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a b s t r a c t

Recall that an algebraic module is a KG-module that satisfies a polynomial with integer
coefficients, with addition and multiplication given by the direct sum and tensor product.
In this article we prove that non-periodic algebraic modules are very rare, and that if the
complexity of an algebraic module is at least 3, then it is the only algebraic module on
its component of the (stable) Auslander–Reiten quiver. For dihedral 2-groups, we also
show that there is at most one algebraic module on each component of the (stable)
Auslander–Reiten quiver. We include a strong conjecture on the relationship between
periodicity and algebraicity.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Trying to decompose the tensor product of two (even simple) modules is, in general, a hopeless proposition. In some
cases it might be possible to have some control over which summands can appear; following Alperin in [1], we define a
module to be algebraic if it satisfies a polynomial with integer coefficients, where addition and multiplication are given by
the direct sum and the tensor product. It is clear that a module M is algebraic if and only if there are only finitely many
isomorphism types of indecomposable summand in the collection of modules M⊗n for all n ≥ 0. Examples include all
projective modules, more generally all trivial source modules, all simple modules for p-soluble groups [11], and all simple
modules in characteristic 2 for groups with abelian Sylow 2-subgroups [8].

In this articlewewill produce results on how the concept of algebraicmodules can be related to that of theHeller operator
Ω , and how some strong results can be achieved concerning algebraic modules on the Auslander–Reiten quiver.

Theorem A. Let Γ be a component of the stable Auslander–Reiten quiver Γs(KG). Suppose that the complexity of modules on Γ

is at least 3. (In this case, Γ has tree class A∞.) Then Γ contains at most one algebraic module, and such a module lies on the end
of Γ .

Theorem B. Let M be a module for a finite group G.

(i) If M is algebraic and periodic then Ω i(M) is algebraic for any i ∈ Z.
(ii) If M is non-periodic, then atmost one of themodulesΩ i(M) is algebraic, and ifM is self-dual and one of theΩ i(M) is algebraic,

then it is M that is algebraic.

Furthermore, all possibilities allowed by this theorem do occur.

These two theorems broadly say that non-periodic algebraic modules are ‘rare’; Theorem B is useful in proving that
specific modules are non-algebraic, and Theorem A tells us where many algebraic modules lie on the Auslander–Reiten
quiver. (Applying this to p-soluble groups yields the statement that simple modules of complexity at least 3 for p-soluble
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groups lie at the ends of their Auslander–Reiten components, which agrees with [13, Corollary 2.2]. For groups of Lie type
in defining characteristic the same result is known [14].)

The next theorem appears technical, and we will single out two special cases as corollaries to the theorem.

Theorem C. Let K be a field of characteristic p, and let G be a finite group. Let M be an indecomposable, algebraic module, and
suppose that there is a subgroup Q , not containing a vertex of M, such that M ↓Q is non-periodic. Then no other module on the
same component of Γs(KG) as M is algebraic.

In this case, the hypotheses mean that M belongs to a wild block, and hence lies on a component of Γs(KG) of type A∞

by [10], and we also show thatM lies at the end of this component.
The first corollary is Theorem A itself, and the second is the following.

Corollary D. Let K be a field of characteristic p and let G be a finite group whose Sylow p-subgroups are neither tame nor
isomorphic to Q = Cp × Cp. Let M be a non-periodic indecomposable KG-module whose dimension is prime to p. If M is algebraic,
then no other module on the same component of Γs(KG) is algebraic.

In the case of the group Cp × Cp, little is known. However, conjecturally there is a strong link between periodicity and
whether a module is algebraic.

Conjecture E. Let K be a finite field of characteristic p, and let G be the group Cp × Cp. Let M be an absolutely indecomposable
module such that dimM is divisible by p. Then M is algebraic if and only if it is periodic.

The reason behind the presence of a finite field is that it does not appear clear if it is merely the dimensions of
indecomposable summands of powers of the moduleM that are bounded, rather than their coming from a finite list. In the
case where the field is finite, both concepts coincide. We will provide our evidence for this conjecture in the final section.

For dihedral 2-groups, a similar conclusion to Theorem A can be reached.

Theorem F. Let G be a dihedral 2-group, and let Γ be a component of the stable Auslander–Reiten quiver consisting of non-
periodic modules. Then Γ contains at most one algebraic module.

This result extends [3, Theorem 3.4] to components containing even-dimensional modules. In the components with
odd-dimensional modules, there are no algebraic modules except for the trivial module, whereas there are many even-
dimensional, non-periodic, algebraic modules.

There are examples of components of Auslander–Reiten quivers that contain more than one algebraic module, although
currently these are only known for blocks with either a Klein four – we denote this group by V4 – or semidihedral defect
group. The author believes that only components of tree class D∞ or Ã12 can contain more than one algebraic module, but a
proof is not forthcoming.

The structure of this article is simple: in the following section the preliminary results needed on algebraic modules are
collated. In the short succeeding section, Theorem B is proved, and in the section after that we prove Theorem C. The next
two sections deal with dihedral groups, and justify our claims concerning blocks with a Klein four and semidihedral defect
group. The final section contains the aforementioned evidence behind Conjecture E.

Our notation is largely standard: K will denote a field of characteristic p, we write M | N if M is isomorphic to a direct
summand of N , and we write GF(q) for the finite field with q elements. The Heller operator (or syzygy functor) Ω is the
functor taking a moduleM to the kernel of the surjective map from the projective cover ofM ontoM itself, and a module is
periodic if some power of Ω is the identity on the module. Wewrite Ω0(M) for the maximal projective-free summand ofM .

