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A theoretical model of carbon nanotube (CNT)-modified electrodes is introduced to explain the observed
increase in the effective electroactive area of such electrodes when formed by the casting of CNT films on
top of an electrode of finite size. The model proposes that a fraction of the CNTs deposited form a conducting
network that extends beyond the electrode area and onto the insulating surround. Critical parameters for this
situation to occur are described. The random network of conducting CNTs is described by the size of the
largest “connected component” and is considered in terms of the minimum number of CNT—CNT connections
required to travel a given distance through the network. As such, this approach can be used to describe
multilayers of CNTs, provided that the film extends in the radial direction as well as normal to the electrode
surface, and also CNTs in contact with more than one neighboring CNT within the mesh. The theoretical
predictions were experimentally validated by performing a series of voltammetric experiments. These were
conducted using electrodes modified with multiwalled-CNT (MWCNT) films produced by the casting method,
so as to deliberately extend the MWCNT film beyond the electrode area. Thus, we determined the magnitude
of the potential drop between the first MWCNT—MWCNT contacts to be 20—50 mV. Here we also describe
the distribution of potentials throughout the CNT network.

1. Introduction

Since the discovery of multiwalled carbon nanotubes
(MWCNTS) in 1976 by Oberlin and Endo'? (confirmed two
years later by Wiles and Abrahamson®?), their sensational
revival in 1991 by lijima,'> and the discovery of single-walled
carbon nanotubes (SWCNTSs) again by Iijima et al. in 1993,19
closely followed by Behtune et al.,'7 these materials have
attracted considerable interest in many different fields of science.
The use of carbon nanotubes (CNTSs) in electrochemistry was
first introduced by Britto and co-workers in 1996.% This area of
electrochemistry rapidly expanded after the seminal work of
Musameh et al. in 2002.° Since then there are literally thousands
of reports that make use of CNT-modified electrodes, for
electroanalysis, electrocatalyis, and energy storage applications.!%!!

Common methods of immobilizing the CNTSs on an electrode
surface include: (i) mechanical (abrasive) immobilization, where
the electrode is rubbed on a sample of CNTs; (ii) “casting” (also
known as the “drop-dry” method), whereby a droplet of a
suspension containing CNTs in a volatile solvent is placed on
the electrode surface, and the solvent is allowed to evaporate,
leaving the CNTs immobilized on the electrode. Voltammetric
characterization of the resulting CNT-modified electrodes usu-
ally reveals that the electroactive area of the modified electrode
has increased in comparison to that of the bare electrode
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substrate. This is almost always attributed to the increased
microscopic surface area of the electrode imparted by the use
of CNTs.!213

For systems where significant adsorption/deposition of the
redox active species of interest on the electrode surface occurs,
such as in adsorptive, anodic, or cathodic stripping voltammetry,
this explanation is likely correct. However, for the majority of
electrochemical experiments where the redox active species of
interest is simply diffusing to the electrode surface, that is, where
no adsorption on the CNTs occurs and the voltammetric
response is purely under “diffusion control” (such as in outer-
sphere electron transfer reactions), this explanation can not
possibly be correct!

To illustrate this, consider a CNT-modified electrode. The
distribution of CNTs on the electrode surface can be considered
as a random array of nanobands with the dimensions of the
CNTs, for which the relevant theory has been developed
elsewhere.!4=23 If we perform a typical voltammetric experiment,
for example the reduction of a 1.0 mM solution of hexaamineru-
thenium(III) chloride in 0.1 M KClI, then as the electrolysis
proceeds, depletion of the redox active species in the region
surrounding each CNT in the array will occur, and fresh material
will then diffuse down this concentration gradient from bulk
solution according to Fick’s Laws. Therefore, each CNT in this
array will be surrounded by a diffusion layer, the thickness of
which () is given by Einstein’s equation.'® Using common
experimental parameters, the thickness of the diffusion layer
generated around an isolated CNT is ca. 30 um. '8 Therefore,
for each individual CNT on the electrode surface to remain
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diffusionally independent from its neighbors on the time scale
of this experiment, each CNT must be separated by at least 30
um.

In practice this situation rarely, if ever, occurs. Using any
common method of immobilization, the CNTSs on the electrode
surface are usually in very close proximity to one another (of
the order of tens or hundreds of nanometers rather than microns)
and, as such, the diffusion layers surrounding each CNT within
this random array are heavily overlapping. The situation of
heavily overlapping diffusion layers within a random array is
classified as type 4 behavior using the Davies—Compton
classification,!418:20.21 and results in effectively planar diffusion
to the electrode surface. Thus, the maximum electroactive area
obtained from a type 4 array would simply be the geometric
area covered by that array; in other words, the CNT-modified
electrode should produce almost the same electroactive area as
that of the bare electrode. Furthermore, Compton and Menshikov
have shown that purely diffusion-controlled voltammetry is
unaffected by the microscopic surface roughness of an electrode
below ca. 50 um.>*

