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Symmetric group character degrees and hook numbers

David A. Craven

Abstract

In this article we prove the following result: for any two natural numbers k and �, and for
all sufficiently large symmetric groups Sn, there are k disjoint sets of � irreducible characters
of Sn, such that each set consists of characters with the same degree, and distinct sets have
different degrees. In particular, this resolves a conjecture most recently made by Moretó in
[5]. The methods employed here are based upon the duality between irreducible characters of
the symmetric groups and the partitions to which they correspond. Consequently, the paper is
combinatorial in nature.

1. Introduction

This article will discuss the degrees of irreducible characters of the symmetric group, and will
in particular prove the following theorem, utilizing a combinatorial approach.

Theorem 1.1. Let k and � be natural numbers, and let Sn denote the symmetric group
on n letters. There exists an integer N such that for all n � N , there are k disjoint sets of
� irreducible ordinary characters, each set consisting of characters with the same degree, and
distinct sets have different degrees; in other words, as n tends to infinity, the number of disjoint
sets of � irreducible ordinary characters of Sn all � of which have the same degree also tends
to infinity.

Theorem 1.1 has the following specialization to the case k = 1: a conjecture stated, for
example, in [5].

Theorem 1.2. Let m(n) denote the size of a largest subset of irreducible characters of Sn,
each of which has the same degree. Then m(n) → ∞ as n → ∞.

Brauer’s Problem 1 (in [1]) asks whether one can determine which C-algebras are isomorphic
with group algebras; this is clearly equivalent to asking if, given a multiset M of positive
integers, M is the multiset MG of degrees of irreducible ordinary characters of some finite
group G. While this question might be too hard in general, a subproblem is to ask whether
there is a bound on the order of a finite group G in terms of the multiplicities of the irreducible
character degrees. Recently, Alexander Moretó has shown in [5] that the order of any finite
group G is bounded by a function of the maximum m(G) of the multiplicities of irreducible
character degrees if the corresponding result is true for the symmetric groups only. Firstly,
the problem was reduced to the finite simple groups. Discarding the sporadics, this left the
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groups of Lie type, for which the result is proven by methods of algebraic conjugacy, and
the alternating groups, for which the algebraic-conjugacy method obviously fails. Significantly
different methods to those employed by Moretó are needed to deal with the symmetric groups.
Theorem 1.2 closes this last possible gap, and hence yields the following corollary.

Corollary 1.3. Let G be a finite group, and let m(G) denote the maximal multiplicity
among the degrees of the irreducible ordinary characters. Then |G| is bounded by a function
of m(G).

As was said before, the character theory of the symmetric group can be studied in an
entirely combinatorial manner: the Hook Length Formula connects the degrees of characters
with products of integers associated with partitions. The rest of this paper will essentially be
devoted to a combinatorial proof of Theorem 1.1.

A partition of n is a weakly decreasing sequence of positive integers λ = (λ1, . . . , λr) with∑
λi = n. The λi are called the parts of λ. If some of the λi are equal, then we will

often abbreviate this, so that (1, 1, 1) becomes (13), for example. Recall that irreducible
representations of Sn are in one-to-one correspondence with partitions of n (see for instance
[4]); the degree of the representation in correspondence with the partition λ is given by the
famous formula of Frame, Robinson and Thrall [2]

χλ(1) =
n!∏

(i,j) h(i, j)
,

where h(i, j) is the hook number, which we will define now. Partitions can be represented as
tableaux, with the number of boxes in each row equal to the parts of the partition, so that for
example (4, 2, 2, 1) is represented as

Then the hook number of a box a of the tableau is simply the sum of the number of boxes
below the box a, the number of boxes to the right of a, and 1 (for the box a itself). Thus the
hook numbers of the partition above are

7 5 2 1
4 2
3 1
1

and so the degree of the character corresponding to this partition is

9!
1680

= 216.

Notice that the conjugate partition — the partition reflected in the diagonal running down and
to the right — possesses the same hook numbers, and so the corresponding characters have the
same degree. (In fact, the ‘conjugated’ character is the tensor product of the original character
and the alternating character obtained from the homomorphism Sn → {±1}.)

In general, knowing when two multisets of hook numbers have the same product is a difficult
problem; however, if two partitions have the same hook number multisets, then they certainly
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correspond to characters with the same degree. In [3], Herman and Chung provide examples
of two non-conjugate partitions with equal hook number multisets, namely

An = (n + 6, n + 3, n + 3, 2) and A′
n = (n + 5, n + 5, n + 2, 1, 1),

and

Bn = (n + 8, n + 4, n + 3, 3, 1) and B′
n = (n + 7, n + 6, n + 2, 2, 1, 1),

for all n � 0. The characters described in Theorem 1.1 in fact have the extra condition that
the hook numbers of the corresponding partitions are equal as multisets, in addition to their
products being equal. It is partitions whose hook numbers are equal as multisets that are the
focus here. The statement of the full result that we prove is the following.

Theorem 1.4. Let k and � be natural numbers. Then for all sufficiently large n, there are
k disjoint sets of � partitions of n, such that all of the � partitions in each set have the same
multiset of hook numbers, and distinct sets contain partitions with different hook numbers,
and moreover different products of hook numbers.

The proof of this theorem requires a construction of a special type of partition, called the
enveloping partition. To each partition λ, we can associate another partition, E(λ). The precise
construction of E(λ) is given in Section 7, but the reason these are constructed is that if λ and
μ have the same hook numbers, so do E(λ) and E(μ). This construction enables us to build
up larger collections of partitions with the same hook numbers from smaller collections, the
crux of the proof of Theorem 1.4.

In Theorem 1.4, we said that the distinct sets had different products of hook numbers. To
show that they have different multisets of hook numbers is easy, but in order to prove that
they have different products, we require the famous Bertrand’s Postulate from number theory,
namely that if n is any natural number, there exists a prime between n and 2n.

2. Definitions and preliminaries

For the rest of this article, λ and μ will generally denote partitions. The partition λ will
normally have r rows and c columns, and we will write t = r + c. If λ denotes a partition, λ(c)

will always denote its conjugate. Write |λ| for the weight of a partition λ; that is, of what
number it is a partition. We denote by H(λ) the multiset of hook numbers, and by Hi(λ) the
number of times that i appears in H(λ).

There is an equivalence relation ∼ on the set of all partitions, where λ ∼ μ if and only if
H(λ) = H(μ). If λ ∼ μ, we say that λ and μ are clustered, and a collection of partitions Λ of
n is a cluster if it is a subset of an equivalence class of the relation ∼. The size of a cluster is
the cardinality of the cluster, that is, the number of partitions in the cluster.

We have given two families of clusters of size 4, namely An, A′
n and their conjugates, and

also Bn, B′
n and their conjugates. There are infinitely many examples, including

Cn = (n + 10, n + 4, n + 4, 4, 2) and C ′
n = (n + 8, n + 8, n + 2, 2, 2, 1, 1),

and two-parameter families such as

(n + 6, (n + 4)r, (n + 3)2, 2) and ((n + 5)2, (n + 4)r, n + 2, 12)

for all n, r � 0. (If n = r − 1, then the two partitions are actually conjugate, but otherwise they
are not.) We see therefore that not all families are parameterized by a single variable; Section 5
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will produce the optimal result in this direction, namely that we have clusters parameterized
by all finite strings of non-negative integers. Since the set of all partitions is countable, a
countably-parameterized cluster is best-possible.

We shall introduce some terminology to make the discussion of clusters such as {An, A′
n}

given above easier. Consider, for example, A4. This looks like the following diagram:

Notice that for the partitions in this infinite sequence (n + 6, (n + 3)2, 2), one section is
extended with increasing n, and the rest — in this case the partition (2) — stays the same.
This is entirely typical of the general case that we wish to consider, and so we name some
features of these types of sequence.

If λ is a partition, and n and p are non-negative integers, denote by λ(p,n) the partition
obtained from λ by incrementing the first p parts by n. A cluster Λ is called a periodic cluster,
of period p, if for all n � 0, the set

{λ(p,n) : λ ∈ Λ}

is also a cluster. For example then, the set {A0, A
′
0} is a periodic cluster of period 3. (Note that

there exist clusters that are not periodic of any period, but we will not consider such clusters
here.)