2. Preliminaries

In this section we will describe the preliminary results on algebraic modules, together with a result on tensor products.
We start with algebraic modules, and the following lemma is easy.

Lemma 2.1 ([12, Section II.5]). Let M = M1 ⊕ M2 be a KG-module, and suppose that H1 ≤ G ≤ H2.

(i) M is algebraic if and only if M1 and M2 are algebraic.
(ii) The module M1 ⊗ M2 is algebraic if M1 and M2 are algebraic.
(iii) The modules M1 ↓H1

and M1 ↑
H2 are algebraic if M1 is algebraic.

An easy corollary of this lemma is that an indecomposable module is algebraic if and only if its source is.
We also need the fact that a module is algebraic if and only if it is algebraic in the stable module category.

Proposition 2.2. Let I be an ideal of algebraic modules in the Green ring a(KG), and let M be a KG-module. Then M is algebraic
in a(KG) if and only if M + I is algebraic in a(KG)/I. In particular, if P denotes the ideal consisting of all projective modules, then
a KG-module M is algebraic if and only if M + P is algebraic.
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Proof. Suppose that M is algebraic. Then M satisfies some polynomial in the Green ring, and therefore its coset in any
quotient satisfies this polynomial as well. Conversely, suppose thatM+I satisfies some polynomial in the quotient a(KG)/I.
Thus −

αi(M + I)i = I.

This implies that, since (M + I)i = M⊗i
+ I, then−

αiM⊗i
∈ I,

which consists of algebraic modules. Hence there is some polynomial involving onlyM witnessing the algebraicity ofM . �

In fact, one can extend the ideal P to one containing not only the projective modules but all modules of cyclic vertex.
Since we are relating tensor products and the Heller operator, we need the next well-known lemma. (See, for example,

Corollary 3.1.6 from [6].)

Lemma 2.3. Let M and N be modules. Then

Ω(M ⊗ N) = Ω0(Ω(M) ⊗ N).

We also need two results regarding summands of tensor powers, due to Benson–Carlson and Auslander–Carlson, which
are necessary for the proof of Theorem B. We amalgamate them into a single theorem.

Theorem 2.4. Let G be a finite group and let M and N be absolutely indecomposable KG-modules, where K is a field of
characteristic p.

(i) ([7, Theorem 2.1]) K | M ⊗ N if and only if p - dimM and M ∼= N∗, in which case K ⊕ K is not a summand of M ⊗ N. If
p | dimM, then every summand of M ⊗ N has dimension a multiple of p.

(ii) ([4, Proposition 4.9]) If dimM is a multiple of p, then M ⊕ M is a direct summand of M ⊗ M∗
⊗ M.

Therefore for all KG-modules M, we have M | M ⊗ M∗
⊗ M.

3. Algebraicity and periodicity

In this section we will relate the Heller operator and algebraic modules. All modules are algebraic if G has cyclic Sylow
p-subgroups. If G does not, then there are infinitely many non-algebraic KG-modules.

Proposition 3.1. Let G be a finite group of p-rank at least 2, and let K be a field of characteristic p. Then, for all i ≠ 0, the module
Ω i(K) is not algebraic.

Proof. If G has p-rank 2 or more, then the trivial module, K , is non-periodic. Notice that, modulo projective modules,
Ω i(K)

⊗n
= Ωni(K)

by Lemma 2.3, and so Ωni(K) appears as a summand of the nth tensor power of Ω i(K) for all n ≥ 1, an infinite collection of
summands since K is not periodic. �

If G is not of p-rank 2 and does not have cyclic Sylow p-subgroups, then p = 2 and the Sylow 2-subgroups of G are
generalized quaternion. In this case, by the Brauer–Suzuki theorem, G possesses a normal subgroup Z∗(G) such that G/Z∗(G)
has dihedral Sylow 2-subgroups, and so there are non-algebraic modules for this quotient. Alternatively, a generalized
quaternion 2-group possesses a V4 quotient, and so there are non-algebraic modules for generalized quaternion 2-groups,
whence any indecomposable module for Gwith one of those modules as a source would be non-algebraic.

Now suppose that aKG-moduleM is periodic; in the next proposition,weuse the obvious fact that amoduleM is algebraic
if and only ifM⊗i is algebraic for some i ≥ 1.

Proposition 3.2. Let M be an algebraic periodic module. Then Ω i(M) is algebraic for all i.

Proof. Suppose that Ωn(M) = M . Lemma 2.3 states that

Ω(M ⊗ N) = Ω0(Ω(M) ⊗ N) = Ω0(M ⊗ Ω(N)).

Hence, Ω0(Ω i(M)⊗n) = Ωni(M⊗n) = Ω0(M⊗n), and since M⊗n is algebraic (as M is), the module Ω i(M) is algebraic for all
i (as Ω i(M)⊗n is). �

Both possibilities allowed – that the Ω-translates of M are either all algebraic modules or all non-algebraic modules
– occur in the module category of the quaternion group. Firstly, the trivial module is an algebraic periodic module, and
secondly, since the group V4 has 2-rank 2, the non-trivial Heller translates of the trivial module for that group are non-
algebraic by Proposition 3.1, and so those modules, viewed as modules for the quaternion group, are also non-algebraic. It
should be mentioned that no examples of non-algebraic periodic modules are known if the characteristic of the field is odd.

Now we consider non-periodic modules. Since a module M is non-periodic if and only if M ⊗ M∗ is, we firstly consider
self-dual non-periodic modules, then apply this to the general case.
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Proposition 3.3. Let M be a self-dual non-periodic module. If i ≠ 0 then Ω i(M) is not algebraic.