This report provides an explanation for the observed increase
in the electroactive area of CNT-modified electrodes, whereby
we propose that the tangled mesh of CNTs can extend beyond
the area of the underlying electrode surface and onto the
insulating surround. As the CNTs are conducting, a propor-
tion of those CNTs on the insulating surround may remain
in electrical contact with the electrode, as they are “wired”
up by CNT—CNT contacts through the mesh with those CNTs
on the electrode surface. Due to the close proximity of tubes
in the mesh extending beyond the electrode radius, they form a
type 4 random electrode array and, as such, result in an
electroactive area covered by the geometric area of the mesh
that is larger than that of the bare electrode itself. This hypothesis
is based on two observations. First, when using the casting
method of immobilizing the CNTs, the volume of the droplet
of casting solution used is typically 10—40 uL, and the droplet
is typically placed on electrodes 1—3 mm in diameter. As such,
the droplet radius is (usually) initially larger than the electrode
radius and, therefore, deposits CNTs on the insulating surround
beside the electrode surface. Note that abrasive immobilization
may also deposit CNTs on the surrounding mantle of the
electrode, albeit in a less-controlled manner. Second, the work
of Day et al. has shown that a random network of CNTs, which
are connected at one end to a gold contact (which is itself
subsequently insulated from the electrolyte solution) but which
are otherwise supported on an insulating surface, may experience
an electrode potential as evidenced by the electrodeposition of
metal nanoparticles on the CNTs.?’ The size of the nanoparticles
decreases with increasing distance from the gold electrode
contact, suggesting that there is a distribution of potential
through the mesh.

In deriving theory to describe how the random network of
CNTs can extend beyond the electrode radius while remaining
in electrical contact, we deduce several critical parameters for
this condition to be maintained. The latter are easily scaleable
to describe any given network of CNTs, with any distribution
of lengths and network radius, and are thus widely applicable.
The theory is then compared to experiments using standard one-
electron redox probes that are positively charged, negatively
charged, and neutral in both aqueous and nonaqueous electro-
lytes. Finally, we demonstrate the first application of this theory
to calculate the manner in which the electrode potential varies
throughout the random mesh of CNTs, by deliberately casting
CNT films onto electrodes that extend beyond the electrode area,
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and use this to estimate the voltage drop between MWCNT—
MWCNT contacts.

2. Experimental Methods

2.1. Reagents and Equipment. All reagents were purchased
from Aldrich (Gillingham, UK), were of the highest com-
mercially available grade, and were used without further
purification. Aqueous solutions were prepared using UHQ
deionized water from a Millipore (Vivendi, UK) UHQ grade
water system with a resistivity of not less than 18.2 M cm at
298 K. Nonaqueous solutions were dried over 500 A molecular
sieves and alumina prior to use.

Hollow-tube (h-MWCNTSs) and bamboo-like (b-MWCNTS)
multiwalled carbon nanotubes (diameter 30 & 15 nm, length
2—20 um, purity <95%), and single-walled carbon nanotubes
(SWCNTs, purity <95%, length 2—20 um, diameter 1—2 nm)
were purchased from Nanolab (Brighton, MA, USA). The
morphology of the b-MWCNTs consists of MWCNTs where
the graphene sheets are rolled so as to be at a slight angle to
the principal axis of the tube, resulting in many graphene sheets
terminating in edge-plane-like sites along the length of the tube.
They are also periodically closed off along the tube length into
compartments, similar to the structure of bamboo, from which
the name derives. In contrast, the h-MWCNTs have the graphene
sheets rolled parallel to the principal axis of the tube, and the
tubes remain open along their entire length.

Cyclic voltammetry was performed on a uAutolab type III
computer-controlled potentiostat (EcoChemie, Utrecht, Neth-
erlands) using a standard three-electrode configuration. A bright
platinum wire served as the counter electrode in conjunction
with a saturated calomel reference electrode (SCE, Radiometer,
Copenhagen, Denmark). The cell assembly was completed using
either a gold microelectrode (diameter 120 um) or a gold
macrodisc electrode (BASi Technicol, USA, diameter 1.5 mm)
as the working substrate electrode. The electrodes were suc-
cessively polished using alumina slurry (Beuhler, USA, 3.0—0.1
um) and sonicated after each polishing to remove any adhered
microparticles of alumina. All electrolyte solutions were de-
gassed with pure argon (BOC gases, Guildford, UK) for 30 min
prior to commencing any voltammetric measurements.

Where necessary, the electrode was modified with a film of
CNTs to form a random CNT network by dropping a 20 uL
aliquot of a casting suspension of the desired mass/volume ratio
of CNTs to solvent (see below) on the clean electrode and
allowing the solvent to evaporate at room temperature.

Scanning electron microscopy (SEM) was performed on a
JEOL 6300 instrument with a tungsten filament with an
accelerating voltage of 20 kV at an operating distance of 15
mm.

Simulations were performed using the computer algebra
package Magma?®® on various PCs with 4 GHz processors. Each
simulation took approximately 20—30 min, depending on the
radius of the domain (A).

3. Results and Discussion

3.1. Building the Model. In this section, we develop a
physical model of the mesh of carbon nanotubes (CNTs) and
use computational and mathematical techniques to analyze its
properties. We begin by describing the model.

Our first assumption is that all the CNTs can be represented
as one-dimensional straight lines and that any two CNTs touch
each other at a point. The second assumption is that the CNTs
are distributed randomly throughout the region covered by the
mesh. The final assumption is that there is no resistance along
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the tube length and that the only significant contribution to any
observable voltage drop occurs at the CNT—CNT contacts. The
first assumption will be relaxed somewhat in future work,
whereas the second is experimentally confirmed in Section 3.5.
Naturally, the third assumption is only an approximation, but
the errors involved are likely to be small in relation to the
CNT—CNT contacts given that CNTs are reported to have very
high electrical conductivity, greater than copper, and the Ohmic
drop along a few microns of CNT is, therefore, likely to be
negligible for our purposes.

