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I distinguish four types of corrections, in order of increasing seriousness:

(Extra) Additional information that was not available at the time of writing, or that I did not know
about.

(Improve) Typographical issues, where what is written is still correct, but there is a nicer way of phrasing
it, or I could choose a better symbol.

(Typo) Typographical errors, where I have spelled a word wrongly, used the wrong symbol, and so
on.

(Error) Errors in proofs or statements.

When I give each correction, I will label it with one of these monikers.

(i) (Error) p5, Example 1.3. In fact H does act transitively on the subgroups of order 4, but not
every map α induced on the 4-subgroups by conjugation in G is induced by conjugation by
H, so that H controls weak fusion but not G-fusion.

Consider the following example in the same vein: let V be a vector space over F2 of dimension
5, whose automorphism group is GL5(2). Let x be an element of order 31, and let y be an
element of order 5 that normalizes x (this exists). Let G be a semidirect product of V and
⟨x, y⟩, a (soluble) group of order 25 · 31 · 5, and let H = ⟨V, x⟩. Since there are 31 non-identity
elements of V , x must permute them transitively, and so both H control weak fusion in P

with respect to G.

Now consider the set S of subgroups of order 4 in V . There are 31 · 5 of these. Since x
permutes the non-identity elements of V transitively, it must act freely on S, so has five
orbits of length 31. However, as y acts on S non-trivially, we see that G must act transitively
on S. However, H acts in five orbits, so that G and H have different actions on the subgroups
of V of order 4. (Thanks to Justin Lynd and George Glauberman for pointing the error in
1.3 out.)

(ii) (Typo) p7, line 2 of Definition 1.7, the symbol “⊴ (G)" should be “FP (G)". (Thanks to Matt
Towers for this.)
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(iii) (Typo) p10, l7, ‘|Aut(Q)| is a 2-group’ should be ‘Aut(Q) is a 2-group’. (Thanks to Benjamin
Sambale for spotting this.)

(iv) (Improve) p15, line 15, the two NG(Q) and NG(R) should be NG(Q) and NG(R).

(v) (Improve) p19, line 4 of Theorem 1.33, the displayed equation should read

= ⟨x−1(xg) : x ∈ Q ⩽ P, g ∈ Op(NG(Q))⟩

This is simply replacing ϕ by g.

(vi) (Error) p34, paragraph 2 of the proof of Proposition 2.12. The fact that BrP (X̂) is X̂ if X is
a singleton set or 0 otherwise has nothing to do with sizes of conjugacy classes: notice that by
the definition of CG(P ), a P -conjugacy class X is a singleton set if and only if X ⊆ CG(P ).
If X does not lie inside CG(P ) then BrP (X̂) = 0 by definition, and if X does lie inside CG(P )
then it is a singleton.

(vii) (Error) p99, alternative definition of Nϕ. This isn’t quite right. I write (Qcg)ϕ = (Qϕ)ch in
the displayed equation, but of course I want the maps cgϕ and ϕch to agree on Q, not just
that they move Q to the same place (i.e., R). I mean that qcgϕ = qϕch for all q ∈ Q. (Thanks
to Benjamin Sambale for noticing this.)

(viii) (Error) p119, proof of Proposition 4.46. Everything written in the proof is OK, except I only
show that NQ(R) ⩽ RCP (R) = R in the proof. However, this can easily be fixed: if Q ̸⩽ R

then QR > R, so NQR(R) > R. The proof actually shows that NQR(R) ⩽ R, and we are
done.

The complete argument would look as follows:

Let R be a centric, radical subgroup of P . We claim that AutQR(R) is a normal subgroup of
AutF (R): if this is true, then since R is F-radical, AutQR(R) ⩽ Inn(R), so that NQR(R) ⩽

RCP (R) = R. If Q ̸⩽ R then QR > R, so NQR(R) > R, which is a contradiction, so that
Q ⩽ R, as needed.

We now prove the claim. Let cg ∈ AutQR(R), let ϕ ∈ AutF (R), and let ψ ∈ AutF (QR) be an
extension of ϕ. Since both Q and R are ψ-invariant, NQR(R) is ψ-invariant. For x ∈ QR, x
normalizes R if and only if cx ∈ Aut(R), so it suffices to show that, if cg ∈ AutQR(R) then
(cg)ψ ∈ AutQR(R). However, (cg)ψ = cgψ, and gψ ∈ NQR(R) as g ∈ NQR(R) and NQR(R) is
ψ-invariant, proving the claim.

(Thanks to Robert Leek for pointing this out.)

(ix) (Error), p135-6, in the description of ψϕ, the point is that this is not necessarily well defined
in general, and Proposition 5.3 should be that the kernel T is strongly F-closed if and only
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if, whenever ψ is a map in F , the map ψϕ is well defined. If T is strongly F-closed then ψϕ

is an injection, by the original Proposition 5.3.

A complete proof for the modified Proposition 5.3 is as follows:

Suppose that T is strongly F-closed, and let ψ : A → B be a morphism in F . If a and a′

are representatives of the same right coset of T in P then a′a−1 ∈ A ∩ T ; as T is strongly
F-closed, (a′ψ)(a−1ψ) ∈ B ∩ T , so that (aψ)ϕ = (a′ψ)ϕ, and ψϕ is well defined.