Proof. Using Lemma 2.3, consider the module

Ω0(Ω i(M) ⊗ Ω i(M) ⊗ Ω i(M)) = Ω3i(M⊗3);

as M is a summand of M⊗3 (by Theorem 2.4), we see that Ω3i(M) is a summand of

Ω i(M)

⊗3. We can clearly iterate this
procedure to prove that infinitely many different Ω-translates of M lie in tensor powers of Ω i(M) (and these all contain
different indecomposable summands asM is non-periodic) proving that Ω i(M) is non-algebraic, as required. �

Corollary 3.4. Let M be a non-periodic algebraic module. Then no module Ω i(M) for i ≠ 0 is algebraic.

Proof. Suppose that bothM and Ω i(M) are algebraic. Then so isM∗, and therefore so is (by Lemma 2.3)

Ω0(M∗
⊗ Ω i(M)) = Ω i(M ⊗ M∗).

SinceM ⊗ M∗ is self-dual and non-periodic, the module Ω i(M ⊗ M∗) cannot be algebraic, a contradiction. �

Hence for non-periodic modules M , either none of the modules Ω i(M) is algebraic, or exactly one module is, and in the
latter case, if one of the modules is self-dual then this is the algebraic module. In the case of the dihedral 2-groups, there
are non-periodic modulesM such that noΩ i(M) are algebraic, and there are self-dual, non-periodic algebraic modules. This
completes the proof of Theorem B. This theorem has the following corollary, which is useful when computing examples.

Corollary 3.5. Let M be a non-periodic indecomposable module, and suppose that there is some n ≥ 2 such that Ω i(M) or
Ω i(M∗) is a summand of M⊗n for some i ≠ 0. Then the module Ω i(M) is non-algebraic for all i ∈ Z.

Proof. Suppose that Ω i(M) is a summand of M⊗n, for some n ≥ 2 and i ≠ 0. Then, for each j ∈ Z, we have

Ωnj+i(M) | Ω j(M)⊗n,

and since at least one of Ωnj+i(M) and Ω j(M) is non-algebraic, we see that some tensor power of Ω j(M) contains a non-
algebraic summand; hence Ω j(M) is non-algebraic, as required.

Similarly, if Ω i(M∗) ∼= Ω−i(M)∗ is a summand ofM⊗n, then

Ωnj+i(M∗) | Ω j(M)⊗n,

and since Ωnj+i(M∗) ∼= Ω−(nj+i)(M)∗, at least one of Ω j(M) and Ωnj+i(M∗) is non-algebraic, and so Ω j(M) is non-
algebraic. �

4. The Auslander–Reiten quiver

The complexity of a module is a measure of the growth in dimension of a projective resolution for that module; for
the basic properties of complexity, we refer to [5, Proposition 2.2.24]. One important property that we will use is that the
complexity of every module on a particular component of the (stable) Auslander–Reiten quiver is the same. If B is a wild
block, then by a theorem of Erdmann in [10], any component Γ of Γs(B) has tree class A∞. This will be essential in what is
to follow.

To prove Theorem C, we first introduce the concept of an interlaced component of Γs(KG). If Γ is a component and Γ

consists either of non-periodic modules or of modules of even periodicity, then for eachM in Γ , the module Ω(M) does not
lie on Γ . An interlaced component is the union of the component Γ and the component consisting of the Heller translates of
the modules on Γ . The reason for the name will become clear in the next paragraph.

We begin by co-ordinatizing a non-periodic, interlaced component of Γs(KG) of type A∞, which will help immensely in
this section. We co-ordinatize according to the following diagram.

. . .
...

...
...

...
... . .

.

· · · (−2, 2) (−1, 2) (0, 2) (1, 2) (2, 2) · · ·

· · · (−2, 1) (−1, 1) (0, 1) (1, 1) (2, 1) · · ·

· · · (−2, 0) (−1, 0) (0, 0) (1, 0) (2, 0) · · ·

♣♣♣♣♣♣♣♣♣♣♣✰ ✑
✑

✑✑✰

♣♣♣♣♣♣♣♣♣♣✰ ✑
✑

✑✑✰

♣♣♣♣♣♣♣♣♣♣✰ ✑
✑

✑✰◗
◗◗❦

✑
✑

✑✰

♣♣♣♣♣♣♣♣♣♣❦ ♣♣♣♣♣♣♣♣✰
◗

◗
◗◗❦

✑
✑✑✰

♣♣♣♣♣♣♣♣♣♣❦ ♣♣♣♣♣♣♣♣✰
◗

◗
◗◗❦

✑
✑✑✰

♣♣♣♣♣♣♣♣♣♣
♣❦

♣♣♣♣♣♣♣♣♣✰♣♣♣♣♣♣♣♣♣❦ ♣♣♣♣♣♣♣♣♣✰
◗

◗◗❦

✑
✑✑✰

♣♣♣♣♣♣♣♣❦ ♣♣♣♣♣♣♣♣✰
◗

◗◗❦

✑
✑✑✰

♣♣♣♣♣♣♣♣❦ ♣♣♣♣♣♣♣♣✰
◗

◗
◗❦

✑
✑

✑✰◗
◗

◗❦ ♣♣♣♣♣♣♣♣❦ ◗
◗◗❦ ♣♣♣♣♣♣♣♣❦ ◗

◗◗❦ ♣♣♣♣♣♣♣♣♣❦
(Note that this quiver consists of interlaced ‘diamonds’; when we refer to a diamond of an interlaced component, we mean
such a collection of four vertices.)

For the rest of this section, Γ will denote an interlaced component of Γs(KG). WriteM(i,j) for the indecomposablemodule
in the (i, j) position onΓ . (Of course, while j is determined, there is choice overwhich position onΓ is (0, 0); wewill assume
that such a choice is made.)