Given these three assumptions, we may develop a model of
the CNT mesh as follows: consider a finite region A, which in
our case is a circle. We describe a “line in A” as a straight line
connecting two points of A, and not extending beyond those
points. Our model of the CNT mesh is then N randomly chosen
lines in A, of length given by some distribution, for example, a
gamma distribution. We will return to discuss how the distribu-
tion of lengths affects the bulk properties of the model later.
For example, we may consider 10 000 lines, of mean length 6
um, lying in a circular region of radius 150 um. This is then
our physical model of the CNT mesh.

From now on, fix a region A and a set L of N lines in A. We
are interested in questions such as the following: given two lines
o and £ in A, is it possible to reach  from a only traveling
along lines in L, and if so, how many lines must one use to do
so? If a represents a CNT connected to an electrode, then the
number of lines transversed should be related to the drop in
voltage between the CNT represented by a and that represented
by f3; this question, therefore, has physical significance.

Let o and 3 be two lines in A, and suppose that a is contained
in A in such a way that every point of distance at most |5l from
a is in A. Then the probability that o and f intersect, Pagg is
(approximately) given by the equation below.

_ 2lapl
a®f Al

Note that the probability would be exactly this value if the line
[ merely satisfied the condition that only the end-point with
the largest y-value need be in A. This calculation is a simple
triple integral and is omitted.

If o is a line in A, then the expected number of lines that
intersect a is given by the following equation,

2u(N — Dlal
TtlAl

where u is the mean length of the (N — 1) other lines in L.

One may also use a computer to derive an estimate for the
expected number of lines that cross any given line in the mesh.
The computer model will produce a slightly different answer
because of the effect of the boundary of A, however this
difference is negligible provided that the boundary is at a
sufficiently large distance from the center of the mesh, as is the
case in the work reported herein.

3.2. The Connected Component and the Effect of the
Distribution of CNT Lengths. To better understand the
experimental parameters that need to be controlled, we need to
understand the “connectedness” of the mesh. To describe this
easily, we need to introduce the concept of graphs. A graph
(') is a pair (V,E), where V is a set of vertices, and E is a set
of edges, each consisting of two vertices. Two vertices u and v
are said to be adjacent if the edge {u,v} is in E. Two vertices
u and v are said to be connected if there is a sequence of vertices
u = vy, V1,..., vy = v such that v; and v;1; are adjacent for all i.
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Figure 1. The variation in the size of the connected component against
the radius of the area of the mesh for 10 000 randomly distributed lines
of mean dimensionless length 6, showing the effect of the o- and
y-distribution of line lengths.

The physical model we have developed so far may be
associated with a graph in the following way: to each line we
associate a vertex, and, if two lines are connected to one another,
then we include an edge between the two associated vertices.
This does not respect the distances of the model, but it does
preserve the way in which the lines are connected, which is the
important parameter with which we are concerned.

If v is a vertex of I, then the “connected component” of I"
containing v is the set of all vertices of I" connected to v. The
set of all connected components of I" is an important set. It is
particularly important for us, because, clearly, for current to be
transferred between two CNTs lying on an insulating substrate,
the corresponding lines that represent them must be connected.

For us to produce reliable experimental data, we need a very
large connected component in our mesh, otherwise we will not
be able to transfer current throughout (almost all of) the mesh.
Furthermore, we are interested in the relationship between the
distance between two points on the mesh, and the (minimum)
number of lines connecting the two points. However, to do this
we also need to take into account the distribution of lengths of
CNTs within the mesh. Therefore, we performed tests using
two different models for the lengths of the lines; the first is
where they are all of length 6 (a d-distribution), and the second
is where the lines are y-distributed with mean 6 and variance
6.187 (the reason for this variance is that it correlates with the
experimentally measured distribution of lengths obtained using
SEM imaging and after scaling, which is described below).
Because the d-distribution can be thought of as a y-distribution
with zero variance, one may, at least qualitatively, get some
idea about the situation when lines with different variances are
considered by comparing the two sets of data and interpolating
or extrapolating as needed.

The size of the connected component and the influence of
the different models of CNT length as a function of the radius
of the area A for 10 000 lines of dimensionless length 6 are
shown in Figure 1. This implies that if the radius is at most,
say 100, then we may assume that almost all of the lines form
one large connected component. Conversely, if the radius is
larger than, say 160, then the CNT mesh on the surface is
comprised of many small clumps with connectivity of at most
200. For nanotubes with different size distributions, or other
number densities, this graph may be scaled as described below.
The important experimental parameter that arises from this is
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Figure 2. A plot showing the ratio of the distance traversed through
the CNT network divided by the number of CNT—CNT connections
against the radius of the electroactive area of the mesh. Values derived
form the standard model of 10 000 randomly distributed lines of mean
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the critical number density of nanotubes deposited on the
electrode surface. For any given size of electrode, it is a simple
matter to calculate from Figure 1 (with the appropriate scaling
discussed below) the minimum mass of CNTs in any given
aliquot of casting solution used, and therefore the required
minimum mass/volume ratio of the casting solution. Note that
in all the experiments described herein we ensured that we were
always working with casting solutions above the critical density
to produce networks that consisted (almost) entirely of one
single, large connected component, unless stated otherwise.

It seems reasonable that for small radii the gamma-distributed
lines should form a smaller connected component than the
O-distributed lines; in the former case, there are small lines that
are unlikely to form part of even a large cluster. The opposite
would hold for larger radii; in this case, the presence of larger
lines in the y-distributed case can help produce larger compo-
nents than in the d-distributed case.

The size of the largest connected component can be easily
computed from Figure 1 for any given system of interest using
the scaling method described below (the data tables allow the
reader to extrapolate the critical number density; therefore, the
size of the connected components for any given system of
interest may be found in the Supporting Information).