This definition is, however, not flexible enough for our purposes. For example, suppose that
we have a cluster Λ, consisting of A0, A′

0 and their conjugates. The definition of a periodic
cluster as it stands would imply that although {A0, A

′
0} is periodic, Λ is not. We will extend

our definition, and say that a cluster Λ is periodic if there is a periodic cluster Λ′ such that for
every λ ∈ Λ, either λ ∈ Λ′ or λ(c) ∈ Λ′.

Suppose that λ is an element of a period-p cluster. The rump of λ is the partition consisting
of the first p parts of λ, and the remainder, normally denoted λ(r), is the partition consisting
of all parts of λ apart from the first p. Finally, the front section, normally denoted λ(f), is the
partition that remains upon deleting all columns of the rump of height p apart from the right-
most one. (Then a front section is an arbitrary partition whose smallest part has value 1.) Thus
the rump is the piece of the partition that is incremented, the remainder is the piece that does
not alter between λ and λ(p,n), and the front section is the piece of the rump that determines
its shape. For example, the rump of A4, pictured above, is (10, 7, 7), the remainder is (2), and
the front section is (4, 1, 1). Notice that for all n, the front sections and remainders of An are
identical.

We collect all of the information about a partition λ in a so-called p-partition datum. Let
p be a natural number less than the number of rows of λ. The p-partition datum consists of
three objects: the front section of λ, the remainder of λ, and the extension eλ of λ, the quantity
λp − λp+1. We write λ = [λ(f), λ(r), eλ]p. In our example of A4,

A4 = [(4, 1, 1), (2), 5]3.

This method of writing partitions makes it much easier to define periodic clusters, which we
will have cause to do later.

Now consider another of the period-3 clusters, say {Bn, B′
n}. Suppose that

λ = (n + 7, n + 6, n + 2, 2, 12) and μ = (n + 8, n + 4, n + 3, 3, 1).
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Notice firstly that the remainders λ(r) and μ(r) are conjugate. Secondly, notice that if we rotate
the partition μ(f) by 180 degrees, it fits perfectly against λ(f); we will call two front sections
that fit together in this way complementary. Here is the example of A4:

We have demonstrated two properties of this family of partitions from [3]. The clusters
{An, A′

n} and {Cn, C ′
n} also have these properties, as does the two-parameter periodic cluster

given above. These two properties are not inherent to a periodic cluster: the periodic clusters

(n + 8, (n + 5)2, 5, 3, 23) and ((n + 7)2, n + 4, 42, 3, 13),

and

(n + 8, (n + 5)3, n + 3, (n + 2)2, 2) and ((n + 7)2, (n + 4)3, n + 3, n + 1, 12),

are examples of periodic clusters whose remainders are not conjugate, and whose front sections
are not complementary, respectively. They do, however, satisfy other conditions weaker than
their remainders being conjugate and their front sections being complementary, as we shall see.

Suppose that λ and μ are clustered, of period p. Section 3, whose main focus is the Splintering
Lemma, shows that, as long as the two front sections λ(f) and μ(f) are complementary, ‘most’
of the hook numbers in the rumps of λ and μ will automatically be the same. The Extension
Lemma is the subject of the succeeding section: this section will give a sufficient condition
for a cluster, {λ, μ} say, to be periodic. Such a result reduces the task of showing that, for
example, {Cn, C ′

n} is a cluster for all n to showing that C0 and C ′
0 are clustered, and that

they satisfy the hypotheses of the Extension Lemma. The Splintering and Extension Lemmas
together constitute the very basic tools used in the proof of Theorem 1.4. A large reduction of
the problem, essentially to finding just one cluster of each size for each weight, is the content of
the Vertical Expansion Theorem, given in Section 5. The proof of Theorem 1.4 itself occupies
Sections 6 and 7.

If λ = (λ1, . . . , λr) is a partition with r rows and c columns, then the remnant λ̃ (the term
is specific to this article) is given by

λ̃ = (c − λr, c − λr−1, . . . , c − λ1),

assuming that the zeros are removed. Pictorially, we can think of the remnant as being
the partition that has been removed from the (r × c)-rectangle to create λ. For example,
if λ = (5, 5, 4, 2, 1), then λ̃ = (4, 3, 1). In the diagram

• • • • •
• • • • •
• • • • −
• • − − −
• − − − −

the boxes with • in them denote λ, and those with − in them denote the partition λ̃, rotated
by 180 degrees. Whenever λ denotes a partition, λ̃ will always denote its remnant.

For future reference, we give here the basic results about hook numbers that we need. These
are well known, and the reader is invited to give a proof if needed. The last four are very similar
in nature, and are included individually here so we can use the specific forms when required.
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Lemma 2.1. Let λ be a partition, with r rows and c columns, and write t = r + c. Denote
by h(i, j) the hook number in the (i, j) box. We have the following:

(1) h(1, 1) = t − 1;
(2) h(i, j) = h(i, 1) + h(1, j) − h(1, 1);
(3) we have

{h(i, 1) : 1 � i � r} ∪ {(t − 1) − h(1, j) : 1 � j � c} = {0, 1, . . . , t − 1};

(4) if A denotes the set of hook numbers in the left-hand column, A′ denotes the complement
of A in {0, . . . , t − 1}, and B denotes the set of hook numbers in the top row, then

B = {(t − 1) − a′ : a′ ∈ A′};

(5) if A is the set of hook numbers in the left-hand column, a is the left-most hook number
in row i, and A′ is the complement of A in {0, . . . , t − 1}, then the hook numbers in row
i are

{a − a′ : a′ ∈ A′, a > a′};

and
(6) if A is the set of hook numbers in the left-hand column, and A′ denotes its complement

in {0, . . . , t − 1}, then

H(λ) = {a − a′ : a ∈ A, a′ ∈ A′, a > a′}

and

H(λ̃) = {a′ − a : a′ ∈ A′, a ∈ A, a′ > a}.

3. The Splintering Lemma

The Splintering Lemma allows us to match up some of the entries of clustered partitions
with complementary front sections easily. The key ingredient is the idea of ∞-partitions; these
∞-partitions are not partitions in the usual sense, because they extend infinitely far to the left.
They have a finite number, say p, of rows, the height of the ∞-partition:

· · · · · · · · ·

Notice that we can legitimately define the hook number multiset of this ∞-partition, since each
number appears at most p times. Given a partition λ, we can construct an ∞-partition λ∞ from
it, by extending the partition infinitely far to the left. Notice that ∞-partitions are in one-to-one
correspondence with all possible front sections in the obvious way, by removing columns with p
boxes in them except for the right-most column. In the example above, the corresponding front
section is (6, 6, 3, 2, 1). We mimic the definition of complementary front sections and say that
two ∞-partitions are complementary if their corresponding front sections are complementary.

Consider a partition datum, say [λ(f), λ(r), eλ]p. Since there is a one-to-one correspondence
between the set of all front sections of p rows and the set of all ∞-partitions of height p, we
can replace the front section λ(f) by the corresponding ∞-partition λ∞. Thus if λ∞ is the
∞-partition given by the diagram

· · · · · · · · ·
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the partition with partition datum [(7, 2, 1), (2), 1]3 can be written as [λ∞, (2), 1]3. This is
merely a shorthand, since we will often consider ∞-partitions, and do not want to refer
continually to the corresponding front section.

Write H(λ∞) for the (infinite) multiset of hook numbers of the ∞-partition λ∞. The
fundamental observation here is that after finitely many integers, each hook number appears
exactly p times in H(λ∞), so we only need to understand the ‘first part’ of H(λ∞); we could
also think about H(λ∞) in terms of the integers H̄(λ∞) missing from it (that is, the multiset
such that the union of it and the multiset of hook numbers together provide p copies of every
positive integer). For example, in the ∞-partition

λ∞ = · · · · · ·
9 8 7 5 2 1
6 5 4 2
5 4 3 1
3 2 1

H̄(λ∞) = {1, 2, 3, 3, 4, 6}. We will call the multiset H̄(λ∞) the multiset of missing hook numbers
for the ∞-partition λ∞. We call two ∞-partitions λ∞ and μ∞ of the same height clustered if
H(λ∞) = H(μ∞), or equivalently H̄(λ∞) = H̄(μ∞).

To describe an ∞-partition of p rows, we give the p hook numbers coming from the right-
most column that has p boxes in it a special name, the characteristic of the ∞-partition.
This is the same as the first-column hook numbers of the corresponding front section. In the
example above, the characteristic is (7, 4, 3, 1). Note that the last element of the characteristic
is always 1.