We recall the following easy result.
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Lemma 4.1 ([6, Proposition 4.12.10]). Let M be an indecomposable module with vertex Q , and suppose that H is a subgroup of
G not containing any conjugate of Q . Then the Auslander–Reiten sequence terminating in M splits upon restriction to H.

Notice that, for our interlaced component Γ and modules M(i,j), this result becomes the statement that if H does not
contain a vertex ofM(i,j), then for i > 0,

M(i−1,j) ↓H ⊕M(i+1,j) ↓H
∼= M(i,j+1) ↓H ⊕M(i,j−1) ↓H .

In particular, this implies that if themodules attached to three of the four vertices in a diamond ofΓ have known restrictions
to H , the fourth is uniquely determined.

We also need a slight extension to the result that the complexity of every module on the same component is the same.

Lemma 4.2. Let Γ be an interlaced component of the Auslander–Reiten quiver, and let H be a subgroup of G. Then for all M on
Γ , the complexity of M ↓H is the same.

Proof. LetM be a module on Γ such thatM ↓H has the smallest complexity, say n. Let

0 → Ω2(M) → N → M → 0

be the almost-split sequence terminating in M . Restricting this sequence to H yields a short exact sequence whose terms
are KH-modules. Since cx(M ↓H) = cx(Ω(M) ↓H), and for any short exact sequence the largest two complexities of the
terms are equal, the complexity of N ↓H is equal to that of M ↓H , by the minimal choice of M . Thus if L is connected to any
Ω i(M), then cx(L ↓H) = n. This holds for any module M such that cx(M ↓H) = n, so the restrictions of all modules on the
component of Γs(KG) containingM have the same complexity. �

This can be used to prove the next theorem, which is Theorem C from the Introduction.

Theorem 4.3. Let G be a finite group and let Γ be an interlaced component of Γs(KG). Suppose that P is a p-subgroup such that
P does not contain a vertex of any module on Γ , and that for some M on Γ , the restriction of M to P is non-periodic. Then Γ

contains at most one algebraic module and such a module lies at the end of Γ ; i.e., it is M(i,0) for some i ∈ Z.

Proof. Since P does not contain a vertex of any module on Γ , any almost-split sequence involving terms on Γ splits upon
restriction to P . We claim that

M(i,j) ↓P=

j
h=0

M(i−j+2h,0) ↓P=

j
h=0

Ω−(i−j+2h)M(0,0) ↓P .

By the remarks after Lemma 4.1, if we know M(i,j) ↓P for j = 0 and j = 1, we can uniquely determine all M(i,j) ↓P , since
three of the four vertices on each diamond will have known restrictions. Also, the second row can be determined from the
first row, because of the fact thatM(i+1,1) ↓P= M(i,0) ↓P ⊕M(i+2,0) ↓P by Lemma 4.1.

To prove the claim, we firstly note that for j = 0 and j = 1 this formula holds. Since we know that the restrictions of all
M(i,j) are uniquely determined by the first two rows, we simply have to show that this formula obeys the rule that, for each
diamond, the sum of the restrictions of the modules at the top and bottom vertices is equal to the sum of the restrictions of
the modules at the left and right vertices; in other words, that

M(i−1,j) ↓P ⊕M(i+1,j) ↓P= M(i,j−1) ↓P ⊕M(i,j+1) ↓P .

This is true, as the left-hand side of the formula is

j
h=0

M(i−j+2h−1,0) ↓P ⊕

j
h=0

M(i−j+2h+1,0) ↓P ,

and the right-hand side of the formula is

j−1
h=0

M(i−j+2h+1,0) ↓P ⊕

j+1
h=0

M(i−j+2h−1,0) ↓P ,

and the two are easily seen to be the same.
Since there is some moduleM(i,j) that has non-periodic restriction to P , we see thatM(0,0) is non-periodic by Lemma 4.2.

If X is some non-periodic summand of M(0,0) ↓P , then by Theorem B at most one of the modules Ω i(X) is algebraic, and
henceM(i,j) ↓P can only be algebraic if j = 0. By Theorem B again, this means that there is at most one algebraic module, as
required. �
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Theorem 4.3 can be used to produce results such as Theorem A and Corollary D. In the first case, if the complexity of
a module M is at least 3, then the vertex P of M is of p-rank 3. By the Alperin–Evens theorem [2], there is an elementary
abelian subgroup Q of P such that M ↓Q has complexity 3, and hence for any subgroup R of Q of index p, the module M ↓R
is non-periodic, yielding an appropriate subgroup.

To prove Corollary D, recall that amodule of dimension prime to p has a Sylow p-subgroup P as a vertex. If P has p-rank at
least 3, then the result is true by Theorem A, so G has p-rank 2. LetM denote a module on Γ . By the Alperin–Evens theorem,
there is a subgroup Q of P isomorphic with Cp × Cp, such that the complexity of M ↓Q is 2, and so Q is a subgroup that
satisfies the conditions of Theorem 4.3.

In general it appears difficult to prove a corresponding theorem to TheoremA for arbitrary A∞-components of complexity
2. Theorem4.3 places significant restrictions on apossible counterexample to the statement that nonon-periodic component
of Γs(KG) from a wild block contains more than one algebraic module.

5. Preliminaries on dihedral 2-groups

In this section, let K be a field of characteristic 2. In [15], Ringel classifies the indecomposable modules for the dihedral
2-groups, and splits them into two collections: the string modules and the band modules. The band modules are all periodic,
and so we will mostly ignore them in what follows. We assume that the reader is familiar with the construction of string
modules, as given in [15], and we give one example to fix notation.

