
tion of an F -Frattini subsystem.

Definition 2.8. (See [4, Section 3].) Let F be a saturated fusion system on a finite p-group P , and
let E be a subsystem of F , on the subgroup Q . We say that E is F -Frattini if, whenever R � Q and
φ : R → P is a morphism in F , there exist morphisms α ∈ AutF (Q ) and β ∈ HomE (Rα, P ) such that
φ = αβ .

3. Preliminaries

Our first result tells us that we may apply the Frattini argument whenever E is a weakly normal
subsystem of F , and in fact gives us an equivalent condition to weak normality of subsystems.

Theorem 3.1. (See Puig [12, Proposition 6.6].) Let F be a saturated fusion system on a finite p-group P , and let
E be a subsystem on a strongly F -closed subgroup Q . Then E is F -invariant if and only if AutF (Q ) � Aut(E )

and E is F -Frattini.
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We also need the equivalent for fusion systems of the statement for groups that if K char H � G
then K � G .

Proposition 3.2. (See Aschbacher [3, 7.4].) Let F be a saturated fusion system on a finite p-group P and
suppose that E ≺ E ′ ≺ F , where E ′ is defined on the subgroup Q and E is defined on R. Suppose that all
F -automorphisms of Q induce automorphisms on E , that is if α ∈ AutF (Q ) then α|R ∈ Aut(E ). Then E ≺ F .
In particular, if E char E ′ ≺ F , then E ≺ F .

Proof. Suppose that E char E ′ . Then AutF (Q ) � Aut(E ′) by Theorem 3.1, and so since E is Aut(E ′)-
invariant, the second statement follows from the first. Let R be the subgroup of Q on which E acts.

If S � R and φ : S → P is any map in F , then since Q is strongly F -closed, we have that im φ � Q .
Since E ′ ≺ F , it is F -Frattini by Theorem 3.1, and so φ = αβ , where α ∈ AutF (Q ) and β is a mor-
phism in E ′ . Since all F -automorphisms of Q induce automorphisms on E , we see that Sα � R , and
as R is strongly E ′-closed, Sφ = (Sα)β � R . In particular, R is strongly F -closed as Sφ � R .

We will use Theorem 3.1 again: since E ≺ E ′ , E is E ′-Frattini, so β = γ δ, where γ ∈ AutE ′(R) and
δ is a morphism in E ′ . Then φ = αγ δ. We claim that this decomposition proves that E is F -Frattini;
since α ∈ AutF (Q ) and R is strongly F -closed, α|R is an automorphism, and hence αγ ∈ AutF (R).
Since δ ∈ HomE (Sαγ , R), this gives the correct decomposition of φ.

If S = R , then we perform the same decomposition to get that φ ∈ AutF (R) may be written as φ =
αγ , where α ∈ AutF (Q ) and γ ∈ AutE ′(R). Because all elements of AutF (Q ) induce automorphisms
on E by hypothesis, and AutE ′(R) � Aut(E ) by Theorem 3.1, we see that AutF (R) � Aut(E ), and so
E ≺ F by Theorem 3.1. �

We also need two equivalent conditions for a subgroup to be normal in a fusion system.

Proposition 3.3. (See [5, Proposition 1.6].) Let F be a saturated fusion system on a finite p-group P , and
let Q be a strongly F -closed subgroup of P . Then F = NF (Q ) if and only if Q is contained in every fully
normalized, F -centric, F -radical subgroup.

Proposition 3.4. (See Aschbacher [2, (3.7)].) Let F be a saturated fusion system on a finite p-group P , and let
Q be a subgroup of P . Then F = NF (Q ) if and only if there exists a central series

1 = Q 0 � Q 1 � · · · � Q n = Q

for Q , all of whose terms are strongly F -closed.

Proof. Suppose that F = NF (Q ), and let Q i = Zi(Q ). (The subgroup Zi(Q ) is the preimage in Q of
Z(Q /Zi−1(Q )), where Z0(Q ) = 1.) We need to show that every Q i is strongly F -closed, and we are
done. Let R � Q i , and φ ∈ HomF (R, P ). Since Q is normal in F and R � Q , it follows that φ extends
to φ̄ ∈ HomF (Q , P ) that acts like an automorphism on Q (using that Q is strongly F -closed). Since
by construction Q i char Q , we see that imφ � Q i , as needed.

Now suppose that (ii) holds, and let T be any fully F -normalized, F -radical, F -centric subgroup.
If we can show that in this case Q � T , then we are done, since then Q is contained in every
F -radical, F -centric subgroup, and so F = NF (Q ) by Proposition 3.3. Choose i maximal such that
Q i � T , so that Q i+1 � T . (For a contradiction, assume that Q is not a subgroup of T .) Set R =
Q i+1 ∩ T and S = NQ i+1 (T ); as Q � T , we have that R < S . Since S normalizes T and Q i+1 � P , we
have that [T , S] � R , and as Q i+1/Q i is central in Q /Q i , we see that S centralizes R/Q i , and since
each Q j+1/Q j is central in Q /Q j , we have that S centralizes Q j+1/Q j for all j < i.

Each Q i is strongly F -closed, and therefore AutF (T ) acts on R = Q i+1 ∩ T and Q j for all j � i.
Hence there is an AutF (T )-invariant series

1 = Q 0 � · · · � Q i � R � T ,
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with S centralizing each factor. The set of all such automorphisms of T is clearly a normal subgroup,
and is a p-subgroup by [8, Corollary 5.3.3]. Therefore, AutS (T ) is contained in a normal p-subgroup of
AutF (T ), and so in particular AutS (T ) � Inn(T ) since T is F -radical. Thus S = NQ i+1(T ) � T CP (T ) = T
since T is F -centric. Therefore, Q i+1 ∩ T � S > R = Q i+1 ∩ T , a contradiction. Hence Q is contained
in every fully F -normalized, F -centric, F -radical subgroup, and so F = NF (Q ), as claimed. �

We are now in a position to prove three preliminary lemmas – the last one perhaps of independent
interest – needed to prove the first three main theorems.

Lemma 3.5. (Cf. [13, Proposition 6.2].) Let F be a saturated fusion system on a finite p-group P , and let Q be
a subgroup such that F = NF (Q ). Then F Q (Q ) is weakly normal in F .

Proof. Suppose that F = NF (Q ); then any morphism φ : R → S lifts to a morphism φ̄ : Q R → Q S
that acts as an automorphism on Q and so Q is strongly F -closed. Write E = F Q (Q ); if R � S � Q
and ψ : S → P is a map in F , then we should show that, for all φ = cg with g ∈ Q , the map ψ−1φψ

is also in E . If ψ : S → P is a map in F , then since Q is strongly F -closed, this is actually ψ : S → Q ,
and since F = NF (Q ), the map ψ extends to an automorphism ψ̄ ∈ AutF (Q ). Thus we may assume
that S = Q ; similarly, we may assume that R = Q as well, so suppose that R = S = Q . We need to
show that if g ∈ Q and ψ ∈ AutF (Q ), then ψ−1cgψ ∈ F Q (Q ), but it is well known that ψ−1cgψ =
cgψ ∈ F Q (Q ), and we get the result. �

The proof of the next lemma is due to Sejong Park, and replaces a less elegant proof in a prelimi-
nary version of the manuscript.