3.3. Scaling and Accounting for Droplet “Roll-up”. The
initial experiments that instigated this work were performed
using MWCNTs of mean length 6 ym; thus, the model described
above was built to consider this. However, the more detailed
experiments described herein were performed on various mor-
phologies of CNTs of mean length 2 um. This fortuitously
provides us with an example of how to scale the model, and
the data given in the Supporting Information, to study any given
system with differing mean lengths and distribution of lengths
of CNTs, thus making the theory developed herein widely
applicable. Suppose we have a situation with a number (N) of
nanotubes of mean length x; we then need to scale this system
to the model developed to get the corresponding scaling to the
radius. If R denotes the radius of A in the unscaled, real,
experimental situation (i.e., N lines of mean length u, with A
corresponding to the droplet size of casting solution used) and
r denotes the radius in the scaled situation (i.e., 10 000 lines of
mean length 6), then to get the correct scaling we simply use
the following expression;
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this is because doubling the radius quadruples the area, and so
the number of nanotubes must be quadrupled, and doubling the
radius doubles the lengths of lines.

There is a further complication that we must also account for,
which is the “roll-up” of the CNTs as the droplet of casting solution
evaporates, that is, the tendency for droplets of casting solution to
concentrate most of the deposited CNTs into one central clump as
the droplet evaporates and the area covered by the droplet shrinks.
SEM characterization of CNT networks deposited from a variety
of solvents and at different mass/volume ratios is discussed later
in Section 3.5. When we image where the CNTs were deposited
on a glassy carbon substrate using SEM, it is apparent that the
majority of CNTs are deposited in a mesh that can decrease to
as little as approximately one-third of the original droplet radius
(for example, see the inset in Figure 3a). This is due to the
“rolling-up” effect of the CNT suspension as the casting droplet
evaporates and therefore decreases in size. As the droplet
evaporates some of the CNTs contained in the suspension will
be deposited where the droplet is in contact with the substrate
surface (usually on the insulating surround, because the droplet
is initially much larger than the electrode area), whereas most
of the CNTs will still remain in the droplet (which is decreasing
in size), until a large cluster of CNTs is deposited. This is shown
schematically in Scheme 1. It is difficult to estimate the
proportion of CNTs that are deposited on the substrate while
the droplet is evaporating and the area it covers shrinks, but
from several SEM images (not shown) we estimate that between
20 and 30% of the CNTs are deposited in this way, with the
remainder forming the larger clump in the middle. We can
demonstrate how to scale the model and account for droplet
roll-up by means of the following example, taken from the
experimental data discussed below.

The mean length of CNTs used herein is 2 um, and the
number of CNTs deposited in the aliquots of casting solution
used is of the order of 2.2 x 107; clearly, significant scaling is
required. The original droplet radius was estimated to be ca.
3000 um from the SEM images, but due to droplet roll-up that
radius should be decreased to one-third, that is, 1000 um. In
the process of rolling up, we also estimate that the droplet
deposits around 20—30% of the CNTs on the surface. We will
use both limits, 20 and 30%, of this estimate to gain an insight
into the relative magnitude of the error introduced by these
approximations. For a 20% loss the number of CNTs remaining
in the mesh is now 1.76 x 107 and for a 30% it is 1.54 x 107,
randomly distributed in an area A with an unscaled radius of
1000 pum. Using the scaling formula given above, the corre-
sponding scaled radii for the 20 and 30% case are 71 and 76
respectively. Thus, in this case values of the scaled radius of
between 70 and 80 may be reasonable. From Figure 1 it is clear
that in both cases we are well-within the region where we have
one, large connected component in the CNT mesh, that is, the
number density of CNTs deposited in this example is sufficiently
above the critical number density.

3.4. Relating the Distance Traveled through the CNT
Mesh to the Number of CNT—CNT Connections. Having
assured ourselves that we have essentially one connected mesh
and how to scale any given experimental situation to the model
introduced above, we are now in a position where we could
relate the usual (Euclidean) distance in the region A to the
distance when one travels on lines only. The mathematical
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Figure 3. SEM images of the CNT networks deposited from 20 uL aliquots of (a) 1.0 and (b) 0.01 mg per mL suspensions on a glassy carbon stub,
showing the connectivity and dispersion of CNTs within the network. Insets: (a) a lower magnification image of the network in panel a, showing
the effect of droplet roll-up; (b) a lower magnification image of the network showing the formation of small clumps, rather than one large connected
component (note that the small nodular structures are from the underlying substrate and not the CNT network).

SCHEME 1: A diagram showing the effect of droplet
“roll-up” on the deposition of CNT films and the
resulting extension of the electroactive area (white circle)
due to the conducting CNT network

Partial CNT network deposited
during droplet roll-up

 —

Casting droplet

Substrate
Electrode

. Central main clump
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of CNTs j

e

Insulating surround

language of metric spaces is one natural treatment of this
problem. Let X be a set. A metric on a set X is a function of d
such that:
d(x,y) = 0and d(x,y) =0if and only if x=1y
d(x, y) = d(y, x)
d(x,2) = d(x,y) +d(y,z)

This generalizes the usual concept of distance, with the last
axiom being the famous triangle inequality Ix + yl < IxI + Iyl.
The usual (Euclidean) distance on a region will be denoted by
de(x,y). Another possible distance function on the mesh is the
“mesh distance”, given by the distance dm(x,y), which is the
shortest distance between two points on the mesh traversing
only lines in the mesh. If the density of the mesh is infinite,
then the two distances, d, and d,,, are equal. If the density of
the mesh is small, then the mesh distance, d,,, should ap-
proximate to the square of the Euclidean distance, since the
situation is similar to that of a random walk.