Let D4q = ⟨x, y : x2 = y2 = (xy)2q = 1⟩ be the dihedral group of order 4q. Write W for the set of strings of alternating
a±1 and b±1. We call a symbol a or b a direct letter and a symbol a−1 or b−1 an inverse letter. Let Wq denote the subset of W

consisting of words in which no instance of (ab)q, (ba)q, (a−1b−1)q, or (b−1a−1)q occurs. In [15], Ringel associates with each
word in Wq a representation M(w) : D4q → GLn(2) of D4q; we will use the example w = ab−1aba−1, and give matrices α
and β such that x → α and y → β is M(w). Our modules are right modules, and so the two matrices α and β for M(w)
acting on the space V with basis {v1, . . . , v6} are given by

α =


1 0 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1

 , β =


1 0 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1

 .

There are three important points to be made about the representations M(w): firstly, they are always indecomposable
representations; and secondly,M(w) andM(w′) are isomorphic if and only ifw′

= w orw′
= w−1. (Byw−1 we simplymean

theword got by swapping awith a−1 and bwith b−1 inw, and then reversingw.) This latter point is crucial, andwewill often
blur the distinction between the words w and w−1. The last important point is that any odd-dimensional indecomposable
module is a string module for some string of even length.

We need to briefly consider the band modules, to prove an easy fact about them: namely that for M a band module, the
modules M ↓

⟨x⟩ and M ↓
⟨y⟩ are both projective. We will not recall the definition of band modules here, but refer to [15] for

their construction. We will use the definition employed there.

Lemma 5.1. Let M be an indecomposable KD4q-module.

(i) If M is odd-dimensional then M ↓
⟨x⟩ and M ↓

⟨y⟩ are both the sum of the trivial module and projective modules.
(ii) If M is an even-dimensional string module then either M ↓

⟨x⟩ is projective and M ↓
⟨y⟩ is the direct sum of two copies of K

and a projective, or vice versa.
(iii) If M is a band module, then both M ↓

⟨x⟩ and M ↓
⟨y⟩ are projective.

Proof. Let w be a word of even length 2n, beginning with a±1 say, and let vi denote the standard basis, for 1 ≤ i ≤ 2n + 1.
Then the submodules of M ↓

⟨x⟩ generated by vi and vi+1 for 1 ≤ i < 2n + 1 and i odd form copies of projective modules,
which therefore split off. HenceM ↓

⟨x⟩ is the sum of n projective modules and a trivial module. The same occurs forM ↓
⟨y⟩,

proving (i).
IfM is an even-dimensional string module then it is defined by a word w of odd length 2n − 1, with first and last letters

a±1 without loss of generality. Then M ↓
⟨y⟩ has n − 1 submodules ⟨vi, vi+1⟩ (for i even) isomorphic with the projective

indecomposable K⟨y⟩-module, and two trivial submodules, ⟨v1⟩ and ⟨v2n⟩. Similarly, ⟨vi, vi+1⟩ is a projective submodule of
M ↓

⟨x⟩ for each odd i, and soM ↓
⟨x⟩ is projective, proving (ii).

It remains to discuss the band modules. By cycling, we may assume that the word begins with a, and then we again see
easily that the matrix corresponding to the action of y on M is a sum of projective modules, and this is true for any band
module for a word beginning with a±1. However, by cycling the word we find thatM is isomorphic with a band module for
a word beginning b±1, and henceM ↓

⟨x⟩ must also be projective, as required. �

Lemma 5.1(i) allows us to define a group structure on the set of all odd-dimensional indecomposablemodules, and in [3],
Archer studies this group, in particular proving Theorem F for this collection of modules. Therefore we need to understand
even-dimensional string modules.
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Lemma 5.2. Let w, w′
∈ W be words, and suppose that ℓ(w) = 2n − 1 and ℓ(w′) = 2m − 1 are odd. Write M = M(w) and

M ′
= M(w′).

(i) The word w begins with a±1 if and only if it ends with a±1.
(ii) Ifw begins with a±1, then the restriction M ↓

⟨x⟩ is projective, and the restriction M ↓
⟨y⟩ is the sum of a 2(m−1)-dimensional

projective module and two trivial modules.
(iii) If w begins with a±1 and w′ begins with b±1, then M ⊗ M ′ contains no summands that are string modules.
(iv) If both w and w′ begin with a±1, then M ⊗ M ′ contains exactly two even-dimensional string module summands.

Proof. (i) is obvious, and (ii) follows easily from Lemma 5.1(ii). The proof of (iii) comes from the fact that ifM ⊗M ′ contains
a string module, there must be a trivial summand of either (M ⊗ M ′) ↓

⟨x⟩ or (M ⊗ M ′) ↓
⟨y⟩, which is impossible since both

M ↓
⟨x⟩ andM ′

↓
⟨y⟩ are projective. The proof of (iv) is similar: ifM andM ′ both begin with a±1, then bothM ↓

⟨y⟩ andM ′
↓

⟨y⟩
contain two trivial summands, proving that (M ⊗ M ′) ↓

⟨y⟩ contains four trivial summands. Since band modules restrict
to projective modules, and no odd-dimensional summand can occur by Theorem 2.4, the tensor product must contain two
even-dimensional string modules as summands. �

Write z = (xy)q for the non-trivial central element, and write X = ⟨x, z⟩ and Y = ⟨y, z⟩. By the Alperin–Evens theorem
[2], if M is a non-periodic module, either M ↓X or M ↓Y is non-periodic (since X and Y are representatives for the two
conjugacy classes of V4 subgroup).