Lemma 3.6. Let F be a saturated fusion system on a finite p-group P , and let Q be a subgroup such that
F Q (Q ) ≺ F . Then every characteristic subgroup of Q is strongly F -closed. In particular, Q has a central
series each of whose terms is strongly F -closed.

Proof. Let R be a characteristic subgroup of Q . Then F R(R) char F Q (Q ) ≺ F , and so F R(R) ≺ F by
Proposition 3.2; in particular, R is strongly F -closed. �
Lemma 3.7. Let F be a saturated fusion system on a finite p-group P , and let Q be a strongly F -closed
subgroup of P . Let Z be a central subgroup of Q that is weakly F -closed. Then Z is strongly F -closed.

Proof. Let φ : X → Y be an F -isomorphism with either X or Y contained in Z , and Y fully normal-
ized. Since Q is strongly F -closed, both X and Y lie inside Q . The subgroup Z is central in Q , and
so Z � CP (X); as Y is fully normalized and F is saturated, φ extends to a morphism ψ : Z X → Q
which, as Z is weakly F -closed, restricts to an automorphism ψ |Z : Z → Z . Therefore if either X or Y
lies in Z , then the other also does, as required. �
4. Theorems A and B

We begin by proving Theorem A.

Theorem A. Let F be a saturated fusion system on a finite p-group P , and let Q be a subgroup of P . Then
F = NF (Q ) if and only if F Q (Q ) ≺ F .

Proof. This follows immediately from Proposition 3.4 and Lemmas 3.5 and 3.6. �
We now prove Theorem B, using Theorem A.
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Theorem B. Let F be a saturated fusion system on a finite p-group P , and let E be a weakly normal subsystem,
on a subgroup Q of P . Suppose that E = NE (R) for some subgroup R, and let S be the subgroup of Q generated
by all F -conjugates of R. Then F = NF (S).

Proof. Suppose that E = NE (R), and write S for the product of all F -conjugates of R (all of which
are subgroups of Q , since Q is strongly F -closed). Then E = NE (S) since the product of subgroups
normal in E is also normal in E , and if φ ∈ AutF (Q ), then φ leaves S invariant (as φ ∈ Aut(E ) by
Theorem 3.1, and clearly any automorphism of E will permute the normal subgroups of E ), so induces
an automorphism on D = F S (S). (By Theorem A, F S(S) ≺ E if and only if E = NE (S).) Therefore, since
D ≺ E ≺ F , by Proposition 3.2, D ≺ F . Again, by Theorem A, we get that F = NF (S), as claimed. �

Related to this, we have a proposition on the subgroup Op(F ) of a fusion system F . As we said
earlier, if Q and R are normal subgroups of F , then Q R is as well, and hence there is a largest
subgroup of P normal in F ; this is denoted by Op(F ). Denote by O p(F ) the subsystem F Q (Q ) of
F , where Q = Op(F ). By Theorem A, O p(F ) is a weakly normal subsystem, and it is invariant under
Aut(F ), so characteristic.

Proposition 4.1. Let F be a saturated fusion system on a finite p-group P . If E is a weakly normal subsystem of
F on a subgroup Q , then Op(F ) ∩ Q = Op(E ). In particular, if Op(E ) �= 1 for some E ≺ F , then Op(F ) �= 1.

Proof. Let R = Op(F ); by Proposition 3.4, R possesses a central series

1 = R0 � R1 � · · · � Rd = R,

such that each Ri is strongly F -closed. We claim that Q i = Q ∩ Ri is strongly E -closed; in this case,

1 = Q 0 � Q 1 � · · · � Q d = Q ∩ R

is a central series for Q ∩ R , each of whose terms is strongly E -closed, yielding that Q ∩ R � Op(E ), as
required. It remains to show that Q i is strongly E -closed; however, any morphism in E that originates
inside Q i = Q ∩ Ri must have image inside Q since E is a system on Q , and must also have image
in Ri since it is strongly F -closed, and so Q i is strongly E -closed. Thus Q ∩ R � Op(E ).

On the other hand, Theorem B tells us that Op(E ) � Op(F ), and so we get equality. �
In order to prove Theorems C and D, we need to understand factor systems, and we delay their

proofs until after the next section.

5. Quotients

In this section we will consider morphisms of fusion systems and quotients. The treatment of these
varies wildly in the literature with several opposing viewpoints and one or two errors, and it is our
intention here to produce a clear description of the subject. We begin by defining a factor system.

Definition 5.1. Let F be a fusion system on the finite p-group P , and let Q be a normal subgroup
of P . By the factor system F /Q , we mean the category, whose objects are all subgroups of P/Q , and
such that for any two subgroups R and S containing Q , we have that HomF /Q (R/Q , S/Q ) is the set
of homomorphisms φ induced from the set HomF (R, S) such that Q φ = Q .

Traditionally, in the definition above the subgroup Q is strongly F -closed, but this is not necessary
for the following two results. The first is easy, and a proof is omitted.
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Proposition 5.2. Let F be a fusion system on the finite p-group P . If Q is a normal subgroup of P , then the
category F /Q is a fusion system on P/Q .

Our proof of the next proposition follows [11, Theorem 6.2], and although our hypotheses are
weaker, the method of proof is the same.

Proposition 5.3. Let F be a saturated fusion system on a finite p-group P , and let Q be a weakly F -closed
subgroup of P . Then the fusion system F /Q is saturated.

Proof. All automorphisms in AutF /Q (P/Q ) are induced from automorphisms in AutF (P ), and
so the obvious homomorphism AutF (P ) → AutF /Q (P/Q ) is surjective. The image of AutP (P ) in
AutF /Q (P/Q ) is clearly AutP/Q (P/Q ), so that it satisfies the first axiom of a saturated fusion system.

Suppose that φ ∈ HomF /Q (R/Q , S/Q ) is an isomorphism such that S/Q is fully F /Q -
normalized. We claim that S is also fully F -normalized. Since Q � R , and Q is weakly F -closed, for
all T that are F -isomorphic to R , we have that Q � T and Q � NP (T ). Also, NP (R)/Q = NP/Q (R/Q ).
Therefore

∣∣NP (T )
∣∣ = ∣∣NP/Q (T /Q )

∣∣ · |Q | � ∣∣NP/Q (S/Q )
∣∣ · |Q | = ∣∣NP (S)

∣∣;

hence S is fully F -normalized.

Now let φ be an automorphism of a fully F /Q -normalized subgroup R/Q , and let ψ be an F -
automorphism of R with image φ in F /Q . At this point we would like to prove that Nψ/Q = Nφ ,
but it is not necessarily true. However, there is some ψ with image φ for which Nψ/Q = Nφ , as we
shall demonstrate now. Notice that Nψ/Q � Nφ trivially.