Conversely, suppose that ψϕ is well defined for all ψ in F . If ψ : A → B is a homomorphism in
F , and a ∈ A∩T , then both a an 1 label the same right coset of T , so that (aψ)ϕ = (1ψ)ϕ = 1,
and aψ ∈ T . This proves that T is strongly F-closed.

In general, for an arbitrary map ψ : A → B and a homomorphism ϕ : P → Q, ψϕ is well
defined if and only if (A ∩ kerϕ)ψ ⩽ kerϕ. If ψ is bijective and (ψ−1)ϕ is also well defined,
then (A ∩ kerϕ)ψ = B ∩ kerϕ.

(Thanks to Kasper Andersen for pointing this out.)

(x) (Typo) p138, Definition 5.9, last line. Instead of Qϕ = Q we need Qψ = Q.

(Thanks to Benjamin Sambale for noting this.)

(xi) (Typo) p189, proof of 6.2, l2. I wrote F-isomorphism, and I meant simply ‘morphism’, as of
course |NP (R)| need not be as large as |NP (Q)| in general.

(Thanks to Kasper Andersen for pointing this out.)

(xii) (Typo) p189, proof of 6.2, l5, R should be NP (R).

(Thanks to Kasper Andersen for pointing this out.)

(xiii) (Typo) p192, proof of 6.8, l13, Q is fully normalized, but the extension is because Q is also
receptive.

(Thanks to Kasper Andersen for pointing this out.)

(xiv) (Typo) p196, l19. 1 ⩽ i < t should be 1 ⩽ i < t − 1, as one cannot compose ϕi and ϕi+1 if
i = t− 1.

(Thanks to Kasper Andersen for pointing this out.)

(xv) (Typo) p196, l20. Biϕ should be Biϕi.

(Thanks to Kasper Andersen for pointing this out.)

(xvi) (Improve) p200. The proof of 6.11 in the book uses induction on the number of conjugacy
classes in the set H′ to establish the result for all conjugacy classes. Of course, it should be
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assumed that all of the members of H′ are saturated, and then prove that some class not in
the set is saturated, thus showing that every set of classes consists of saturated members.

The inductive setup is a bit rushed, and so the intention might not have been clear. One
can also assume that there is a non-saturated class, take a minimal such one, then derive a
contradiction.

(xvii) (Improve) p201, proof of 6.16. In the second paragraph, I prove that Q is saturated in
E , not in F . Since Q consists of subgroups that are not centric, and F is generated by
automorphisms of centric subgroups, every F-map between members of Q is an E-map, and
so the two statements are the same.

One also should use the proof of 6.9, rather than the statement. In the situation of 6.16 we are
inductively saturated, not saturated, so 6.9 technically does not apply. Generally, inductively
saturated and saturated fusion systems behave the same, but of course the distinction should
be made.

(Thanks to Kasper Andersen for pointing this out.)

(xviii) (Typo) p224, Theorem 7.21, then W (P ) ⩽ FP (G) should be W (P ) ⊴ FP (G).

(Thanks to Benjamin Sambale.)

(xix) (Typo) p238, in Proposition 7.48 R should be a normal subgroup of P .

(Thanks to George Glauberman for pointing this out.)

(xx) (Typo) p253, Example 7.63, because of the conventions chosen for bisets here, the twisted
diagonal subgroup should actually be {(x−1, xϕ) : x ∈ K}. (This is because we have to place
an inverse somewhere to turn left actions into right actions, and I chose to put it there.)

(Thanks to George Glauberman for pointing this out.)

(xxi) (Typo) p256, line 2, ‘left P -action’ should be ‘left G-action’.

(Thanks to George Glauberman for pointing this out.)

(xxii) (Improve) p265, last line of the proof of Lemma 7.79. What is written is wrong: what is meant
is, as Q ranges over all such subgroups, we generate foc(F), and so W controls transfer.

(Thanks to George Glauberman for pointing this out.)

(xxiii) (Error) p266, just before Corollary 7.82, I write that K∞ controls transfer for all odd primes,
whereas it’s only known for p ⩾ 5. This is stated correctly earlier on the page, and in Corollary
7.82 itself. (As far as I know, it is currently unknown whether K∞ and K∞ control transfer
for p = 3, even using the classification of the finite simple groups.)
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(xxiv) (Error) p272, Lemma 8.4(iv), this should be that E is normal in F if it is normal in Ē , not if
and only if. Indeed, Example 8.18 states that the ‘only if’ side does not hold, and Corollary
8.19 gives one situation in which the ‘if and only if’ does hold.

(Thanks to Bob Oliver for pointing this out.)

(xxv) (Error) p280, Example 8.20. Instead of V ⋊ (H1 ×H2), which doesn’t exist, one should take
two copies of V ⋊H, G = (V1 ⋊H1) × (V2 ⋊H2), set Gi = ⟨V1, V2, Hi⟩ ⊴ G, and note that
again Ei = FQi(Gi) have intersection E lying on V1 × V2, with automorphism group S5 × S5.
The two maximal p′-subgroups we take are now C3 × C3 and C5 × C5.

(Thanks to Gernot Stroth for pointing out the error in the example.)

(xxvi) (Extra) p349/350, Conjecture 9.44 has been solved by Andy Chermak, and the translation of
his proof into obstruction theory by Bob Oliver also solves Conjecture 9.45. Conjecture 9.49
is still open, however.
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