Now we determine the missing hook numbers in terms of the characteristic of an ∞-partition.
The first part of this result was essentially obtained by Frame, Robinson and Thrall in [2],
couched in the language of ordinary partitions.

Lemma 3.1. Let λ∞ be an ∞-partition, with characteristic (a1, . . . , ap). Then the missing
hook numbers in row i (counting from the top row) are

{ai − aj : i < j � p},

and consequently

H̄(λ∞) = {ai − aj : 1 � i < j � p}.

Proof. Let (a1, . . . , ap) denote the characteristic, and write A for the set of all aj . The
missing hook numbers in row i are all less than ai, so we can restrict our attention to λ(f).
The hook numbers in row i of λ(f) are, by Lemma 2.1,

{ai − a′ : a′ ∈ A′, a′ < ai},

where A′ is the complement of A in the set {0, . . . , t − 1}. The numbers between 1 and ai that
are not part of this set are therefore the numbers

{ai − a : a /∈ A′, a < ai} = {ai − a : a ∈ A, a < ai} = {ai − aj : i < j � p}.

The second statement in the lemma now follows from this trivially.

Notice that if two ∞-partitions λ∞ and μ∞ are clustered, with characteristics ai and bi,
then the largest elements of H̄(λ∞) and H̄(μ∞) are the same. But the largest elements of
these multisets are a1 − ap and b1 − bp respectively. Since ap = bp = 1, we must have a1 = b1.
This implies that if λ(f) and μ(f) correspond to clustered ∞-partitions, then they have the
same number of boxes in the first row.
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The Splintering Lemma will be an easy consequence of Lemma 3.1. Before we state it, we
will describe a way to think of complementary ∞-partitions: consider a doubly-infinite version
of a partition of height p, such as that pictured below:

· · · · · · · · · · · · · · · · · ·

Now imagine snapping this like a piece of wood, so that the break turns the left-hand side
into an ∞-partition and the right-hand side into an ∞-partition rotated by 180 degrees:

· · · · · · · · · · · · · · · · · ·

These two ∞-partitions are complementary. It is an easy exercise for the reader to show that
if (a1, . . . , ap) and (b1, . . . , bp) denote the characteristics of two complementary ∞-partitions,
then

ai = t − bp+1−i,

where t is the row and column sum of the front section of either ∞-partition. (By a row and
column sum, we mean the sum t of the number of rows r and the number of columns c, so that
t = r + c.) We now give the Splintering Lemma.

Theorem 3.2 (Splintering Lemma). Let λ∞ and μ∞ be complementary ∞-partitions, each
with p rows. Then

H(λ∞) = H(μ∞).

Proof. This follows from Lemma 3.1: write (a1, . . . , ap) for the characteristic of λ∞, and
(b1, . . . , bp) for the characteristic of μ. Since ai = t − bp+1−i, we get

H̄(μ∞) = {bi − bj : 1 � i < j � p}
= {(t − ap+1−i) − (t − ap+1−j) : 1 � i < j � p}
= {ap+1−j − ap+1−i : 1 � i < j � p}
= H̄(λ∞).

There do exist non-complementary, clustered ∞-partitions; for example, the two ∞-
partitions with front sections (10, 7, 6, 2, 12) and (10, 8, 7, 6, 12) have the same hook number
multisets, but clearly are not complementary. The existence of non-complementary clustered
front sections is crucial to the proof of Theorem 1.4.

Proposition 3.3. Let {λ, μ} be a period-p cluster. Suppose that λ and μ have remainders
of the same weight, and the front sections, λ(f) and μ(f), are complementary. Then

2|λ(f)| ≡ 0 mod p.

Proof. Since the remainders λ(r) and μ(r) have the same weight, the rumps of λ and μ must
also have the same weight. Hence the front sections λ(f) and μ(f) have the same weight modulo
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p, since in going from rumps to front sections, we remove a multiple of p boxes. Hence

|λ(f)| ≡ |μ(f)| mod p.

Finally, from the construction of complementary front sections,

|λ(f)| + |μ(f)| ≡ 0 mod p,

since they are constructed from a rectangle of height p. These two equations clearly imply that
2|λ(f)| ≡ 0 mod p, as required.

4. The Extension Lemma

The Extension Lemma is a key result for our main theorem because it allows us to deduce
the existence of periodic clusters from single clusters satisfying two natural conditions: if a
cluster has clustered remainders and clustered ∞-partitions (for some period p), then the
cluster is periodic. The periodic cluster given in the introduction with non-conjugate remainders
had the weaker property of having clustered remainders, and the periodic cluster with non-
complementary front sections had clustered ∞-partitions generated by those front sections; the
author knows of no periodic clusters that do not satisfy both of these conditions.

Lemma 4.1. Suppose that λ and μ are clustered partitions with partition data

λ = [λ∞, λ(r), eλ]p, μ = [μ∞, μ(r), eμ]p.

In addition, suppose that λ(r) and μ(r) are clustered, and that λ∞ and μ∞ are clustered.
Then eλ = eμ.

Proof. Write rλ and cλ, and rμ and cμ, for the numbers of rows and columns of λ and μ
respectively. Then

tλ = rλ + cλ = rμ + cμ = tμ.

Since the remainders λ(r) and μ(r) are clustered, if we let r′
λ denote the number of rows of λ(r),

and so on, we have
t′λ = r′

λ + c′
λ = r′

μ + c′
μ = t′μ.

Next, rλ = r′
λ + p, and rμ = r′

μ + p. Now we need an expression for cλ. Write λ(f) for the front
section corresponding to λ, and similarly for μ(f). Notice that the first row of both λ(f) and
μ(f) contain the same number of boxes, namely c = t − p, where t is the row and column sum
of the front section (see the discussion preceding the Splintering Lemma). We see that

cλ = c′
λ + eλ + (c − 1), cμ = c′

μ + eμ + (c − 1).

(It is (c − 1) rather than c because the last row of any front section has one box in it, so the
difference between the number of boxes in the first and last rows of a front section is (c − 1).)

We combine the expressions for rλ and cλ, together with the equations tλ = tμ and t′λ = t′μ
to get

eλ = eμ,

as claimed.

Theorem 4.2 (Extension Lemma). Let λ̄ and μ̄ be two clustered partitions, and let p be
an integer smaller than the number of rows both of λ̄ and of μ̄. Let

λ̄ = [λ∞, λ(r), eλ]p, μ̄ = [μ∞, μ(r), eμ]p
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be the partition data. Suppose that λ(r) and μ(r) are clustered, and that λ∞ and μ∞ are
clustered. Then, if x is any non-negative integer, the two partitions

λ = [λ∞, λ(r), x]p and μ = [μ∞, μ(r), x]p

are also clustered.

Proof. Firstly, we know that eλ = eμ, by Lemma 4.1. Let λ = [λ∞, λ(r), x]p and μ =
[μ∞, μ(r), x]p be as in the statement, and let λ′ = [λ∞, λ(r), 0]p and μ′ = [μ∞, μ(r), 0]p. We
will show that H(λ) = H(μ) if and only if H(λ′) = H(μ′). Then the fact that H(λ) = H(μ)
when x = eλ will prove that it is true for all values of x.

Write t′ for the row and column sum of λ′, and t for the row and column sum of λ: then

t = t′ + x.

Write a1, . . . , ar and x1, . . . , xr for the first-column hook numbers of λ and λ′ respectively, so
that, if 1 � i � p, then

ai = xi + x,

and ai = xi for p + 1 � i � r. Similarly, we write b1, . . . , bs and y1, . . . , ys for the first-column
hook numbers of μ and μ′ respectively, and we have similar relationships between the bi and
the yi.

Write Mλ and Mμ for the multisets of hook numbers of λ that lie in the rumps of λ and
μ respectively, and M ′

λ and M ′
μ for the multisets of hook numbers of the rumps of λ′ and μ′.

We will have proven the result if we can show that Mλ = Mμ if and only if M ′
λ = M ′

μ. Let Ux

denote the multiset consisting of p copies of the integers between 1 and (t′ − 1) + x inclusive.
(Then, for example, U0 consists of p copies of all integers between 1 and x1.) We have

Mλ = Mμ ⇐⇒ Ux \ Mλ = Ux \ Mμ.