Let K be the kernel of the natural map AutF (R) → Aut(R/Q ), a normal subgroup of AutF (R);
then K consists of all elements of AutF (R) that act trivially on R/Q , and hence are sent to the
identity automorphism of R/Q under the map F → F /Q . The idea is that if χ ∈ K , then χψ and
ψ both have the image φ in F /Q , so one may ‘ignore’ elements in K . We will prove that there are
morphisms χ ∈ K and θ : R → R such that ψ = χθ and θ has the property that Nθ /Q = Nφ . Since θ

and ψ define the same image φ in F /Q , we prove that φ extends to Nφ .
Since K is a normal subgroup of AutF (R) and AutP (R) is a Sylow p-subgroup of AutF (R) (as R is

fully normalized), we have that AutK
P (R) = K ∩ AutP (R) is a Sylow p-subgroup of K , and by the

Frattini argument

AutF (R) = K NAutF (R)

(
AutK

P (R)
)
.

Since AutP (R) normalizes AutK
P (R) = AutP (R) ∩ K , we see that AutP (R) is a Sylow p-subgroup of

NAutF (R)(AutK
P (R)). Also, writing X = NAutF (R)(AutK

P (R)), we have

X/X ∩ K ∼= K X/K = AutF (R)/K ∼= AutF /Q (R/Q ),

by the second isomorphism theorem and the definition of K . Since X = NAutF (R)(AutK
P (R)), we may

form the quotient group X/AutK
P (R), and as S = AutK

P (R) is a Sylow p-subgroup of K , it must be a
(normal) Sylow p-subgroup of X ∩ K ; hence (X ∩ K )/S is a p′-group. Quotienting out by this Sylow
p-subgroup, we see that

X/X ∩ K ∼= (X/S)/
(
(X ∩ K )/S

) ∼= AutF /Q (R/Q ).

The subgroup Nφ is the preimage in P/Q of the intersection AutP/Q (R/Q ) ∩ AutP/Q (R/Q )φ
−1

;
notice that both of these subgroups in the intersection are Sylow p-subgroups of AutF /Q (R/Q ).
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Since (X ∩ K )/S is a p′-group, we see that there are two Sylow p-subgroups A/S and B/S of X/S

that project onto AutP/Q (R/Q ) and AutP/Q (R/Q )φ
−1

respectively, and an element Sg ∈ X/S , such

that A/S ∩ (B/S)Sg−1
projects onto AutP/Q (R/Q ) ∩ AutP/Q (R/Q )φ

−1
and Sg projects onto φ. (For a

proof, see [11, Corollary 2.13]; it essentially comes from the fact that if H is a normal p′-subgroup,
then the fusion systems of G and G/H are isomorphic.)

Since S is a normal p-subgroup in X ∩ K , we may easily lift from X/S to X , so there is some
element θ ∈ X = NAutF (R)(AutK

P (R)) such that AutP (R) ∩ AutP (R)θ
−1

maps onto AutP/Q (R/Q ) ∩
(AutP/Q (R/Q ))φ

−1
. Therefore the map Nθ → Nφ is surjective, and so Nθ /Q = Nφ . As the map θ

extends to Nθ , the map φ extends to Nφ .

It remains to deal with the general case of any map φ : S/Q → R/Q in F /Q , where R/Q is fully
F /Q -normalized. This lifts to a map ψ : S → R in F with R fully F -normalized (since it was shown
at the beginning of the proof that if R/Q is fully F /Q -normalized then R is fully F -normalized). By
[11, Lemma 2.6], there is some map θ : S → R with Nθ = N P (S), and so φ extends to Nφ if and only
if both the image χ of θ in F /Q extends to Nχ = NP/Q (S/Q ) and the automorphism χ−1φ of R/Q
extends to Nχ−1φ = Nφ . The first of these claims is obvious, and the second has just been proved
above, concluding the proof. �

In the other direction, since fusion systems are categories, one may consider morphisms of fusion
systems.

Definition 5.4. Let F and E be fusion systems on the finite p-groups P and Q , respectively. A mor-
phism Φ : F → E of fusion systems is a pair (φ, {φR,S : R, S � P }), where φ : P → Q is a group
homomorphism, and for each R, S � P , the map φR,S is a function

φR,S : HomF (R, S) → HomE (Rφ, Sφ)

such that the corresponding map F → E between the categories is a functor; i.e., for any two com-
posable F -morphisms α and β , we have

(αβ)Φ = αΦβΦ.

It is easy to see, using the functoriality of Φ , that the action of Φ on morphisms in F is completely
determined by the underlying group homomorphism.

Kernels of morphisms are clearly normal subgroups, since they are kernels of group homomor-
phisms. We have even more.

Proposition 5.5. If Φ : F → E is a morphism of fusion systems, then kerΦ is strongly F -closed.

Proof. Let Q be the kernel of Φ , and let R be a subgroup of Q . We need to show that if S is F -
isomorphic to R then S � Q . Let ψ : R → S be an isomorphism. Then ψΦ is an isomorphism in E ,
and since SΦ is trivial, we must have that RΦ is trivial also. Thus Q is strongly F -closed. �

We will now construct, for every strongly F -closed subgroup Q , a morphism on F with kernel
exactly Q .

Definition 5.6. Let P be a finite p-group and let F be a fusion system on P . Let Q be a strongly F -
closed subgroup of P . By F̄ Q , we will denote the subobject of the universal fusion system U (P/Q ),
containing all objects in U (P/Q ), and with morphisms HomF̄ Q

(R/Q , S/Q ) consisting of those mor-

phisms induced by HomF (R ′, S ′), as R ′ and S ′ range over all subgroups of P such that R ′ Q = R and
S ′ Q = S . (Since Q is strongly F -closed, any such morphism φ : R ′ → S ′ gives rise to a morphism
φ̄ : R ′ Q /Q → S ′ Q /Q using R ′ Q /Q ∼= R ′/R ′ ∩ Q .)



D.A. Craven / Journal of Algebra 323 (2010) 2429–2448 2439
By 〈F̄ Q 〉 we denote the category on P/Q consisting of all compositions of morphisms from F̄ Q .

Notice that F /Q is contained inside F̄ Q . It turns out that 〈F̄ Q 〉 is a fusion system.

Lemma 5.7. Let F be a fusion system on a finite p-group P . If Q is a strongly F -closed subgroup of P , then
〈F̄ Q 〉 is a fusion system on P/Q .

Proof. That 〈F̄ Q 〉 is a category is obvious, since we are guaranteed compositions of morphisms by
definition. The first axiom of a fusion system is satisfied, since

F P/Q (P/Q ) ⊆ F /Q ⊆ 〈F̄ Q 〉.