We will consider even-dimensional string modules from now on, so letw be a word of odd length. Suppose, without loss
of generality, that w begins with a±1, so that M ↓

⟨x⟩ is projective and M ↓
⟨y⟩ is non-projective. Since ⟨x⟩ has index 2 in X , it

must be true thatM ↓X is periodic, and soM ↓Y is non-periodic. It is well known (and a consequence of the construction of
the string modules) that the only non-periodic modules for V4 are the Heller translates of the trivial module. It can easily be
seen thatM ↓Y must be the sum of two odd-dimensional modules Ω r(K) ⊕ Ω s(K) and periodic modules. If

Ω r(K) ⊕ Ω s(K) | M ↓Y ,

then the pair [r, s] will be called the signature of the moduleM . We will abuse notation slightly and also refer to [r, s] as the
signature of the corresponding vertex of the Auslander–Reiten quiver.

We now need to understand the Auslander–Reiten quiver for D4q. In order to describe the action ofΩ2 on stringmodules
effectively, we introduce two operations, Lq and Rq, on the set of all words Wq. Write A = (ab)q−1a and B = (ba)q−1b. The
operator Lq is defined by adding or removing a string at the start of the word w, and Rq is the same but at the end of the
word.

If the word w starts with Ab−1 or Ba−1, then wLq is w with this portion removed. If neither of these is present, then we
add either A−1b or B−1a tow to getwLq, whichever gives an element of Wq. Similarly, ifw ends with aB−1 or bA−1, thenwRq

is w with this portion removed. If neither of these is present, then we add either a−1B or b−1A to w to get wRq, whichever
gives a word in Wq. The operators Lq and Rq commute, and are bijections on Wq.

The square of the Heller operator Ω2 is given by

Ω2(M(w)) = M(wLqRq),

and the almost-split sequences on string modules are given by

0 → M(wLqRq) → M(wLq) ⊕ M(wRq) → M(w) → 0,

unless w = AB−1, in which case the almost-split sequence is

0 → M(wLqRq) → M(wLq) ⊕ M(wRq) ⊕ P (K) → M(w) → 0,

where P (K) denotes the unique projective indecomposable module for KD4q. (See [5, Appendix].) This describes the
Auslander–Reiten quiver, and it looks as follows.

M(wR2
q) M(wL−1

q Rq) M(wL−2
q )

M(wRq) M(wL−1
q )

M(wLqRq) M(w) M(wL−1
q R−1

q )

M(wLq) M(wR−1
q )

M(wL2q) M(wLqR−1
q ) M(wR−2

q )

❍❍❍❥
❍❍❍❥

❍❍
❍❍❥

✟
✟✟✯

❍❍❍❥

✟✟✟✯

❍❍❍❥

✟✟✟✯

❍❍❍❥

✟✟✟✯

❍❍❍❥

✟
✟✟✟✯

❍❍❍❥

✟
✟✟✯

✟✟✟✯
✟✟✟✯
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(In this diagram, the Ω2 operation is a functor moving from right to left, the map M(w) → M(wLq) is a function moving
down and to the left, and the mapM(w) → M(wRq) moves up and to the left.)

Considering a component Γ of the stable Auslander–Reiten quiver Γs(KD4q), we will continue to use our previous
notation, and refer to the signature of a vertex, as well as the signature of a module.

6. The proof of Theorem F

We continue our assumption that K is a field of characteristic 2, and consider the dihedral group D4q of order at least 8.
As we have mentioned, in [3, Theorem 3.4], Archer proves that there are no non-trivial, indecomposable algebraic modules
of odd dimension. Thus Theorem F reduces to proving the result for components of Γs(KD4q) containing even-dimensional
string modules. It suffices to prove the following result.
Theorem 6.1. Let Γ be a component of Γs(KD4q) containing non-periodic modules of even dimension. Then there is a single
module on Γ with signature [0, 0].

We will prove Theorem 6.1 in a sequence of lemmas. We begin with the following observation.
Lemma 6.2. Let H = V4, and let x be a non-identity element of H. Let i be a non-positive integer, and let M = Ω i(K). Then the
H-fixed points of M are equal to the x-fixed points of M.
Proof. It is easy to see that the socle of M is of dimension i + 1. We simply note that M ↓

⟨x⟩ is the sum of K and i copies of
the free module, and so its socle has dimension i + 1 also. Thus the lemma must hold. �

Using this lemma, we can prove a crucial result about the summands ofM(w) ↓Y under a certain condition onw. (Notice
that, if M is a KG-module and H is a subgroup of G, then v ∈ M being an H-fixed point is equivalent to ⟨v⟩ being a trivial
submodule ofM ↓H .)

Lemma 6.3. Suppose that M = M(w) is an even-dimensional string module, and suppose that w begins with a−1 or ends with
a. Finally, suppose that the odd-dimensional summands of M ↓Y are isomorphic with Ω i(K) and Ω j(K), where both i and j are
non-positive. Then (at least) one of i and j is 0.
Proof. Since the string modules are defined over GF(2), we may assume that K = GF(2) in this proof. If w ends with a,
then w−1 begins with a−1; since M(w) = M(w−1), we may assume that w begins with an inverse letter. Because of this,
the subspace U = ⟨vi : i ≥ 2⟩ is a D4q-submodule of M (where the vi are the standard basis used in the construction of the
string modules). Thus if there exists a Y -fixed point (i.e., a simple submodule ofM ↓Y )

V = v1 +

−
i∈I

vi,

then ⟨V ⟩ is a summand ofM ↓Y isomorphic with K , as required. Let N1 and N2 denote the two odd-dimensional summands
ofM ↓Y . By Lemma 6.2, it suffices to show that there is such a point V fixed by y lying inside one of the Ni.