We can algebraically relate the mesh distance and the
expected number of lines traversed. In practice, it transpires that
this method is computationally inefficient. Instead, it is far easier
to relate the Euclidean distance and the number of lines traversed
directly using the computer model of the mesh, but without
moving through the mesh distance, while still maintaining a
very high degree of numerical accuracy. This approach will be
used throughout.

We are interested in the relationship between the distance
between two points on the mesh (d.) and the minimum number
of lines connecting the two points (n;). Figure 2 shows this
information as the ratio of the Euclidean distance (corresponding

to the effective increase in the radius of the electroactive area
determined experimentally) and the minimum number (n;) of
CNT—CNT connections (de/n;) for various scaled radii of A,
where the lengths of the CNTs are described by either a 6- or
a y-distribution. In the case of the O-distributed lines, 200
randomly chosen pairs of points were used to compute the mean
ratio for each radius. In the case of the y-distributed lines, 400
randomly chosen pairs of points were used to compute the mean
ratio for each radius. More data were needed in the latter case
because the variance of the lengths of the lines contributed to
an increased variance in the value of this ratio.

It is immediately obvious that there is a linear relationship
between the mean ratio (d./n;) and the radius of the region A,
in both distributions. The negative correlation is to be expected
because, for smaller radii, there will be more paths between
two points on the mesh. With more choice of paths, it is likely
that shorter paths would exist. The fact that the y-distributed
lines consistently score more highly than the d-distributed lines
is due to lines with larger length allowing larger distances to
be covered for each line traversed.

By extrapolation from Figure 2, or by using the tables
provided in the Supporting Information, it is now a simple task
to calculate the number of CNT—CNT connections traversed
for any given distance in the mesh. Simply take the Euclidean
distance traversed (i.e., the increase in the radius of the
electroactive area) and divide it by the value of the function in
Figure 2 corresponding to the radius of the region A. However,
it is important to note that the values of the radii on the x-axis
are scaled to the model (where 10 000 CNTs of mean length 6
are distributed in a region of 150 um radius). So, to use these
data, one simply has to perform the scaling on the actual
experimental parameters used as described above. For example,
suppose we experimentally determine that the largest distance
traveled through a CNT random network is 35 um. The value
of the corresponding scaled radius in Figure 2 is that given above
(71 assuming the case where we have 20% loss due to droplet
roll up). At this radius, the mean ratio of distance traveled to
the number of CNT—CNT connections is 4.71, assuming a
gamma distribution of CNT lengths. Hence, the number of
CNT—CNT connections traversed in this example is 7. The
values of the mean ratio d./n; for several scaled radii are given
explicitly in the Supporting Information to allow the interested
reader to extrapolate as necessary.

This model, when used to describe the connectivity of a
random CNT network, is particularly powerful, provided thin-
layer effects may be neglected (as is the case throughout the
work reported herein).?” For example, the model can easily cope
with multilayered networks of CNTs (provided that they extend
radially beyond the electrode area as well as in the direction
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perpendicular to the electrode surface), as any individual CNT
that is supported on top of any other CNTs in the mesh, which
are themselves connected to the electrode surface through a
minimum number of n CNT—CNT connections, is simply
considered to be (n + 1)-connected. Similarly, this approach
easily deals with CNTs that are connected to more than one
other CNT in the mesh. As we are only concerned with the
minimum number of CNT—CNT connections required to “wire”
any given CNT in the network to the electrode surface, if a
given CNT is simultaneously in contact with, say, three other
CNTs that are themselves n;, nj, and n; connections from the
electrode, and n; < nj < mn, then the CNT in question is simply
considered to be (n; + 1)-connected. This latter outcome is
particularly useful in our case, because we want to be able to
describe the distribution of the applied potential through the
CNT mesh as we travel out from the edge of the electrode area
to the edge of the CNT mesh on the insulating surround. Because
the current will always travel by the path of least resistance,
the potential experienced by any given CNT in contact with
many other CNTs of differing connectivity (i.e., wired in
parallel) will only be determined by the potential on the CNT
with the least number of connections back to the electrode.

3.5. Microscopic Characterization of Random CNT Net-
works. There are many solvents commonly used to cast CNTs
onto electrode surfaces.”® 32 We examined networks of CNTs
deposited on a glassy carbon stub from suspensions of MWCNTSs
in water, acetone, acetonitrile, dimethylformamide, and chlo-
roform, at mass/volume ratios of 0.01, 0.1, and 1.0 mg of
MWCNTSs per mL solvent, using SEM. Acetone and chloroform
were found to produce the best suspensions, as measured by
the dispersion within the CNT networks produced; however,
the use of acetone was found to produce less than ideal
voltammetry, possibly through the formation of a residual layer
of solvent on the network; therefore, suspensions in chloroform
were chosen throughout this work.

Panels a and b of Figure 3 show the resulting networks
deposited from 20 uL aliquots of 1.0 and 0.01 mg per mL
suspensions. The former is well-above the critical number
density predicted by theory to form one large connected
component (which is ca. 1.3 x 10° CNTs/cm? in this case),
whereas the latter is below this number. It is apparent that, in
the 1.0 mg per mL case, above the critical number density we
have a very large connected component. Analysis of the number
of connections per nanotube in this image reveals a Poisson
distribution of connections centered on three CNT—CNT
connections per tube, again in agreement with the theory. In
the 0.01 mg/mL case, that is, below the critical density, we see
that we do not have one large, connected component: the
MWCNTs form numerous small clumps on the substrate. Again,
the average number of CNT—CNT connections per tube in these
small clumps is distributed around 3, but with a much smaller
variance. Therefore, in the 0.01 mg/mL case we would not
expect to see any large increase in the effective electroactive
area of the MWCNT-modified electrode, as we are unlikely to
be able to apply a potential throughout most of the network.