If we prove the final two axioms for the subset F̄ Q , then since 〈F̄ Q 〉 is got from F̄ Q by compositions
of morphisms, those axioms would also hold there. If φ : R/Q → S/Q is a morphism in F̄ Q , then
there is some morphism φ′ : R ′ → S ′ inducing φ, and the corresponding isomorphism ψ ′ : R ′ → R ′φ′
induces an isomorphism in F̄ Q corresponding to φ. Finally, if φ : R/Q → S/Q is an isomorphism
in F̄ Q , then it comes from some isomorphism φ′ : R ′ → S ′ in F , and the inverse of φ′ induces the
inverse of φ. Hence 〈F̄ Q 〉 is a fusion system. �

At this point it becomes difficult to know whether to define the natural map F → 〈F̄ Q 〉 as a
morphism of fusion systems, since although it satisfies the requirements in the definition, the image
of the map, F̄ Q , is not in general a fusion system, because it is not a category. If F̄ Q = 〈F̄ Q 〉, then
the natural map does become a surjective morphism of fusion systems.

Proposition 5.8. Let F be a fusion system on a finite p-group P , and suppose that Q is a subgroup such that
F = NF (Q ). Then F /Q = F̄ Q , and hence the natural map F → F /Q is a morphism of fusion systems.

Proof. Any morphism φ : R → S extends to a morphism ψ : Q R → Q S that acts as an automorphism
on Q . Certainly, φ̄ = ψ̄ in F̄ Q , since the action of φ and ψ on Q R/Q is the same. Also, ψ̄ ∈ F /Q ,
and since F /Q ⊆ F̄ Q we must have equality. �

In general of course, a strongly F -closed subgroup need not be normal in F , and in this case we
need not have that F̄ Q is a fusion system, or that 〈F̄ Q 〉 = F /Q .

Example 5.9. Let P = 〈a,b, c,d〉 be elementary abelian of order 16, and let F be the fusion system
generated by F P (P ) and the two morphisms 〈ab〉 → 〈c〉 and 〈ac〉 → 〈d〉. Then A = 〈a〉 is strongly F -
closed, and so we may form the object F̄ A . Here, the cosets Ab and Ac are F̄ A -conjugate, as are the
cosets Ac and Ad. However, there is no map sending Ab to Ad, and so F̄ A is not a fusion system.

Note also that there are no non-trivial morphisms on overgroups of A, and so F /A = F P/A(P/A).

Other than the case where F = NF (Q ), there is another case in which F /Q = F̄ Q . The proof of
this theorem follows [12, Proposition 6.3], although simplifications have been made.

Theorem 5.10. Let F be a saturated fusion system and let Q be a strongly F -closed subgroup. Then
F /Q = F̄ Q , and so the map F → F /Q is a morphism of fusion systems.

Proof. If φ : R → S is a map in F , write φ̄ for the image of this map in F̄ Q ; i.e., write φ̄ for the
induced map φ̄ : Q R/Q → Q S/Q . Firstly, notice that both F /Q and F̄ Q are defined on the same
group, namely P/Q . Certainly, F /Q is contained in F̄ Q , so we need to prove the converse; in other
words, given a morphism φ : R → S in F , we need to show that there is some morphism ψ : R Q → P
such that φ̄ = ψ̄ , for then φ̄ ∈ F /Q , as needed.
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We proceed by induction on n = |P : R|, noting that if R contains Q then we are done trivially;
in particular, this implies that n > 1. By Alperin’s fusion theorem, any morphism may be factored
as (restrictions of) a sequence of automorphisms φi of fully normalized, F -centric, F -radical sub-
groups Ui . Suppose that the images φ̄i of each of the φi lie in F /Q : since F /Q is a fusion system and
F → 〈F̄ Q 〉 is a morphism, we have that φ̄, the product of (restrictions of) the φ̄i , also lies in F /Q .

Therefore we may assume that one of the φ̄i lies in F̄ Q but not in F /Q . By our inductive hypoth-
esis, we see that |Ui | = |R|, and so we may replace R and φ by Ui and φi ; therefore R is now a fully
normalized, F -centric, F -radical subgroup, and φ is an automorphism of R . Also, Q � R as we saw
above.

Similar to the proof of Proposition 5.3, let K be the kernel of the natural map AutF (R) →
Aut(R Q /Q ), a normal subgroup of A = AutF (R); then K consists of all elements of AutF (R) that
act trivially on Q R/Q , and hence are sent to the identity automorphism of R Q /Q under the map
F → F /Q .

Let T = NK
P (R); since R is fully normalized, AutP (R) is a Sylow p-subgroup of A, and so K ∩

AutP (R) = AutT (R) is a Sylow p-subgroup of K . Therefore, by the Frattini argument,

A = K NA
(
AutT (R)

)
.

Step 1. We have Q ∩T = NK
Q (R) = NQ (R), and RNQ (R) > R. The first equality is obvious. Let g ∈ NQ (R),

and x ∈ R . Then it is easy to see that Q xg = Q x, so that g acts trivially on Q R/Q . Hence the auto-
morphism determined by g is in K , and so our first claim is proved. To see the second part, notice
that Q ∩ R < Q , and so NQ (R) = NQ (Q ∩ R) > Q ∩ R .

Step 2. If ψ ∈ NA(AutT (R)), then Nψ contains T . Since Nψ is the inverse image under δR : NP (R) →
Aut(R) of the subgroup AutP (R) ∩ AutP (R)ψ

−1
in A, we need to show that AutT (R) is contained in

both terms of the intersection. That it is contained in the first is clear, and for the second, since
ψ ∈ NA(AutT (R)), we have that (AutT (R))ψ = AutT (R). Thus it is contained in both terms, and so our
claim is proved.

Now we may prove the result: since A = K NA(AutT (R)), the morphism φ may be written as
φ = χψ , where χ ∈ K and ψ ∈ NA(AutT (R)). Since χ acts trivially on Q R/Q , we see that φ̄ = ψ̄

in F̄ Q . Furthermore, by Step 2 we see that Nψ contains T . However, if Nψ > R , then ψ extends
to ψ ′ , on an overgroup of R , and so by induction ψ̄ ′ lies in F /Q . Since F /Q is a fusion system, this
would imply that ψ̄ is in F /Q . Therefore T � R , and hence Q ∩ T = NQ (R) � R . However, by Step 1,
RNQ (R) > R , a contradiction, proving the theorem. �

Thus if F is a saturated fusion system and Q is a strongly F -closed subgroup, then one may
use either of the systems F /Q or F̄ Q when making arguments about quotient systems. This will be
essential in our short proof of Theorem D.

At this point we need to make a remark about the factor system F /Q ; Markus Linckelmann, in
private communication, has pointed out that F /Q = NF (Q )/Q , and so F /Q is determined locally.
The interaction between this statement and Theorem 5.10 might have significant implications for the
structure of fusion systems, which have not yet been considered.

We end this section with what are essentially the second and third isomorphism theorems for
fusion systems. Recall the definition of the universal fusion system on a finite p-group, consisting of
all injective homomorphisms between subgroups of P .