We will now calculate the possibilities for a trivial summand of M ↓
⟨y⟩. Since ⟨v2, . . . , vn−1⟩ ↓

⟨y⟩ (where dimM = n) is
a free module, if α =

∑
j∈J vj is a fixed point ofM ↓

⟨y⟩ with a complement, then either 1 or n lies in J . SinceM ↓
⟨y⟩ contains

two trivial modules, we easily see that the fixed points with complements are given by

v1 +

−
j∈J

vj, vn +

−
j∈J

vj, v1 + vn +

−
j∈J

vj,

where J ⊆ {2, . . . , n−1}. Since two of these Y -fixed points are of the form v1 +u for some u ∈ U , at least one of these must
lie inside one of the Ni, as required. �

As a remark, by taking duals, one sees that ifM = M(w) and w begins with a or ends with a−1, and the odd-dimensional
summands ofM ↓Y are isomorphic with Ω i(K) and Ω j(K) for i, j ≥ 0, then (at least) one of i and j is 0.

To provide the proof of Theorem 6.1, wemust analyze the components of the Auslander–Reiten quiver consisting of non-
periodic, even-dimensional string modules. To do this, letM denote such an indecomposable module, and suppose without
loss of generality thatM = M(w) where w begins with a±1. Denote by Γ the component of Γs(KD4q) on whichM lies.

Wewill again co-ordinatize the componentΓ : write (0, 0) for the co-ordinates of the vertex corresponding toM(w), and
(i, j) for the vertex corresponding toM(wLiqR

j
q). Then the portion of Γ around the moduleM is co-ordinatized as follows.

(0, 2) (−1, 1) (−2, 0)

(0, 1) (−1, 0)

(1, 1) (0, 0) (−1, −1)

(1, 0) (0, −1)

(2, 0) (1, −1) (0, −2)

❍❍❍❥
❍

❍❍❥

❍❍❍❥

✟✟✟✯

❍
❍❍❥

✟
✟✟✯

❍❍❍❥

✟
✟✟✯

❍❍❍❥

✟
✟✟✯

❍
❍❍❥

✟✟✟✯

❍❍❍❥

✟✟✟✯

✟✟✟✯ ✟✟✟✯
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We get a ‘diamond rule’ for the diamonds of the Auslander–Reiten quiver using Lemma 4.1, so that ifM(i,j) does not have
vertex contained within Y , then

M(i,j) ↓Y ⊕M(i+1,j+1) ↓Y= M(i,j+1) ↓Y ⊕M(i+1,j) ↓Y .

Suppose that no module on Γ has vertex Y . (Since every proper subgroup of Y is cyclic, if N is a non-periodic
indecomposable module with vertex contained within Y , it has vertex Y .) If the signatures are known for two adjacent
rows of Γ , then they can be calculated for all rows, using the diamond rule. Since two rows (say rows α and α + 1) are
completely known, the rows α + 2 and α − 1 can be calculated, since every point on either of those rows lies on a diamond
whose other three corners lie in the rows α and α + 1. This process can be iterated to get the signatures for all rows.

This information makes the proof of the next proposition possible.

Proposition 6.4. Let M(w) = M(0,0) be a non-periodic, even-dimensional string module (for some word w), and suppose that
M is algebraic. Suppose in addition that the component Γ of Γs(KD4q) containing M contains no module with vertex Y . Let M(i,j)

denote the indecomposable module M(wLiqR
j
q). Then exactly one of the following three possibilities occurs:

(i) the signature of every (i, j) on Γ is [2i, 2j] (or [2j, 2i]);
(ii) the signature of every (i, j) on Γ is [2i, 2i]; and
(iii) the signature of every (i, j) on Γ is [2j, 2j].

(We will see that (ii) and (iii) do not occur later.)

Proof. Firstly, we note that all three potential signatures satisfy the diamond rule that the sum of the signatures of (i, j) and
(i − 1, j − 1) is equal to the sum of the signatures of (i − 1, j) and (i, j − 1). We need to check that these three possibilities
are the only ones, and by the remarks before the proposition it suffices to check that these are the only three possibilities
for the two rows with vertices (i, i) and (i, i + 1) in the Auslander–Reiten quiver.

Since the signature of (0, 0) is [0, 0], the signature of (i, i) must be [2i, 2i], since

M(i,i) = Ω2i(M(0,0)).

Since no module on Γ has vertex contained within Y , the diamond rule for the diamond containing (0, 0) and (1, 1)
becomes

M(0,0) ↓Y ⊕M(1,1) ↓Y= M(0,1) ↓Y ⊕M(1,0) ↓Y .

The signatures of (0, 0) and (1, 1) are [0, 0] and [2, 2] respectively, and so the signature of (0, 1) is one of [0, 2] (or
equivalently [2, 0]), [0, 0] or [2, 2]. Thus the signatures of (i, i + 1) are one of [2i, 2i + 2], [2i, 2i] or [2i + 2, 2i + 2], which
correspond to (i), (ii) and (iii) respectively in the proposition. (Here we use the fact that the signature of a Heller translate is
the Heller translate of the signature.) �

In fact, the same result holds for the two components containing non-periodic modules with vertex Y , but it requires
more work.