We write Nλ and Nμ for the complements of Mλ and Mμ in Ux, and N ′
λ and N ′

μ for the
complements of M ′

λ and M ′
μ in U0. We therefore need to show that Nλ = Nμ if and only if

N ′
λ = N ′

μ. Since Mλ is made up of the hook numbers of λ that lie in the top p rows, Nλ is
made up of the integers between 1 and a1 that are not in the ith row, for each 1 � i � p. This
gives us a row-by-row decomposition of Nλ.

Let us use this decomposition of Nλ to derive a description of it. Consider the ith row of λ.
Then the integers between 1 and a1 that are not hook numbers lying in this row fall into two
collections: those that lie between 1 and ai, and those that are between ai and a1. The missing
hook numbers between 1 and ai are all ai − aj for i < j � r (by Lemma 2.1 or the discussion
on ∞-partitions), and those above ai are simply all integers {ai + 1, . . . , a1}. Write Ri for the
first multiset, and Si for the second. Then we have

Nλ =
p⋃

i=1

(Ri ∪ Si) = Rλ ∪ Sλ,

where Rλ and Sλ have the obvious definition. Similarly, we construct Rμ and Sμ. We can
subdivide Rλ into two disjoint multisets, by writing

Rλ = {ai − aj : 1 � i < j � p} ∪ {ai − aj : 1 � i � p, p + 1 � j � r}.

Write Pλ and Qλ respectively for the two multisets, and note that Pλ = H̄(λ∞). Similarly,
write Rμ = Pμ ∪ Qμ, and we get

Pλ = H̄(λ∞) = H̄(μ∞) = Pμ.

Next, we perform the corresponding decomposition for λ′ and μ′. Write

N ′
λ = P ′

λ ∪ Q′
λ ∪ S′

λ,
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and P ′
μ, and so on for μ′. Then

P ′
λ = Pλ = Pμ = P ′

μ.

If we can show that Qλ ∪ Sλ = Qμ ∪ Sμ if and only if Q′
λ ∪ S′

λ = Q′
μ ∪ S′

μ, then we will have
shown that Mλ = Mμ if and only if M ′

λ = M ′
μ, and we will have proven the theorem.

To this end, we will determine a relationship between Qλ and Q′
λ, and between Sλ and S′

λ.
The relationship between the last two multisets is easy to find, since

Sλ =
p⋃

i=1

{x + (xi + 1), . . . , x + (x1)}

= {x + z : z ∈ S′
λ}.

The relationship between Qλ and Q′
λ is similar:

Qλ = {x + (xi − aj) : 1 � i � p, p + 1 � j � r}
=

{
x + z : z ∈ {xi − xj : 1 � i � p, p + 1 � j � r}

}
= {x + z : z ∈ Q′

λ}.

Thus

Qλ ∪ Sλ = {x + z : z ∈ Q′
λ ∪ S′

λ}.

A similar equation holds for μ and μ′. Hence we clearly have

Qλ ∪ Sλ = Qμ ∪ Sμ ⇐⇒ Q′
λ ∪ S′

λ = Q′
μ ∪ S′

μ,

which was what we wanted to prove.

The Extension Lemma allows us to prove that, say, the cluster {An, A′
n} given in Section 2 is

actually a cluster, by proving that the ∞-partitions are clustered, the remainders are clustered,
and that A0 and A′

0 are clustered. Each of these is easy in this case, so it makes our goal of
finding many periodic clusters much easier.

We now consider a partial converse to the Extension Lemma.

Proposition 4.3. Suppose that {λ, μ} is a periodic cluster, of period p. Let λ(r) and μ(r)

denote the remainders, and λ∞ and μ∞ denote the ∞-partitions made from the rumps. Then
H(λ(r)) = H(μ(r)) if and only if H(λ∞) = H(μ∞).

Proof. Recall that Hi(λ) denotes the multiplicity of i in the multiset H(λ). Let x be larger
than any hook number in either λ(r) or μ(r), and larger than any element of the missing hook
numbers from λ∞ and μ∞ (for example, let x = |λ|). Extend λ and μ by x; so we may assume
that if λ(t) denotes the rump, then

Hi(λ∞) = Hi(λ(t))

for i � x (and similarly for μ). Since λ and μ are clustered, for all i � x we have Hi(λ) = Hi(μ).
Since we have extended the partitions, we now have

Hi(λ) = Hi(λ∞) + Hi(λ(r)).

Then we see that Hi(λ∞) = Hi(μ∞) if and only if Hi(λ(r)) = Hi(μ(r)). But the hypothesis is
that one of these equations holds, and so they both do. This is true for all i � x, which is larger
than both the entries in λ(r) and μ(r) and the missing hook numbers of λ∞ and μ∞, so if λ∞
and μ∞ are clustered, then so are λ(r) and μ(r), and vice versa.
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This result explains why we get clustered remainders and clustered ∞-partitions appearing
together. (Note that the result does not imply that either condition need hold: this is an open
problem.)

5. The Vertical Expansion Theorem

In this section we prove a theorem that will substantially reduce the amount of work needed to
prove Theorem 1.4. Specifically, if we can find a period-p cluster of size n and weight congruent
to d modulo p, then the Vertical Expansion Theorem asserts that we can find infinitely many
different clusters with the same properties. Sections 6 and 7 are devoted to proving the existence
of enough clusters to ensure that for each n, we can find a period p, and p different period-p
clusters of size 2n, each with weight a different congruence class modulo p.

We start with a useful lemma, which lets us build up larger ∞-partitions from previously-
known ones. Before we begin, let λ∞ and μ∞ be two complementary ∞-partitions, with
characteristics (a1, . . . , ap) and (t − ap, . . . , t − a1), where t = a1 + 1. Then

{ai − aj : 1 � i, j � p} = H̄(λ∞) ∪ {−x : x ∈ H̄(λ∞)} ∪ p · {0}.

To see this, note that H̄(λ∞) is exactly those ai − aj such that i < j, the p · {0} comes from
the ai − aj when i = j, and the {−x : x ∈ H̄(λ∞)} comes from the −(aj − ai), recalling that

H̄(λ∞) = H̄(μ∞).

This will make our proof much easier.

Lemma 5.1. Let λ∞ and μ∞ be two clustered ∞-partitions, with characteristics (a1, . . . , ap)
and (b1, . . . , bp) respectively. Let x be an integer at least as large as a1. Write λ′

∞ and μ′
∞ for

the ∞-partitions with characteristics

(a1 + x, . . . , ap + x, a1, . . . , ap) and (b1 + x, . . . , bp + x, b1, . . . , bp).

Then λ′
∞ and μ′

∞ are clustered.

Proof. Write (a′
1, . . . , a

′
2p) and (b′

1, . . . , b
′
2p) for the characteristics of λ′

∞ and μ′
∞ respec-

tively. (If i > p, then a′
i = ai−p, and if 1 � i � p, then a′

i = ai + x.) Then

H̄(λ′
∞) = {a′

i − a′
j : 1 � i < j � 2p}

= {a′
i − a′

j : 1 � i < j � p} ∪ {a′
i − a′

j : p + 1 � i < j � 2p}
∪ {a′

i − a′
j : 1 � i � p, p + 1 � j � 2p}

= {ai − aj : 1 � i < j � p} ∪ {ai − aj : 1 � i < j � p}
∪ {ai − aj + x : 1 � i, j � p}.

The first two multisets are simply H̄(λ∞). The third multiset is that described in the discussion
preceding this lemma, all of whose entries are incremented by x, and thus we clearly see that
H̄(λ′

∞) is given by

H̄(λ′
∞) = 2 · H̄(λ∞) ∪ p · {x} ∪ {x + a, x − a : a ∈ H̄(λ∞)}

= 2 · H̄(μ∞) ∪ p · {x} ∪ {x + a, x − a : a ∈ H̄(μ∞)}
= H̄(μ′

∞),

as required.
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This has the following technical corollary, which is a key step in the proof of the Vertical
Expansion Theorem.

Corollary 5.2. Let λ∞, μ∞, λ′
∞, μ′

∞, ai, bi, a′
i and b′

i be as in Lemma 5.1. Then

{a′
i − a′

j : 1 � i � p, i < j � 2p} = {b′
i − b′

j : 1 � i � p, i < j � 2p}.

Proof. The multiset in question is simply H̄(λ′
∞) without the multiset

{a′
i − a′

j : p + 1 � i < j � 2p} = H̄(λ∞),

and clearly

H̄(λ′
∞) \ H̄(λ∞) = H̄(μ′

∞) \ H̄(μ∞),

yielding the result.