Proposition 5.11 (Second isomorphism theorem). Let F be a saturated fusion system on a finite p-group P ,
and let Q be a strongly F -closed subgroup, and let E be a saturated subsystem on a subgroup R on P . Write
E Q /Q for the image of E in F̄ Q . Then

E Q /Q ∼= E /(R ∩ Q ).
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Proof. The isomorphism R Q /Q → R/R ∩ Q induces an isomorphism Φ : U (R Q /Q ) → U (R/R ∩ Q )

of the universal fusion systems, so we need to prove that the image of E Q /Q in U (R/R ∩ Q ) lies
inside E /R ∩ Q and vice versa.

Let S/Q and T /Q be subgroups of R Q /Q . Then a morphism φ : S/Q → T /Q lies in E Q /Q
if and only if there exist subgroups S ′ and T ′ of R with S ′ Q = S and T ′ Q = T , and a morphism
ψ ∈ HomE (S ′, T ′) such that the image of ψ in F̄ Q is φ. The image of ψ in E /R ∩ Q is clearly φΦ ,
and so the image of E Q /Q under Φ is contained in E /R ∩ Q . Conversely, if θ : S/R ∩ Q → T /R ∩ Q is
a morphism in E /R ∩ Q , then there is a morphism χ : S → T in E with image θ in E /R ∩ Q , and the
image χ̄ of χ in E Q /Q also satisfies χ̄Φ = θ , and so Φ induces an isomorphism E Q /Q → E /R ∩ Q ,
as needed. �

We get the following corollary a posteriori.

Corollary 5.12. Let F be a saturated fusion system, and let Q be a strongly F -closed subgroup. The image of
any saturated subsystem of F in F̄ Q is saturated.

We now consider the third isomorphism theorem for fusion systems.

Proposition 5.13 (Third isomorphism theorem). Let F be a saturated fusion system on a finite p-group P , and
let Q and R be strongly F -closed subgroups with Q � R. Then

(F /Q )/(R/Q ) ∼= F /R.

Proof. By the third isomorphism theorem for groups, the two fusion systems E = (F /Q )/(R/Q ) and
F /R are on the same subgroup. Suppose that φ̄ : S/R → T /R is a morphism in F /R . Then there is
some morphism φ ∈ HomF (S, T ) with image φ̄. Furthermore, the image φ′ : S/Q → T /Q of φ in
F /Q has image φ′′ : S/R → T /R in (F /Q )/(R/Q ), and since both φ̄ and φ′′ are derived from φ, they
must be the same morphism. The converse is a similar calculation, and is safely omitted. �

In the second isomorphism theorem, we denoted by E Q /Q the image of E in F /Q . If E is defined
on a subgroup R of P , then there is a subsystem E Q , defined on R Q , such that the factor system
E Q /Q is the image of E in F /Q , namely the full preimage under the natural morphism F → F /Q .
It is not clear at this time whether there is always a saturated such subsystem E Q , but it is known
that fusion systems do not behave as well as groups with respect to taking preimages, so it seems
unlikely that this is always true. (In the case where F = CF (Q ), there is a bijection between saturated
subsystems of F on subgroups containing Q and saturated subsystems of F /Q : see [6, Section 6].)

6. Closure and quotients

We begin with how weak and strong closure relates to taking quotients. The proof in [13] of
Theorem 6.1(iv) given below is not clear, because it is only true given Theorem 5.10, a result that is
not mentioned in [13].

Theorem 6.1. (Cf. Stancu [13, Lemma 4.7], Aschbacher [4, Lemma 8.9].) Let F be a fusion system on a finite
p-group P , and let Q be a strongly F -closed subgroup of P , and let R be a subgroup of P .

(i) The map Φ : F → F /Q induces a bijection between the weakly F -closed subgroups of P containing Q
and the weakly F /Q -closed subgroups of P/Q .

(ii) If R is weakly F -closed then the image of R in F /Q is weakly F /Q -closed.
(iii) If F is saturated then the map Φ : F → F /Q induces a bijection between the strongly F -closed sub-

groups of P containing Q and the strongly F /Q -closed subgroups of P/Q .
(iv) If F is saturated and R is strongly F -closed then the image of R in F /Q is strongly F /Q -closed.
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Proof. Let R be a subgroup of P containing Q . Then R is weakly closed if and only if any morphism
φ : R → P is an automorphism. Clearly if R is weakly F -closed then any morphism φ′ : R/Q → P/Q
in F /Q (which must have a preimage in HomF (R, P )) is an automorphism, and vice versa. Hence (i)
is true.

Also, the product of two weakly F -closed subgroups is weakly F -closed, so if any subgroup R is
weakly F -closed, so is Q R , and hence Q R/Q is weakly F /Q -closed by (i), proving (ii).

For the rest of the proof, suppose that F is saturated, so that F̄ Q = F /Q . Let R be an overgroup
of Q , and let S be any subgroup of R . Suppose that φ : S → P is a morphism in F . Then Sφ � R if
and only if (S Q /Q )φ̄ = (Sφ)Q /Q � R/Q , where φ̄ is the image in F̄ Q of φ. Since this holds for all φ,
we see that R is strongly F -closed if and only if R/Q is strongly (F̄ Q = F /Q )-closed, proving (iii).

Let R be any strongly F -closed subgroup of P , let S be any subgroup of R , and let φ ∈
HomF (S Q , P ). Since Q is strongly F -closed, φ|Q is an automorphism of Q , and since R is strongly
F -closed, φ|S maps S to R . Therefore, (S Q )φ � R Q . If every subgroup of R Q /Q is of the form
S Q /Q for some S � R , then R Q /Q would be strongly F /Q -closed, proving (iv). However, this fol-
lows from the second isomorphism theorem, since R Q /Q ∼= R/R ∩ Q , choosing A/Q corresponds to
a subgroup B/R ∩ Q on the right-hand side, and B Q /Q = A/Q , as needed. �

We now prove Theorem C, by collating the equivalent conditions to a subgroup Q having the
property that F = NF (Q ).

Theorem 6.2. Let F be a saturated fusion system on a finite p-group P , and let Q be a subgroup of P . The
following are equivalent:

(i) F = NF (Q );
(ii) F Q (Q ) ≺ F ;

(iii) Q is contained in every fully normalized, F -centric, F -radical subgroup of F ;
(iv) there is a central series for Q all of whose terms (including Q ) are strongly F -closed; and
(v) there is a central series for Q all of whose terms are weakly F -closed, and Q is strongly F -closed.

Proof. The equivalence of (i) and (ii) is Theorem A, the equivalence of (i) and (iii) is Proposition 3.3,
the equivalence of (i) and (iv) is Proposition 3.4, and that (iv) implies (v) is obvious. It remains to
show that (v) implies (iv).