3.6. Voltammetric Characterization of Random CNT
Networks. To verify that the predictions of the theory are valid,
we performed cyclic voltammetry on CNT-modified gold
electrodes with two different diameters, 1.5 mm and 120 um,
using suspensions of CNTs in chloroform that were 0.04 mg/
mL (above the critical number density) and 0.01 mg/mL (below
the critical number density). We investigated the effect of using
CNTs of different morphology, namely the bamboo-like and
hollow-tube MWCNTs (b-MWCNTs and h-MWCNTs, respec-

Holloway et al.

tively) and also using SWCNTSs. Furthermore, we investigated
the voltammetric response of these CNT networks using 1.0
mM potassium ferrocyanide and 1.0 mM hexaamineruthe-
nium(III) chloride quasi-reversible redox probes in aqueous 0.1
M KCI electrolyte. These redox probes are negatively and
positively charged, respectively. We also investigated the
response of the CNT-modified electrodes in nonaqueous elec-
trolyte (0.1 M tetrabutylammonium perchlorate, TBAP, in dry
dimethylformamide, DMF) using a neutral, reversible redox
probe, namely, 1.0 mM ferrocene. In this way we were able to
examine the effect(s), if any, of the charge of the redox probe
and also the effect of the solvent on the observed voltammetric
response; thus, we were able to examine whether the behavior
of the network was solely dependent on the properties of the
CNTs themselves or whether other factors ought to be considered.

In each case, cyclic voltammetry was performed over the
potential region of interest for each redox probe, with the initial
potential set so as to be greater than at least 100 mV from the
formal potential of each species, and scanned at least 150 mV
beyond the peak potential of each species. This ensures that,
initially, no Faradaic current is observed due to the redox behavior
of each probe and that beyond the peak potential we are in the
regime of pure diffusion-controlled voltammetry under a planar
diffusive mass transport regime. The voltage scan rate was
varied in each case between 10 and 500 mV s~ !, and the
oxidative and reductive peak currents were recorded. The
electroactive area of the CNT-modified electrode and the bare
electrode were estimated using the Randles—Sevéik equation. '8

Note that this gives an approximate electroactive area, as the
species used are not perfectly reversible. A more accurate
approach would be to model the observed voltammetry, for
example using the commercial software package Digisim,3* with
the known electrochemical parameters for each species. How-
ever, rigorously modeling voltammetry at CNT-modified elec-
trodes is notoriously difficult due to the large background
capacitance and sometimes nonideal interactions between CNTs
and certain redox probes* and, possibly, unreliable in light of
the variation of voltage through the network. That being said,
the Randles—Sevéik approximation will adequately serve our
purposes, with only a small error introduced compared to some
of the assumptions of the random network theory used.

Panels a—c of Figure 4 show a representative selection of
the resulting voltammetric responses for each of the redox
probes, solvents, and morphology of CNTs used. In every case
shown, where the casting solution used was above the critical
number density, a large increase in the peak current is observed,
corresponding to a significant increase in the electroactive area.
In contrast, when the casting solution used was below the critical
number density predicted by the theory, little or no increase in
the electroactive area of the CNT-modified electrode is seen
compared to that of the bare (unmodified) electrode (data not
shown). The average increase (taken from five separate repeat
experiments for each case) in the radius of the electroactive
area for each system studied is given in Table 1 at both the
larger- and smaller-sized gold electrodes modified with a 20
uL aliquot of 0.04 mg/mL CNT suspension in chloroform.

In the case of the two morphologies of MWCNTs at the
1.5 mm diameter electrode, we see an increase in the
electroactive area in all cases of around 50 + 20 um,
regardless of the redox probe or electrolyte solution used.
This could suggest that the factors affecting the CNT—CNT
contacts within the network are intrinsic to the MWCNTSs
themselves, and do not depend on, for example, the nature
of the electrolyte, and therefore are not influenced by any
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Figure 4. Overlaid cyclic voltammograms recorded at varying scan rates (10—500 mVs™!) with the corresponding plots of peak current against
the square root scan rate inset, comparing: (a) bare 1.5 mm diameter gold electrode (left) and the same electrode modified with h-MWCNTs (right)
in 1.0 mM potassium ferrocyanide with 0.1 M KCI; (b) bare 1.5 mm diameter gold electrode (left) and the same modified with b-MWCNTs (right)
in 1.0 mM hexaamineruthenium(III) chloride with 0.1 M KCI; and (c) bare 120 um diameter gold electrode (left) and the same modified with

b-MWCNTs (right) in 1.0 mM ferrocene with 0.1 M TBAP in DMF.