Proposition 5.3. Let λ = [λ∞, λ(r), 0]p and μ = [μ∞, μ(r), 0]p be two clustered partitions,
with clustered remainders and clustered ∞-partitions. Let λ′ = [λ∞, λ, 0]p and μ′ = [μ∞, μ, 0]p.
Then λ′ and μ′ form a period-p cluster.

Proof. The remainders of λ′ and μ′ are clustered, as are the front sections of λ′ and μ′,
and so by the Extension Lemma, if λ′ and μ′ are clustered then they form a periodic cluster.
We will show that the rumps of λ′ and μ′ have the same hook numbers. Write (a′

1, . . . , a
′
r+p)

for the first-column hook numbers of λ′, and (b′
1, . . . , b

′
s+p) for the first-column hook numbers

of μ′.
Next, write (a1, . . . , ar) for the first-column hook numbers of λ, and (b1, . . . , bs) for the

first-column hook numbers of μ. Then ai and a′
i are related by the equation

a′
i =

{
ai−p if i > p,

ai + (t − 1) if i � p,

where t − 1 is the largest hook number in λ(f).
Using the same strategy as the proof of the Extension Lemma, we construct the multiset U ,

which consists of p copies of every integer between 1 and a′
1 inclusive. Write Nλ and Nμ for the

complements of the hook numbers of the rumps of λ′ and μ′ in the multiset U . We therefore
need to show that Nλ = Nμ. In a similar way to the proof of the Extension Lemma, we have
an expression for Nλ, as

Nλ = {a′
i − a′

j : 1 � i � p, i < j � p + r} ∪
p⋃

i=1

{a′
i + 1, . . . , a′

1}.

The first multiset in this decomposition, say Rλ, is given by

Rλ = {a′
i − a′

j : 1 � i � p, i < j � 2p} ∪ {a′
i − a′

j : 1 � i � p, 2p + 1 � j � p + r}
= {a′

i − a′
j : 1 � i � p, i < j � 2p} ∪ {ai − aj + (t − 1) : 1 � i � p, p + 1 � j � r}.
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By Corollary 5.2, the first multiset in this decomposition is equal to the corresponding multiset
for μ′, and so it remains to prove that

{ai − aj + (t − 1) : 1 � i � p, p + 1 � j � r} ∪
p⋃

i=1

{ai + t, . . . , a1 + (t − 1)}

= {bi − bj + (t − 1) : 1 � i � p, p + 1 � j � r} ∪
p⋃

i=1

{bi + t, . . . , b1 + (t − 1)}.

Now consider the period-p cluster {λ′′, μ′′}, where

λ′′ = [λ∞, λ(r), t − 1]p and μ′′ = [μ∞, μ(r), t − 1]p.

This time we know that the hook number multisets of the rumps of λ′′ and μ′′ are the same.
Notice that the first-column hook numbers of λ′′ are equal to those of λ, except that the largest
p of them are incremented by t − 1. (The same is true for μ′′.) Again, we take the complement
of the hook numbers of the rumps in the suitable overset, consisting of p copies of every integer
between 1 and the largest hook number inclusive. We get the equation

{(ai + (t − 1)) − (aj + (t − 1)) : 1 � i < j � p}

∪{(ai + (t − 1)) − aj : 1 � i � p, p + 1 � j � r} ∪
p⋃

i=1

{ai + t, . . . , a1 + (t − 1)}

= {(bi + (t − 1)) − (bj + (t − 1)) : 1 � i < j � p}

∪ {(bi + (t − 1)) − bj : 1 � i � p, p + 1 � j � r} ∪
p⋃

i=1

{bi + t, . . . , b1 + (t − 1)},

and since the first multisets in this equation are H̄(λ∞) and H̄(μ∞), we get the exact formula
that we needed to prove.

Notice that λ′ and μ′ are clustered, and in fact are periodic of period both p and 2p. Thus
there is no loss of generality in requiring the extensions of λ and μ to be 0 in the statement of
the proposition.

This proposition can be repeatedly applied to yield the Vertical Expansion Theorem.

Theorem 5.4 (Vertical Expansion Theorem). Suppose that

λ = [λ∞, λ(r), e]p and μ = [μ∞, μ(r), e]p

are clustered partitions, such that the remainders and ∞-partitions are clustered. Let
(x1, . . . , xd) be a finite string of non-negative integers. Write λ0 = λ(r), and for each 1 � i � d,
write

λi = [λ∞, λi−1, xi]p,

and similarly for μi. Then {λd, μd} is a cluster, of period jp, for all 1 � j � d.

This has an immediate corollary, offering the best-possible answer to a question of Herman
and Chung in [3], namely whether one can find multiply-parameterized clusters. (This question
was alluded to in the introduction.)

Corollary 5.5. There exist clusters parameterized by all finite strings of non-negative
integers.
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The best way to see the partition λd in the statement of the Vertical Expansion Theorem
is to have the partition λ(r) at the bottom, with d copies of the front section of λ∞ bolted
on top, shifted to the right so that the overhang from the ith one up to the (i + 1)th is the
quantity xi.

To describe the partition λd in the Vertical Expansion Theorem, we will extend the notation
of partition data again, and write

λd = [λ∞, λ(r), (x1, . . . , xd)]p.

The idea here is that successive copies of λ(f) are added on top of λ(r), each with extension xi

for 1 � i � d. In particular, λ = [λ∞, λ(r), (eλ)]p.
In order to find different clusters of the same weight, we need an algebraic description of the

weight of a partition in terms of its partition datum.

Lemma 5.6. Suppose that λ = [λ∞, λ(r), eλ]p is a partition, and write c(r) for the number
of columns of λ(r), and λ(f) for the front section corresponding to λ∞, as usual. Then

|λ| = |λ(r)| + |λ(f)| + (c(r) + eλ − 1)p.

The proof of this is obvious, and left to the reader.

Proposition 5.7. Suppose that λ = [λ∞, λ(r), (x1, . . . , xd)]p is a partition. Write c(r) for
the number of columns of λ(r), and λ(f) for the front section corresponding to λ∞. Lastly, write
a for the first part of λ(f) minus 1. Then

|λ| = |λ(r)| + d|λ(f)| +

(
dc(r) +

d(d − 1)
2

a +
d∑

i=1

(d + 1 − i)xi − d

)
p.

In particular, modulo p,

|λ| = |λ(r)| + d|λ(f)|.

Proof. Write λ0, . . . , λd as in the statement of the Vertical Expansion Theorem. To prove
the proposition, we will count the number of boxes added in going from λi−1 to λi. This
corresponds to the number of boxes in the top p rows of λi. By Lemma 5.6, since

λi = [λ∞, λi−1, xi]p,

we have

|λi| = |λi−1| + |λ(f)| + (bi−1 + xi − 1)p,

where bi−1 is the number of columns in λi−1. We claim that for all j > 0, this number is given
by

bj = bj−1 + xj + a,

and for j = 0, it is given by c(r). Suppose that this is true. Then b1 = c(r) + x1 + a, and in
general

bj = c(r) + (x1 + x2 + . . . + xj) + ja.

Hence we get

|λi| = |λi−1| + |λ(f)| +

(
i∑

α=1

xα + (i − 1)a − 1

)
p.
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We can recursively apply this formula, noting that |λ0| = |λ(r)|, to get

|λ| = |λ(r)| + d|λ(f)| +

(
dc(r) +

d(d − 1)
2

a +
d∑

i=1

(d + 1 − i)xi − d

)
p.

It remains, therefore, to prove the assertion that we made on bj . Certainly, b0 = c(r) since
they are both defined to be the same thing, the number of columns in λ(r). For the inductive
formula,

bj = bj−1 + xj + a,

this is obviously true once we remember that a is the number of columns in λ(f) minus 1.

In particular, if d = yp + 1 for some integer y, then |λd| ≡ |λ| modulo p.
Suppose that Λ is a period-p cluster, and let λ be a partition in Λ. Write λ = [λ∞, λ(r), e]p.

From this, construct another partition, λ′, given by

λ′ = [λ∞, λ(r), (1, 1, . . . , 1︸ ︷︷ ︸
p

, e)]p.