Let

1 = Q 0 � Q 1 � · · · � Q n = Q

be a central series for Q , all of whose terms are weakly F -closed. By Lemma 3.7, Q 1 � Z(Q ) is
strongly F -closed. Since Q 1 is strongly F -closed, we may take the quotient system F /Q 1. The-
orem 6.1 states that the map F → F /Q 1 induces a bijection between the weakly and strongly
F -closed subgroups of P containing Q 1 and the weakly and strongly F /Q 1-closed subgroups of
P/Q 1, respectively.

At this stage, one may either proceed by induction on the length of a central series all of whose
terms are weakly F -closed, by noticing that now Q 2/Q 1 is strongly F /Q 1-closed, and hence Q 2
is strongly F -closed, or proceed by induction on |Q |, and note that since Q /Q 1 satisfies (iv) of
the theorem, there must be a central series by (v) which, when full preimages are taken, gives a
central series for Q all of whose terms are strongly F -closed. Hence all conditions are equivalent, as
claimed. �

Using Theorem 6.1, the proof of Theorem D is trivial. Let Q and R be strongly F -closed subgroups
of a saturated fusion system F . By Theorem 6.1(iv), Q R/Q is strongly F /Q -closed, and by (iii) of
that theorem, this implies that Q R is strongly F -closed, as required.
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We now include a couple of lemmas, ready for our treatment of p-soluble fusion systems. If F is
a fusion system on P , then the centre of F , denoted Z(F ), is the collection of all elements x ∈ P such
that CF (〈x〉) = F .

Lemma 6.3. Let F be a saturated fusion system on a finite p-group P , and suppose that Z is a strongly F -
closed subgroup of Z(F ). Then for any normal subgroup Q containing Z , F = NF (Q ) if and only if F /Z =
NF /Z (Q /Z).

Proof. This is a special case of [11, Theorem 6.5]. �
Lemma 6.4. Let F be a saturated fusion system on a finite p-group P , and let Q be a fully normalized sub-
group. If K is a normal subgroup of AutF (Q ); then NK

F (Q ) ≺ NF (Q ). In particular, CF (Q ) ≺ NF (Q ).

Proof. Since F is saturated and Q is fully normalized, NF (Q ) is saturated. Also, since K is a normal
subgroup of AutF (Q ), NK

F (Q ) is saturated as well, as we remarked when we defined NK
F (Q ).

Next, we need to show that NK
P (Q ) is strongly NF (Q )-closed, so let R be a subgroup of N =

NK
P (Q ) and φ : R → S be a morphism in NF (Q ). For g ∈ R , consider the conjugation action cg of g

on Q ; since R � N , we see that cg ∈ K . Furthermore, the action of gφ ∈ S on Q is given by

cgφ = φ−1cgφ ∈ K ,

since K � AutF (Q ). Therefore S � NK
P (Q ), and so N is strongly F -closed.

Finally, we need to show that NK
F (Q ) is NF (Q )-invariant, so let R � S � N , φ ∈ HomNK

F (Q )(R, S)

and ψ ∈ HomNF (Q )(S, N). Since each of φ and ψ extends to maps φ̄ and ψ̄ whose domains include Q ,
and in the first case φ̄|Q ∈ K and in the second ψ̄ |Q ∈ AutF (Q ), we see that

(
ψ̄−1φ̄ψ̄

)∣∣
Q ∈ K ,

as K is a normal subgroup of AutF (Q ). Hence ψ−1φψ extends to a map θ whose domain includes
Q and for which θ |Q ∈ K . Therefore ψ−1φψ ∈ NK

F (Q ), and so NK
F (Q ) is NF (Q )-invariant, as re-

quired. �
7. p-Soluble fusion systems

For finite groups, a group is called p-soluble if repeated quotienting by (alternating) Op(G) and
Op′ (G) reaches the identity. In the case of fusion systems, we have that Op′(F ) = 1, so it makes sense
to make the following definition.

Definition 7.1. Let F be a saturated fusion system on a finite p-group P . We say that F is p-soluble
if there exists a chain of strongly F -closed subgroups

1 = P0 � P1 � · · · � Pn = P ,

such that Pi/Pi−1 � Op(F /Pi−1) for all 1 � i � n. If F is p-soluble, then the length n of a smallest
such chain above will be called the p-length of F .

We have the following easy lemma.

Lemma 7.2. Let F be a saturated fusion system on a finite p-group P . If Q is a strongly F -closed subgroup
of P , then Op(F )/Q � Op(F /Q ), and if Q � Op(F ), then F is p-soluble if and only if F /Q is p-soluble.
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Proof. Let R be a strongly F -closed subgroup of P with F = NF (R). We claim that R Q /Q is con-
tained in Op(F /Q ). To see this, let ψ : A/Q → B/Q be any morphism in F /Q , and let φ : A → B
be an F -morphism whose image in F /Q is ψ . This may be extended to a morphism φ̄ : AR → B R
with φ̄|R an automorphism; ψ̄ of φ̄ is a map AR/Q → B R/Q that must act as an automorphism of
R Q /Q , since φ̄ acts as an automorphism of R . This proves that Op(F )/Q � Op(F /Q ).

For the rest of the proof, suppose that Q � Op(F ). If F /Q is p-soluble, then taking the preimages
of a chain of strongly F /Q -closed subgroups witnessing the p-solubility of F /Q , together with Q
itself, yields a chain of strongly F -closed subgroups (by Theorem 6.1(iii)) witnessing the p-solubility
of F , proving one direction.

Conversely, suppose that F is p-soluble, and let

1 = P0 � P1 � · · · � Pn = P

be a sequence of strongly F -closed subgroups with Pi/Pi−1 � Op(F /Pi−1) for all 1 � i � n. We may
assume that P1 is non-trivial, and notice that F /P1 is clearly p-soluble, with |P/P1| < |P |. Define
Q̄ = P1 Q : by induction, since Q̄ /P1 � Op(F /P1) by the first part, and F /P1 is p-soluble, we have
that F /Q̄ = (F /P1)/(Q̄ /P1) is p-soluble. If Q �= 1, then |P/Q | < |P |, so we can use induction, and
therefore F /Q is p-soluble if and only if (F /Q )/(Q̄ /Q ) ∼= F /Q̄ is p-soluble (as Q̄ /Q � Op(F /Q )

by the first part). Since F /Q̄ is p-soluble, this completes the proof. �
The following lemma describes the basic facts of p-soluble fusion systems, mirroring those of finite

groups. Define O(0)
p (F ) = 1, and the ith term by

O(i)
p (F )/O(i−1)

p (F ) = Op
(

F /O(i−1)
p (F )

)
.

Lemma 7.3. Let F be a saturated fusion system on a finite p-group P , and let Q be a strongly F -closed
subgroup of P .

(i) If F is p-soluble then all saturated subsystems and quotients F /Q are p-soluble.
(ii) Let E be a weakly normal subsystem of F , on the subgroup Q . If both E and F /Q are p-soluble then so

is F .
(iii) F is p-soluble if and only O(n)

p (F ) = P for some n, and the smallest such n is the p-length of F .