possible double layer effects that might be envisaged to form
between the CNTs if they are separated by a thin layer of
electrolyte solution rather than resting in direct contact.
We also note that there is no significant difference between
the bamboo-like and the hollow-tube MWCNT network’s
response in this case, suggesting that the manner in which
the CNTs are connected as they rest upon and come into
contact with each other is the same. In other words, the
presence of more conductive edge-plane sites along the

b-MWCNT side walls has little or no observable effect. The
degree of variability in the results presented for the MWCNTs
on the larger gold electrode probably reflects the slight
differences in the CNT networks laid down over each series
of experiments and the difficulty in ensuring that the CNT
network is deposited with the gold electrode substrate at the
center of the mesh. The inconsistency of the results obtained
at the smaller 120 um diameter gold electrode is almost
certainly exacerbated by the difficulty in ensuring that the
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TABLE 1: The Average Increase® in the Measured Electroactive Radius of the CNT-modified Gold Electrodes Compared to

That of the Bare Electrode?

increase in the radius of
electroactive area/um

modified electrode 1.0 mM 1.0 mM 1.0 mM
(diameter) K4Fe(CN)g + 0.1 M KC1 Ru(NH;)6Cl; + 0.1 M KCl ferrocene + 0.1 M TBAP in DMF
h-MWCNT (¢ = 1.5 mm) 40 30 60
h-MWCNT (g = 120 um) 36.5 0.7 29
b-MWCNT (¢ = 1.5 mm) 72 45 52
b-MWCNT (g = 120 um) 0.2 1.8 50
SWCNT (¢ = 1.5 mm) 80 21 16
SWCNT (¢ = 120 um) 10.5 0.2 0.8

@ Taken from five repeat experiments. ? Recorded for each of the standard redox probes used in aqueous and non-aqueous electrolytes.

CNT network is centrally deposited on the small electrode
area. It may also be due to the smaller area of this electrode
decreasing the probability of ensuring that enough CNTSs
within the mesh are initially connected to the electrode
surface so as to properly establish a consistently large, single,
connected component every time that the electrode is
modified. This suggestion is further supported by experiments
(not reported here) performed using a gold microelectrode
of diameter 20 um, where, in our experience, it was rarely
possible to ensure good connection of one CNT connected
component to the electrode surface. Note that this is
consistent with the nature of the CNT network being truly
random in that, if this condition is valid one naturally expects
there to be gaps and clumps in the network, which may be
of sufficient size as to make the network difficult to connect
to such a small microelectrode.

In the case of SWCNTSs, we note that these results must
be treated with caution (i.e., as a qualitative indicator of the
SWCNT network behavior), as the dispersion of SWCNTs
in solvents such as chloroform is known to be less than
perfect, and the SWCNTs are much more likely to be
deposited in bundles or “ropes” containing several SWCNTSs
rather than as individual nanotubes, as is more likely in the
case of MWCNTs.?? This then leads to a greater uncertainty
in calculating the critical density of required SWCNTs and,
indeed, in treating them quantitatively using the theory
described herein. The results of the SWCNTSs experiments
are, therefore, simply presented here for completeness, and
the majority of the rest of this discussion refers mainly to
the MWCNT-modified electrodes.

The fact that above the critical number density predicted
by the theory we generally see a significant increase in the
electroactive area and below the critical number density we
see no increase in the electroactive area supports our
hypothesis that the increase in electroactive area is due to
conduction through the CNT network that extends beyond
the area of the electrode and onto the insulating surrounding
substrate and provides some, tentative, experimental valida-
tion of the predictions of the theory.

3.7. Measuring the Voltage Drop AcrossMWCNT—MWCNT
Contacts. Having satisfied ourselves that, for the MWCNT-
modified electrodes at least, the random network theory
provides a reasonable description of the behavior of CNT-
modified electrodes in terms of the observed increase in the
electroactive area, we now attempt to apply the theory to
estimate the voltage drop between MWCNT—MWCNT
contacts. Previous related research in this area, such as
measuring the conductivity or resistivity along CNTs, usually
involves either complex experimental techniques, such as the
use of scanning probe microscopy and the nontrivial litho-

graphic fabrication of single-nanotube junctions between
electrodes, or high-level molecular dynamic simulations.3 ™44
Using the random network theory, however, we can estimate
the voltage drop between MWCNT—MWCNT contacts
simply by modifying a macroelectrode surface with a known
amount of MWCNTs and performing cyclic voltammetry in
a known solution of any given redox probe. Because the
theory is primarily concerned with the minimum number of
CNT—CNT connections required to reach any given distance
through the mesh, and in doing so can easily account for
multiple CNT contacts to any given tube and also multilayers
of MWCNTs (provided thin-layer effects are negligible as
they are in the work reported herein as evidenced by the
voltammetric responses observed), the theory provides an
extremely simple yet powerful method of estimating the
voltage drop at CNT—CNT contacts. We note that the work
of Xu et al.*0 has already determined that the measured dc
conductivity of a SWCNT film network depends on a
characteristic distance, which they suggested might be related
to the distance between SWCNT—SWCNT contacts, and that
this value decreased with increasing density of the film. The
theory developed here, where we describe a network in terms
of the number of connections, complements its findings and
might provide some verification of its hypothesis.

The resistance between each CNT—CNT contact in the
network should not vary with the distance from the electrode,
as the contacts are of the same nature throughout. As such,
the potential drop experienced at each contact should be a
constant proportion of the initial voltage. Otherwise, applying
an infinite voltage would result in zero potential drop, and
the size of the electroactive area would depend on the redox
potential of the electroactive species, rather than on the
properties of the network (i.e., its connectivity) itself.
Therefore, the potential through the CNT network should
decay exponentially from the initial value of the electrode
itself (V;), which physically corresponds to the peak potential
in the cyclic voltammogram, to some value at a distance
through the network corresponding to the increase in the
electroactive radius (V). Physically, V; corresponds to the
onset potential in the cyclic voltammogram where the
Faradaic current begins to flow. The potential at any
intermediate point throughout the network (V,) is simply
related to the number of CNT—CNT connections (n) that
point away from the electrode substrate by the following
equation.