Let Λ′ be the period-p cluster given by all such λ′, as λ ranges over the partitions in Λ. Certainly
|λ| < |λ′|, and by the remarks above, |λ| ≡ |λ′| mod p. Thus there is an integer x such that if
λ̄ = [λ∞, λ(r), x]p, then

|λ̄| = |λ′|.

We claim that H(λ̄) 
= H(λ′). To see this, let us count the number of 1s occurring in the two
multisets. Write a for the number of occurrences of 1 in the front section λ(f), and b for the
number of occurrences of 1 in the remainder λ(r). It is easy to see that

H1(λ̄) = a + b,

whereas

H1(λ′) = (p + 1)a + b,

proving the assertion, since a � 1.
Repeating this procedure, given one period-p cluster of size n and weight congruent to d

modulo p, we can find arbitrarily many clusters, each of size n and weight congruent to d
modulo n, and each with different hook number multisets. However, Theorem 1.4 stated that
these clusters could be chosen so that not only are the hook numbers different for different
clusters, but that the product of those numbers is different. To show this, we need to use prime
numbers, and period-p2 clusters.

Let λ = [λ∞, λ(r), 0]p be a period-p cluster, and consider the p different period-p2 clusters

λi = [λ∞, λ(r), (0, 0, . . . , 0︸ ︷︷ ︸
p

, i)]p,

as i ranges between 1 and p. It is easy to see using Proposition 5.7 that

|λi| = p + |λi−1|.

Since all of the |λi| are multiples of p, and cover all congruence classes modulo p2 that are
multiples of p themselves, we must have

|λ| ≡ |λh| mod p2,

for some h. (In fact, it is easy to show that h = p, but we do not need this.)
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Let x be an integer such that if λ̄ = [λ∞, λ(r), x]p, then |λ̄| = |λh|. Since λ̄ is a period-p
cluster and λh is a period-p2 cluster, if we extend λh by 1, we need to extend λ̄ by p in order
to keep their weights the same. Write t(r) for the row and column sum of λ(r). Suppose that
the largest hook number of λh is a, and that the largest hook number of λ̄ is b. Every time
we extend λh by 1, a is increased by 1, whereas b is increased by p, which for now we will
assume is at least 3. (A similar procedure can deal with the uninteresting case p = 2.) Write
λ̄′ and λ′

h for the extended versions of these partitions, extended by py and y respectively. For
all sufficiently large y, we have the inequality

(b + py) − t(r) � 2(a + y + 1) + 1.

Now we need Bertrand’s Postulate, a famous result of Chebyshev, proved in 1852. This states
that for any natural number n, between n and 2n one can find a prime number. Applying this
with n = a + y + 1 yields a prime number � such that

a′ < � < b′ − t(r),

where a′ = a + y and b′ = b + py. Since a′ < �, certainly � does not divide any of the elements
of H(λ′

h), so in particular, � does not divide their product. If we can show that it divides the
product of the hook numbers of λ̄′, we will have gone a significant way towards proving our
statement.

There are two ways to see that � must divide one of the hook numbers. The first uses the
so-called �-abacus, once we notice that the first-column hook numbers of λ̄′ are either those
of λ(r) (and hence at most t(r)) or close to b′, and so there must be a space underneath the
bead corresponding to b′ in the �-abacus. Since defining the abacus and explaining the concepts
would be too complex, we provide another easy proof.

Consider the top row of λ̄′, with largest hook number b′. The boxes directly above the
remainder do not have consecutive hook numbers, but once we move along the first row until
we no longer lie above the remainder, the hook numbers become consecutive all the way until
the front section. By construction, the prime � must fall in the region of consecutive hook
numbers, since we made sure that � < b′ − t(r). Hence � is one of the hook numbers of λ̄′, so
divides their product.

In conclusion, we have shown that for all sufficiently large (period-p2) extensions of λ̄ and
λh, the products of their hook numbers are different. By extending the original partition λ
by i, where 1 � i � p − 1, we get a period-p partition with weight congruent to the other λi

modulo p2, so we can employ the same procedure to get the following theorem.

Theorem 5.8. Suppose that Λ is a period-p cluster, with weight congruent to d modulo
p. Then there exist, for all sufficiently large n congruent to d modulo p, two clusters, Λ1 and
Λ2, one an extension of Λ, such that if λ1 ∈ Λ1 and λ2 ∈ Λ2, then λ1 and λ2 have different
products of hook numbers.

The construction used to find the two clusters above can be repeated, to yield the following
corollary.

Corollary 5.9. Let Λ be a period-p cluster of n partitions, and weight congruent to d
modulo p. Then there exist arbitrarily many period-p clusters Λ1, Λ2, . . . all of size n and of
the same weight, and this weight is congruent to d modulo p. Moreover, the Λi can be chosen
so that if λi ∈ Λi and λj ∈ Λj , with i 
= j, then λi and λj have different products of hook
numbers.
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6. Preparing for the proof: a new ∞-partition

The Splintering Lemma implies the following result, which is essential for the proof of our
main theorem.

Lemma 6.1. Let λ be a partition, and let λ̃ denote its remnant. Write t = r + c, as usual.
Then

Hi(λ) − Ht−i(λ) = Hi(λ̃) − Ht−i(λ̃).

Proof. Form the ∞-partition λ∞ of height r by extending λ infinitely far to the left. Let
λ′

∞ denote the complementary ∞-partition. Then H(λ∞) = H(λ′
∞); in particular, Hi(λ∞) =

Hi(λ′
∞). Now we simply work out how Hi(λ) and Hi(λ∞) are related. Write A for the set of

first-column hook numbers of λ. Any occurrence of i in λ∞ appears either in λ itself, or to the
left of λ, and so must be larger than the first-column hook number of λ in that row. Thus

Hi(λ) = Hi(λ∞) − |{a ∈ A : a < i}|,

and similarly

Ht−i(λ) = Ht−i(λ∞) − |{a ∈ A : a < (t − i)}|.

On the other hand, consider Hi(λ′
∞). Write λ′ for the front section of λ′

∞, and notice that
if we remove the left-hand column of λ′, we get the partition λ̃. Let B denote the first-column
hook numbers of λ′; then

B = {t − a : a ∈ A}.

Also, we have

Hi(λ̃) = Hi(λ′
∞) − |{b ∈ B : b � i}|

and

Ht−i(λ̃) = Ht−i(λ′
∞) − |{b ∈ B : b � (t − i)}|.

The slight difference in the formulae comes from the fact that we do not want to include the
hook numbers that make up B when calculating Hi(λ̃).

The final stage in the proof is to notice that, since B = {t − a : a ∈ A}, we have

|{b ∈ B : b � i}| = |{a ∈ A : a � (t − i)}| and |{b ∈ B : b � (t − i)}| = |{a ∈ A : a � i}|.

Lastly, we see that

|{a ∈ A : a � (t − i)}| = |A| − |{a ∈ A : a < i}|

and

|{a ∈ A : a � i}| = |A| − |{a ∈ A : a < (t − i)|,

and upon collation of these facts, the result follows.

This result may be somewhat surprising: what it essentially says is that Hi(λ̃) − Ht−i(λ̃) is
determined by H(λ), and so is the same for any clustered partitions. However, in [3], Herman
and Chung show that H(λ) and H(λ̃) together determine the partition λ up to conjugation.

Lemma 6.1 can be rewritten as

H(λ) \ {t − h : h ∈ H(λ)} = H(λ̃) \ {t − h : h ∈ H(λ̃)},

where the multisets involved can have negative multiplicities. This is easy to see since the
multiplicity of i in {t − h : h ∈ H(λ)} is equal to the multiplicity of t − i in H(λ), and similarly
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for λ̃: hence the equation above, for the multiplicity of each i, becomes the equation given in
Lemma 6.1.

Let λ denote an arbitrary partition; we will construct a new ∞-partition E∞(λ) from λ,
of height t, where t is the row and column sum. Let A denote the set of first-column hook
numbers of λ, and B denote the set of top-row hook numbers of λ. Then the first-column hook
numbers of the front section of E∞(λ) are

{a + t + 1 : a ∈ A} ∪ {t − b : b ∈ B}.