Proof. Choose a triple (F , P , Q ), where F is a p-soluble, saturated fusion system on a finite p-
group P , and Q is a strongly F -closed subgroup of P such that F /Q is not p-soluble, and such
that |P | is minimal subject to these constraints. Write R = Op(F ) �= 1; by Lemma 7.2, we see that
F /R is p-soluble, and F /Q R is not p-soluble (as Q R/Q � Op(F /Q ) and hence F /Q is p-soluble
if and only if (F /Q )/(Q R/Q ) ∼= F /Q R is, by another application of Lemma 7.2). This proves that
(F /R, P/R, Q R/R) is a triple satisfying our conditions with |P | > |P/R|. This yields a contradiction,
proving that quotients of p-soluble fusion systems are p-soluble.

Now let (F , F ′, Q ) be a triple, with F a p-soluble fusion system on a p-group P , F ′ a saturated
subsystem of F on a subgroup Q , with F ′ not p-soluble. Choose this triple with |P | minimal. Let
R = Op(F ) �= 1, and we claim that R ∩ Q � Op(F ′). Since NF (R) = F , we have a central series

1 = R0 � R1 � · · · � Rn = R,

with each Ri strongly F -closed, by Proposition 3.4. Therefore any morphism in F ′ whose domain lies
inside Ri has image inside Ri . Since Q is obviously strongly F ′-closed, the means that the intersection
Q i = Ri ∩ Q is strongly F ′-closed. Thus the series of the Q i is a central series for Q ∩ R whose terms
are strongly F ′-closed, which by another application of Proposition 3.4, gives the result.

Consider the image F ′R/R of F ′ in F /R . Since this is isomorphic with F ′/R ∩ Q by the
second isomorphism theorem, and is hence not p-soluble (by Lemma 7.2 again), the triple
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(F /R, F ′R/R, Q R/R) has |P/R| < |P | and so this contradicts the choice of the original triple. This
proves (i).

Recall that by O p(E ) we mean the subsystem FOp(E )(Op(E )). We have that O p(E ) char E ≺ F , so

that Op(E ) is strongly F -closed; this, together with induction and Theorem 6.1(iii), proves that O(i)
p (E )

is strongly F -closed for all i. Since E is p-soluble O(i)
p (E )/O(i−1)

p (E ) � Op(E /O(i−1)
p (E )), and Lemma 4.1

therefore implies that O(i)
p (E )/O(i−1)

p (E ) � Op(F /O(i−1)
p (E )); this chain of strongly F -closed subgroups

satisfies the requirements for F to be p-soluble up to Q , the subgroup on which E lies. By Theo-
rem 6.1(iii), the preimages of O( j)

p (F /Q ) are strongly F -closed. The concatenation of the two series

O(i)
p (E ) and the preimages of O( j)

p (F /Q ) satisfy the requirement for F to be p-soluble, proving (ii).
Now, we prove (iii). One direction is clear, so suppose that F has a series (Q i) so that Q i/Q i−1 �

Op(F /Q i−1) for all i. If we can show that, whenever S � Op(F ) is strongly F -closed, then the preim-

age of Op(F /S) is contained in O(2)
p (F ), then we are done by an obvious induction.

By Lemma 7.2, if S � Op(F ) = R , then R/S � Op(F /S), and so one may consider Op(F /S)/(R/S),
which is a subgroup of Op((F /S)/(R/S)) ∼= Op(F /R) by another application of Lemma 7.2, and hence

contained in O(2)
p (F )/R . Thus all parts of the lemma are proved. �

At this point we digress briefly to discuss the concept of minimal weakly normal subsystems, i.e.,
weakly normal subsystems of a fusion system F that contain no other weakly normal subsystem
apart from themselves and 1. At the moment, there is no characterization of minimal weakly normal
subsystems, like there is for groups. The reason behind this is that the intersection of two weakly
normal subsystems need not be weakly normal, nor even saturated.

Example 7.4. Let P = D8 × C2, with the D8 factor generated by an element x of order 4 and y of
order 2, and the C2-factor being generated by z. Let Q = 〈x, y〉, and R = 〈xz, y〉. Then S = Q ∩ R is a
normal Klein four subgroup of P , and AutQ (S) = AutR(S) contains the identity and the map swapping
y and x2 y. Thus E = F Q (Q ) ∩ F R(R) has an outer automorphism of order 2 on S , and so cannot be
saturated, as AutS(S) is not a Sylow 2-subgroup of AutE (S).

This example shows that for any ‘reasonable’ definition of normality – i.e., one for which normal
subgroups yield normal subsystems – the intersection of two normal subsystems need not be satu-
rated. As we mentioned in Section 2, in [3] Aschbacher proves that the intersection of two normal
subsystems contains a normal subsystem on the intersection of the two relevant subgroups. This re-
sult easily enables one to prove (mimicking the proof for groups) that a minimal normal subsystem of
a saturated fusion system is either the fusion system F Q (Q ) for an elementary abelian p-subgroup
Q or a direct product of isomorphic non-abelian simple subsystems, that is, simple subsystems not of
the form F R(R) for R ∼= C p . Such a result is not known for weakly normal subsystems.

However, we can say something about minimal weakly subnormal subsystems. (The definition of
weak subnormality is obvious, and left to the reader.) These are obviously simple, and so either of the
form F Q (Q ) for Q of prime order, or some non-abelian simple fusion system.

Proposition 7.5. Let E be a minimal weakly subnormal subsystem of the saturated fusion system F , on a finite
p-group P . If E = F Q (Q ) for Q � P of prime order, then Q � Op(F ). In particular, F is not p-soluble if and
only if there is a strongly F -closed subgroup R and non-abelian simple subsystem of F /R.

Proof. The first statement, that Op(E ) � Op(F ) for any weakly subnormal subsystem E of F , easily
follows from Proposition 4.1 and induction on the length of a chain of weakly normal subsystems
connecting E and F .

To see the second, if F is p-soluble then all quotients and saturated subsystems are p-soluble,
and so F contains no non-abelian simple subquotient, proving one direction. For the other, proceed
by induction on |P |; assume that F is a saturated fusion system on a finite p-group P with no non-
abelian simple subquotients. If Op(F ) �= 1, then F /Op(F ) is p-soluble by induction, whence so is F .
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However, no minimal weakly subnormal subsystem may be non-abelian simple, and so must be of
the form F Q (Q ), and so we see that Op(F ) �= 1 by the first part of the proposition. �

We come to the main result of the section, the proof that p-soluble fusion systems are constrained.
We start with a simple lemma.

Lemma 7.6. For any saturated fusion system F on a finite p-group P , Z(F ) � Op(F ), and

Op(F )/Z(F ) = Op
(

F /Z(F )
)
.

In particular, if Op(F ) = Z(F ) then either P = Op(F ) or F is not p-soluble.

Proof. Clearly Z(F ) � Op(F ), and by Lemma 6.3,

Op(F )/Z(F ) = Op
(

F /Z(F )
)
.