V. =ab"

n

The constants a and b can simply be evaluated from the
boundary conditions that, at n = 0, then V,, = Vj, and that at



Random Network Theory for Carbon Nanotube Voltammetry

J. Phys. Chem. C, Vol. 112, No. 35, 2008 13737

TABLE 2: The Percentage Drop Per CNT—CNT Contact and the Absolute Magnitude of the Potential Drop Across the First

CNT—CNT Connection from the Electrode Surface (at n = 1)*

% voltage drop per

absolute potential drop

CNT—CNT contact at n = 1/mV
1.0 mM 1.0 mM 1.0 mM 1.0 mM 1.0 mM 1.0 mM ferrocene +
type of K4Fe(CN)g + Ru(NH3)6Cl; + ferrocene + K4Fe(CN)g + Ru(NH3)6Cl3 + 0.1 M TBAP
MWCNT 0.1 M KCl 0.1 M KCI 0.1 M TBAP in DMF 0.1 M KCl 0.1 M KCl in DMF
h-MWCNTs 15.2% (12.7%) 24.5% (17.1%) 2.4% (1.7%) 37.4 (31.2) 52.6 (36.6) 19.0 (13.4)
b-MWCNTs 8.4% (5.8%) 14.7% (10.7%) 2.7% (1.9%) 19.0 (13.1) 31.5(22.9) 22.0 (15.4)

@ Determined using each redox probe assuming a y-distribution of CNT lengths. Numbers in brackets correspond to a O-distribution of

lengths.

the limit of the electroactive area, which is ny connections from
the electrode, then V, = V4, so that the expression for the
potential at any point in the electroactive connected component
of the CNT mesh is simply:

v,=v{/ |3|)
Vi

Given that the initial and final potentials are known from
the cyclic voltammogram, as is the radius of the electroactive
area, all that remains is to relate this radius to the corre-
sponding number of connections (nf) using the appropriately
scaled values in Figure 2 (and the Supporting Information).
Doing this gives the results presented in Table 2 for the
b-MWCNTs and the h-MWCNTs, assuming both a y- and
O-distribution of lengths.

Note that because we are considering the percentage
voltage drop per MWCNT—MWCNT contact, the values in
the case of ferrocene are smaller than those obtained in the
aqueous electrolytes due to the larger absolute values of the
potentials in the former case. However, if we consider the
absolute magnitude of the potential drop across the first
MWCNT—MWCNT contact from the electrode surface (i.e.,
at n = 1), we see that the values are of a similar magnitude
in all cases, being of the order of 20—50 mV. Note that the
absolute magnitude of the potential drop then decreases as
the number of connections away from the electrode increases.
It is interesting to note that the potential drop at the
b-MWCNT connections is typically less than that at the
h-MWCNTs. Without wishing to over-interpret the data, we
tentatively propose that this may reflect the increased number
of electroactive (and therefore more conducting) edge-plane
defect sites along the length of the b-MWCNTSs compared
to the h-MWCNTs.

4. Conclusions

Theory has been introduced and developed that explains the
observed increase in the electroactive area of electrodes modified
with films of CNTs in terms of a random conducting network
of CNTs, which is thereby capable of extending beyond the
area of the underlying electrode substrate onto the insulating
surrounding substrate. The theory is used to calculate the
minimum number of connections between CNTs required to
travel a given distance within this random network. As such, it
is capable of dealing with the realistic situation of multilayer
formation (provided that thin layer effects can be neglected)
and also to CNTs connected to more than one other CNT in
the network. It also introduces the concept of a critical number
density of CNTs required to form one large connected compo-
nent. Above this critical number density an increase in the
electroactive area is experimentally indeed observed, whereas
below this value the measured electroactive area is simply that

of the bare electrode substrate, thus verifying the predictions
of the model. Concepts of scaling are introduced to ensure that
the results of the model presented are applicable to any
experimental situation, and are therefore of value to the reader
(see Supporting Information for relevant data). A qualitative
treatment of the effect of droplet “roll-up” is given, although a
more rigorous treatment of this effect will be the subject of
future work. The effect of the different possible distribution of
CNT lengths is also described.

The theory has been applied to a simple experiment where,
by simply performing voltammetry at an electrode modified with
a known quantity of CNTs (above the critical number density),
which was deliberately formed so as to extend the CNT film
beyond the electrode area, and using a solution of a standard
redox probe, one can estimate the magnitude of the potential
drop between CNT—CNT contacts. This latter result may be
pertinent to wider research areas involving films or composites
of CNTs, such as the use of CNTs in electronic circuit design,
CNT-based electrochemical sensors, electrodeposition of metal
nanoparticles onto CNT films, scanning probe microscopic
techniques such as scanning tunneling microscopy and electro-
chemical variants on this method that use CNTs as nanometer-
sized probe tips, and energy storage devices such as super
capacitors. It is also of direct relevance to electrochemical
impedance spectroscopic (EIS) studies of CNT-modified elec-
trodes, as the information that can be obtained from EIS studies
is strongly dependent on the chosen model of the system being
studied and the assumptions inherent therein used to construct
equivalent circuits.

Future work will seek to improve the theory by considering
the curvature of CNTs within the network, which should result
in a decrease in the estimated value of the voltage drop, and
also to investigate the effect the distribution of potential within
the CNT network has on the electron transfer kinetics and the
resulting voltammetric response of such an electrode.
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