By Lemma 2.1, this is the same as the set

{a + t + 1 : a ∈ A} ∪ {a′ + 1 : a′ ∈ A′},

where A′ is the complement of A in the set {0, 1, . . . , t − 1}.
This ∞-partition is best-constructed by example. Let t = r + c, as usual, and construct the

partition ((c + 1)t), a rectangle of height t and width c + 1. Remove from the bottom-right of
the rectangle, the partition λ reflected in the bottom-left to top-right diagonal. Then adjoin
λ to the top-right of this partition. This becomes the front section of the ∞-partition E∞(λ).
The example λ = (4, 2, 1) is constructed below:

· · · · · ·

· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·
· · · ·

−→ · · · · · ·

· · · ·
· · · ·
· · · ·
· · ·
· · ·
· ·
·

−
−

− −
− − −

−→ · · · · · ·

· · · · � � � �
· · · · � �
· · · · �
· · ·
· · ·
· ·
·

−
−

− −
− − −

Here, a box with · in it is one that remains from the original rectangle, − indicates that this
box is removed, and � indicates that this is a box added. The boxes with � in them comprise
a copy of the original partition λ.

Proposition 6.2. Let λ and μ be clustered partitions. Then E∞(λ) and E∞(μ) are
clustered ∞-partitions.

Proof. We will show that H̄(E∞(λ)) is determined by H(λ): then it must be true that

H̄(E∞(λ)) = H̄(E∞(μ)).

Let A denote the first-column hook numbers of λ. Then the first-column hook numbers of
E∞(λ) are

C = {a + t + 1 : a ∈ A} ∪ {a′ + 1 : a′ ∈ A′},

where again A′ denotes the complement of A in the set {0, . . . , t − 1}. Since H̄(E∞(λ)) is the
multiset of all differences between elements of C, we have

H̄(E∞(λ)) = {c1 − c2 : ci ∈ C, c1 > c2}
= {(a1 + t + 1) − (a2 + t + 1) : ai ∈ A, a1 > a2}

∪ {(a′
1 + 1) − (a′

2 + 1) : a′
i ∈ A′, a′

1 > a′
2}

∪ {(a + t + 1) − (a′ + 1) : a ∈ A, a′ ∈ A′}
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= {a1 − a2 : ai ∈ A, a1 > a2} ∪ {a′
1 − a′

2 : a′
i ∈ A′, a′

1 > a′
2}

∪ {a − a′ + t : a ∈ A, a′ ∈ A′}
= {a1 − a2 : ai ∈ A, a1 > a2} ∪ {a′

1 − a′
2 : a′

i ∈ A′, a′
1 > a′

2}
∪ {a − a′ + t : a ∈ A, a′ ∈ A′, a > a′}
∪ {a − a′ + t : a ∈ A, a′ ∈ A′, a < a′}.

The third multiset in this decomposition is {h + t : h ∈ H(λ)}, so is determined by H(λ),
and the fourth multiset in the decomposition is {t − h : h ∈ H(λ̃)}, where λ̃ denotes the
remnant of λ.

Now consider the multiset X = {i − j : 0 � j < i � t − 1}. Clearly X is dependent only on
H(λ), not on λ itself. The multiset X can be written as

X ={a1 − a2 : ai ∈ A, a1 > a2} ∪ {a′
1 − a′

2 : a′
i ∈ A′, a′

1 > a′
2}

∪ {a − a′ : a ∈ A, a′ ∈ A′, a > a′} ∪ {a′ − a : a ∈ A, a′ ∈ A′, a′ > a}.

The third multiset in this decomposition is H(λ), so that this is clearly only dependent on
H(λ). The fourth multiset in this decomposition is H(λ̃). If we can show that the difference
between the expressions for H̄(E∞(λ)) and for X is determined by H(λ), then we have finished.
However, this is clearly true, since the difference between the two is

{t − h : h ∈ H(λ̃)} \ H(λ̃)

(allowing negative multiplicities of integers in this expression) and that this multiset is
determined by H(λ) is the expression following Lemma 6.1.

Notice that the multiset Y = {h + t : h ∈ H(λ)} appears in H̄(E∞(λ)). Indeed, by
Lemma 2.1, we have

H(λ) = {a − a′ : a ∈ A, a′ ∈ A′, a > a′},

and since the set of all elements of the characteristic of E∞(λ) is

{a + t + 1 : a ∈ A} ∪ {a′ + 1 : a′ ∈ A′},

we clearly have Y ⊆ H̄(E∞(λ)). Moreover, Y is precisely those elements of H̄(E∞(λ)) that
are larger than t − 1. To see this, write P for the first multiset in the expression for the set of
elements of the characteristic above, and Q for the second. Let x and y denote two first-column
hook numbers, and consider their difference, x − y. If x and y both lie in P , their difference is
at most t − 2. If x and y both lie in Q, their difference is likewise at most t − 2. If x lies in P and
y lies in Q, then x = a + t + 1 for some a ∈ A, and y = a′ + 1 for some a′ ∈ A′. Now consider
x − y = t + (a − a′): if x − y � t, then we must have a � a′, and since a 
= a′, we actually have
a > a′, and so this is one of the elements of Y , as we asserted. Thus

{h + t : h ∈ H(λ)} = {h : h ∈ H̄(E∞(λ)), h � t}.

7. The enveloping partition: the proof of Theorem 1.4

Let λ be a partition of n, and write t = r + c for the sum of the rows and columns, as we
have done previously. We denote by E(λ) the partition with partition datum

[E∞(λ), λ, 0]t.

This partition is called the enveloping partition of λ. A better way to describe this partition
is to take a t × t square, remove the reflection of λ from the bottom-right corner, as in the
construction of E∞(λ), then add a copy of λ to both the top-right corner and the bottom-left
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corner of the square. Thus, if λ = (5, 3, 3, 2) for example, E(λ) is the partition

· · · · · · · · · � � � � �
· · · · · · · · · � � �
· · · · · · · · · � � �
· · · · · · · · · � �
· · · · · · · ·
· · · · · · · ·
· · · · · ·
· · · · ·
· · · · ·
� � � � �
� � �
� � �
� �

−
−

− − −
− − − −
− − − −

(Here, the · represents the boxes of the original square that remain, − represents the boxes of
the original square that are removed, and � represents the added copies of λ.)

It is clear from this picture that E(λ(c)) = E(λ)(c). Thus, if λ and μ are conjugate, then
E(λ) and E(μ) are clustered. We can do much better.

Theorem 7.1. Let λ and μ be two clustered partitions. Then E(λ) and E(μ) are clustered
partitions.

We defer the proof of this result, but first deduce Theorem 1.4 from it. Let λ and μ denote
two clustered partitions, possibly not periodic. Firstly, note that {E(λ), E(μ)} is a period-t
cluster: the remainders of E(λ) and E(μ) are simply λ and μ, and so are clustered, and we
have proven that E∞(λ) and E∞(μ), the ∞-partitions of E(λ) and E(μ), are clustered. Thus,
by the Extension Lemma, {E(λ), E(μ)} is a period-t cluster.

This enables us, given a cluster Λ of m partitions, to construct a cluster E(Λ)1 of 2m
partitions, by taking, for each λ ∈ Λ, the partition E(λ)1 = [E∞(λ), λ, 1]p, and the conjugate
E(λ)(c)1 of E(λ)1. The set

E(Λ)1 = {E(λ)1, E(λ)(c)1 : λ ∈ Λ}

is then a period-t cluster.
The next stage in the proof of Theorem 1.4 is to notice that if λ has weight n and row and

column sum t, then E(λ)1 has weight t2 + t + n, period t, and row and column sum 3t + 1. We
have an iterative procedure: if Λ1 is simply a set consisting of a partition λ and its conjugate,
write n1 for the weight of the partitions in Λ1, and t1 for the sum of the number of rows and
the number of columns. Given a cluster Λi of 2i partitions, each with weight ni and row and
column sum ti, we construct a cluster Λi+1 of 2i+1 partitions, with weight

ni+1 = ni + t2i + ti,

period ti, and row and column sum

ti+1 = 3ti + 1,

by, for each λ ∈ Λi, considering the partition E(λ)1, together with its conjugate. This means
that, given any � ∈ N, we can find a periodic cluster consisting of 2� partitions. We need to
show that we can find enough periodic clusters, each with the same period t�−1, so that their
weights cover all congruence classes modulo t�−1. This would imply that for all sufficiently
large n, there is a cluster with 2� partitions in it, namely the periodic cluster with weight
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congruent to n modulo t�−1. By the Vertical Expansion Theorem (or rather, Corollary 5.9), we
get arbitrarily many period-t�−1 clusters with the correct weight modulo t�−1. Then we will
have Theorem 1.4.