If Op(F ) �= P , then Op(F /Z(F )) is trivial. Therefore no minimal weakly subnormal subsystem E of
F /Z(F ) is of the form F Q (Q ) for some Q , and so Proposition 7.5 implies that F is not p-soluble, as
claimed. �
Theorem 7.7. Suppose that F is p-soluble, and let Q = Op(F ). Then CP (Q ) = Z(Q ), so that F is constrained.

Proof. Let Q = Op(F ), and let E = CF (Q ). Since F = NF (Q ), we see that E ≺ F by Lemma 6.4.
Therefore, by Proposition 4.1,

Op(E ) = Op(F ) ∩ CP (Q ) = Q ∩ CP (Q ) = Z(Q ).

However, since E = CF (Q ), we notice that every morphism in E centralizes Z(Q ) = Q ∩ CP (Q ),
so that Z(Q ) � Z(E ). Since Z(E ) � Op(E ) obviously, we see that

Op(E ) = Z(E ).

As E is p-soluble (since F is, by Lemma 7.3), we get by Lemma 7.6 that CP (Q ) = Op(CF (Q )). How-
ever, Op(E ) � Op(F ) by Proposition 4.1, so that

CP (Q ) = Op(E ) � Op(F ) = Q .

Thus Q is F -centric, as required. �
8. Soluble systems and soluble groups

The fact that p-soluble fusion systems are constrained means that they are fusion systems of finite
groups, by Theorem 2.5. In this section we will characterize those fusion systems that come from p-
soluble groups. Since every p-soluble group has a p-soluble fusion system, it is a necessary condition
that they be constrained, so we start from here.

It is well known (see, for example, [1, 33.12]) that if G is a simple p′-group, then any quasisimple
group with quotient G is also a p′-group. This gives us the following, originally proved by Hall and
Higman.
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Lemma 8.1. Let G be a p-soluble group with Op′ (G) = 1. Then

CG
(
Op(G)

)
� Op(G).

Proof. A fundamental property of the generalized Fitting subgroup is that CG(F ∗(G)) � F ∗(G)

[1, 31.13]. Since G is p-soluble, any subnormal quasisimple group is a p′-group, and therefore
E(G) � Op′(G) = 1. Therefore F ∗(G) = Op(G), proving the claim. �

Using this lemma, we give our first characterization of fusion systems of p-soluble groups. In the
rest of this section, for a constrained fusion system F , we denote the unique finite group given in
Theorem 2.5 by LF .

Proposition 8.2. Let F be a saturated fusion system on a finite p-group P . There is a p-soluble group G such
that F = F P (G) if and only if F is constrained, and LF is p-soluble.

Proof. Suppose that F = F P (G) for some p-soluble group G . We may assume that Op′(G) = 1, since
the fusion systems on G and G/Op′ (G) are the same. By Lemma 8.1, Op(G) contains its centralizer.
Therefore, by the uniqueness of the group in Theorem 2.5, G = LF . �

Finally, this allows us to reach an internal characterization of fusion systems of p-soluble groups,
without reference to groups.

Theorem G. Let F be a saturated fusion system on a finite p-group P , and write Q = Op(F ). Then F is the
fusion system of a p-soluble group if and only if F is constrained and AutF (Q ) is p-soluble.

Proof. Suppose that F is constrained and that AutF (Q ) is p-soluble. Since F is constrained, we have
that F = F P (LF ); then LF is an extension of CLF (Q ) = Z(Q ) by AutLF (Q ) = AutF (Q ), which is p-
soluble. Hence LF is p-soluble, and so F is the fusion system of a p-soluble group. The converse is
similarly clear. �

At first blush, this appears to contradict an assertion in [12, 1.6], which claims that all p-soluble
fusion systems arise from p-soluble groups. The incongruity stems from the definition of a soluble
fusion system in [12], which works ‘from the top down’, in the sense that it involves taking repeated
subsystems, rather than repeated quotients. Recall the definitions of Op(F ) and Op′

(F ) from [12,
7.5, 6.11] (where they are denoted F h and F a respectively), which will not be repeated here. Then
another way to define a soluble fusion system is that repeated taking of Op and Op′

operators even-
tually reaches the trivial group. While this definition picks out exactly the fusion systems of p-soluble
groups (this is not difficult to prove given Theorem G), it suffers from the fact that this class of fusion
system is not closed under extensions. The class of p-soluble fusion systems given here is extension-
closed and contains the fusion system F P (P ), where P is cyclic of order p; by Proposition 7.5, it
is also the class of all systems that do not contain simple subquotients. It seems to us that this is
the ‘correct’ definition of solubility for fusion systems, given the use of the word ‘soluble’ throughout
algebra to mean similar concepts.

We now consider so-called Q d(p)-free fusion systems. Firstly, the group Q d(p) is the semidirect
product (C p × C p) � SL2(p), with SL2(p) acting in the natural way. A finite group is called Q d(p)-free
if no subquotient of it is isomorphic with Q d(p). As in [10], define a saturated fusion system F to be
Q d(p)-free if, for any fully normalized, F -centric subgroup Q of P , the group LNF (Q ) is Q d(p)-free.

Lemma 8.3. Every Q d(p)-free fusion system F is p-soluble.

Proof. By [10, Proposition 6.4], if F is Q d(p)-free then so is F /Op(F ), so it suffices to show that
Op(F ) �= 1; this is given to us by 7.1 of the same paper. �
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Since a Q d(p)-free fusion system is p-soluble it is constrained, and hence is the fusion system
of some, Q d(p)-free, group. Thus any theorem known to hold for Q d(p)-free groups should have an
analogue for Q d(p)-free fusion systems. One such example is Glauberman’s ZJ-Theorem: another is
Thompson Factorization.

Theorem 8.4 (Thompson Factorization). Let F be a Q d(p)-free fusion system on a finite p-group P , where p
is odd. Then

F = NF
(

J (P )
)
CF

(
Ω1

(
Z(P )

))
,

where J (P ) is the Thompson subgroup of P .

Proof. Such a decomposition holds for Q d(p)-free groups (see, for example, [9, Theorem 26.9]). Let G
be the group modelling F given by Theorem 2.5; the subsystem E1 of F induced by H1 = NG( J (P ))

is NF ( J (P )), and the subsystem E2 of F induced by H2 = CG(Ω1(Z(P ))) is CF (Ω1(Z(P ))) by [11,
Proposition 3.16]. Since every element of G may be written as h1h2, with hi ∈ Hi , every morphism
in F , which is induced by some element g = h1h2, may be written as φ1φ2, where φi ∈ Ei . �

However, a naïve rewriting of Thompson Factorization for other cases fails; for example, Glauber-
man proved that if p � 5, then the conclusion to the above theorem holds for all p-soluble groups,
with a slight modification to the centralizer term (see [9, Theorem 26.10]). This does not carry over
to p-soluble fusion systems in general; for instance, the groups Q d(p) themselves do not satisfy this
version of Thompson Factorization.
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