To find enough clusters, firstly let � be any integer, and write t = t1, a variable. The period
of the cluster Λ� above is t�−1 = 3t�−2 + 1, and is defined recursively. This gives

t�−1 = 3�−2t +
3�−2 − 1

2
,

a linear function in t. Suppose that t is odd, and write t = r + c, where c = r − 1. The partitions
with r rows and c columns have maximum weight rc, and minimum weight r + c − 1, and for
every integer between these two bounds, there is a partition with r rows and c columns of that
weight. Notice also, that no partition with r rows and c columns is self-conjugate. We have

r =
t + 1

2
, c =

t − 1
2

, rc =
t2 − 1

4
, r + c − 1 = t.

Thus the difference rc − (r + c − 1) is given by

t2 − 4t − 1
4

,

a quadratic function of t. Choose an odd t such that

t2 − 4t − 1
4

> 3�−2t +
3�−2 − 1

2
= t�−1,

and let λ(j) denote a partition with r rows, c columns, and weight congruent to j modulo t�−1.
(We know that such a partition exists by choice of t.) Finally, let

Λ(j)
1 = {λ(j), λ(j)(c)}.

Let Λ(j)
i denote the cluster obtained from Λ(j)

i−1 in the way described above.
The clusters Λ(j)

i are each periodic, of period ti−1 for all 0 � j < t�−1 and all 2 � i � �. The
weights of the clusters

Λ(0)
2 , . . . ,Λ(t�−1−1)

2

cover all congruence classes modulo t�−1, since to each weight, we have added t21 + t1, and
clearly by induction, since we add the same number to the weights of each cluster at each
iteration, the weights of the clusters

Λ(0)
i , . . . ,Λ(t�−1−1)

i

cover all congruence classes modulo t�−1. This implies that if N denotes the largest weight
of the clusters Λ(j)

� , then for all n � N , there is a period-t�−1 cluster of size 2� and weight n;
Theorem 1.4 follows.

It remains, therefore, to prove Theorem 7.1. This will be proven in a sequence of lemmas,
which will show that the assertion that H(E(λ)) = H(E(μ)) (for a cluster {λ, μ}) follows from
the assertion that E∞(λ) and E∞(μ) are clustered, a result that we already know. We provide



48 DAVID A. CRAVEN

an illuminating diagram for the proof of this theorem:

• • • • • • • • · � � � � �
• • • • • • • · × � � �
• • • • • • · × × � � �
• • • • • · × × × � �
• • • • · × × ×
• • • · × × × ×
• • · × × ×
• · × × ×
· × × × ×
� � � � �
� � �
� � �
� �

−
−

− − −
− − − −
− − − −

The method of proof is the following: clearly, the two sets of boxes labelled with � are given
by 2 · H(λ). The set of boxes labelled with · will be shown to have hook number t. Next we will
show that if i + j � t, then the sum of the hook number in a box (i, j), together with the hook
number of the box (t − j + 1, t − i + 1) is 2t. (The box (t − j + 1, t − i + 1) is the reflection
of the box (i, j) in the line consisting of those boxes containing ·.) Finally, we show that the
numbers denoted by • are simply the elements of H̄(E∞(λ)), incremented by t. This will prove
that H(E(λ)) is determined just by H(λ), and does not require full knowledge of λ; thus

H(E(λ)) = H(E(μ))

if H(λ) = H(μ).
For the remainder of the proof, let λ denote a partition with r rows and c columns, write

t = r + c, and let E(λ) denote the enveloping partition. Write h(i, j) for the hook number in
the (i, j) position of E(λ). Write A = {a1, . . . , ar} for the first-column hook numbers of λ, and
again write A′ for the complement of A in the set {0, . . . , t − 1}.

Lemma 7.2. The first-column hook numbers of E(λ) are

B = A ∪ {a′ + t : a′ ∈ A′} ∪ {a + 2t : a ∈ A}.

Proof. Certainly |B| = t + r, which is the correct number. Thus we only have to show that
all of the elements in B show up in the first-column hook numbers of E(λ). This is safely left
as an exercise for the reader, once we notice that B is the union of A and the first-column hook
numbers of E∞(λ), incremented by (t − 1).

Lemma 7.3. Let 1 � i � t. Then h(i, t − i + 1) = t.

Proof. Certainly, since 0 ∈ A′, we know that t is a first-column hook number, by Lemma 7.2,
and it is clearly h(t, 1). As t − 1 /∈ A′, it must be that 2t − 1 is not a first-column hook number
of E(λ), and so t is also a top-row hook number. Just as clearly, this top-row hook number
must be h(1, t). That the rest of the h(i, t − i + 1) are equal to t is intuitively obvious from the
diagram above, and we leave the reader to formulate a formal proof.

Lemma 7.4. Let 1 � i, j � t. Then

h(i, j) + h(t − j + 1, t − i + 1) = 2t.
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Proof. By Lemma 2.1, h(i, j) + h(1, 1) = h(i, 1) + h(1, j) for all 1 � i, j � t. Then

h(i, j) + h(t − j + 1, t − i + 1)
=

(
h(i, 1) + h(1, j) − h(1, 1)

)
+

(
h(t − j + 1, 1) + h(1, t − i + 1) − h(1, 1)

)
=

(
h(i, 1) + h(1, t − i + 1) − h(1, 1)

)
+

(
h(1, j) + h(t − j + 1, 1) − h(1, 1)

)
= h(i, t − i + 1) + h(t − j + 1, j) = 2t.

We restrict our attention to the hook numbers in the triangle where i + j � t. Recall that
h(1, 1) = 3t − 1, since the row and column sum is 3t. Then

h(1, j) + h(t − j + 1, 1) = h(1, 1) + h(t − j + 1, j) = 4t − 1,

and since we know the hook numbers h(i, 1) for 1 � i � t, this gives us an expression for h(i, j),
where i + j � t. Indeed,

h(i, j) = h(i, 1) + h(1, j) − (3t − 1)

= h(i, 1) +
(
(4t − 1) − h(t − j + 1, 1)

)
− (3t − 1)

= h(i, 1) − h(t − j + 1, 1) + t.

Since i + j � t we get

{h(a, b) : a + b � t} = {h(a, 1) − h(t − b + 1, 1) + t : a + b � t}
= {h(i, 1) − h(j, 1) + t : 1 � i < j � t}.

This rewriting yields the following lemma.

Lemma 7.5. We have

H̄(E∞(λ)) = {h(i, j) − t : i + j � t} = {h(i, 1) − h(j, 1) : 1 � i < j � t}.

Proof. To prove this, we have to note that if (c1, . . . , ct) denotes the characteristic of E∞(λ),
then

h(i, 1) = ci + (t − 1).

This is simply the observation given in the proof of Lemma 7.2.

Now we can write down H(E(λ)).

Lemma 7.6. The multiset H(E(λ)) is given by

H(E(λ)) = 2 · H(λ) ∪ {t + h : h ∈ H̄(E∞(λ))}
∪

{
t − h : h ∈ H̄(E∞(λ)) \ {t + h : h ∈ H(λ)}

}
∪ t · {t}.

Proof. Write X for the multiset on the right-hand side of this formula. Since H̄(E∞(λ))
contains t(t − 1)/2 elements, the total number of elements in X is t2 + n, where n = |H(λ)|.
Thus we simply have to show that each element of X shows up in H(E(λ)).

Certainly the two copies of H(λ) show up, as these are the boxes with � in them in the
diagram. Similarly, Lemma 7.5 showed that the second term in X is those boxes with • in
them. The fourth term is the boxes with · in them, by Lemma 7.3. It remains to discuss the
third term.
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In the discussion following Proposition 6.2, we showed that the elements of H̄(E∞(λ)) that
are larger than t are precisely the elements

{t + h : h ∈ H(λ)}.

These are those boxes with • in them that reflect onto those with − in them, and since those
boxes do not form part of E(λ), we must remove them from the third term. Hence the third
term in the description of X is the multiset of hook numbers in the boxes with ×.

We have therefore shown that X ⊆ H(E(λ)), and since they have the same cardinality, we
get the result.

This now establishes Theorem 7.1, since the multiset H(E(λ)) is determined by H(λ), and
so, in particular, if H(λ) = H(μ), then

H(E(λ)) = H(E(μ)),

completing the proof of Theorem 7.1, and hence of Theorem 1.4.
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