LetM be an indecomposablemodulewith vertex Y . IfM is non-periodic, then the source S ofM must also be non-periodic.
Thus S = Ω i(K) for some i ∈ Z. Therefore themodulesΩ i(KY ) ↑

D4q (where KY denotes the trivial module for Y ) are the only
non-periodic indecomposable modules with vertex Y . (These modules are indecomposable by Green’s indecomposability
criterion [6, Theorem 3.13.3].) The module (KY ) ↑

D4q is algebraic, whereas all the others are not.
Webegin by considering the component containingM(0,0) = Ω(KY ) ↑

D4q . This cannot contain algebraicmodules, because
it can have no vertex with signature [0, 0]. To see this, notice firstly that the signature of (0, 0) is [1, 1]. We analyze the
diamond with bottom vertex (0, 0): write [r, s] for the signature of the top vertex, namely (−1, 1), and write [p, q] for the
signature of the vertex (0, 1) on the left of the diamond. Since the vertex ofM(−1,0) is not contained in Y , we may apply the
diamond rule by Lemma 4.1, and this gives

[1, 1] ∪ [r, s] = [p, q] ∪ [p − 2, q − 2].

We see that p, q, r and s are all odd. Thus all signatures of vertices (i, i + 1) (i.e., the row above that containing M(0,0)) are a
pair of odd numbers. Since all diamonds not involving those modules with vertex Y obey the diamond rule – their vertices
are not contained in Y , so Lemma 4.1 applies – we see that all modules above the horizontal line containing M(0,0) have
signature a pair of odd numbers. The same analysis holds for the lower half of the quiver, and so our claim holds.

The other component with modules of vertex Y , namely that containing M(0,0) = (KY ) ↑
D4q , does contain an algebraic

module. Suppose that the signatures of the vertices on the horizontal line containing (0, 0), and those on the lines directly
above and below this are known. (Thus the signatures for all vertices (i, i), (i+1, i) and (i−1, i) are known.) Then we claim
that the signatures for all vertices can be deduced. This is true for the same reason as before, since all diamonds containing
at most one point from the line of vertices (i, i) obey the diamond rule.

This will enable us to prove the next proposition easily.

Proposition 6.5. Let M = KY ↑
D4q , where KY denotes the trivial module for Y , and write M = M(w) for the appropriate word

w. Let M(i,j) denote the indecomposable module M(wLiqR
j
q). Write [r, s] for the signature of (i, j). Then exactly one of the following

three possibilities occurs:
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(i) the signature of every (i, j) on Γ is [2i, 2j] (or [2j, 2i]);
(ii) the signature of every (i, j) on Γ is [2i, 2i]; and
(iii) the signature of every (i, j) on Γ is [2j, 2j].

(We will see that (ii) and (iii) do not occur later.)

Proof. Firstly note that the three signature patterns obey the diamond rule everywhere, so they certainly obey it for those
diamonds that split upon restriction to Y . Thus we need only show that these three possibilities are the only ones. By the
preceding remarks, it suffices to show this for the horizontal lines containing the vertices (i, i), (i, i − 1) and (i − 1, i).

We analyze the diamond with bottom vertex (0, 0): write [r, s] for the signature of the top vertex, namely (−1, 1), and
write [p, q] for the signature of the vertex (0, 1) on the left of the diamond. Then the diamond rule gives

[0, 0] ∪ [r, s] = [p, q] ∪ [p − 2, q − 2],

and so p and q are either both 0, both 2, or one is 0 and one is 2. In any case, this uniquely determines all modules on the
horizontal line containing the vertex (0, 1), and they are as claimed in the proposition.We need to determine the signatures
of the vertices (i, i − 1) from these.

Suppose that the signature of M(0,1) is [0, 0]. Then the dual of M(0,1) must also have signature [0, 0]. The almost-split
sequence terminating inM(0,0) is given by

0 → M(1,1) → M(0,1) ⊕ M(1,0) → M(0,0) → 0,

and sinceM(0,0) is self-dual, the dual of this sequence is the (almost-split) sequence

0 → M(0,0) → M(0,−1) ⊕ M(−1,0) → M(−1,−1) → 0.

Thus either M∗

(0,1) = M(0,−1) or M∗

(0,1) = M(−1,0). However, the second possibility cannot occur, since we know that the
signature of (−1, 0) is [−2, −2], and thus

M∗

(0,1) = M(0,−1).

Hence the signature of (0, −1) is [0, 0], and we have proved that the three lines containing the vertices (i, i), (i, i − 1) and
(i − 1, i) have signatures obeying possibility (ii).

Now suppose that the signature of M(0,1) is [2, 2]. Then M∗

(0,1)
≁= M(−1,0) since the signature of M(−1,0) is [0, 0]. Thus we

again have

M∗

(0,1) = M(0,−1).

Since the signature of (0, 1) is [2, 2], the signature of (0, −1) is [−2, −2], and so we have proved that the three lines
containing the vertices (i, i), (i, i − 1) and (i − 1, i) have signatures obeying possibility (iii).

Finally, suppose that the signature of (0, 1) is [0, 2]. If the signature ofM(0,−1) is not [0, −2], then its dual would have to
beM(0,1), by the same reasoning as the previous two paragraphs. However, this is not possible, and so we have proved that
the three lines containing the vertices (i, i), (i, i − 1) and (i − 1, i) have signatures obeying possibility (i). �

Proof of Theorem 6.1. In the first case of Propositions 6.4 and 6.5, there is a unique vertex on Γ with signature [0, 0],
namely the vertex (0, 0), and soM is indeed the unique algebraic module on Γ . This is in accordance with Theorem 6.1.

In the second case, K ⊕ K | M(wLiq) ↓Y for all i ∈ Z, and

Ω−2(K) ⊕ Ω−2(K) | M(wLiqR
−1
q ) ↓Y .

If i is a suitably large negative number, thenwLiqR
−1
q begins with a−1. This yields a contradiction, since by Lemma 6.3, K must

be a summand ofM(wLiqR
−1
q ) ↓Y .

In the third case, K ⊕ K | M(wRi
q) ↓Y for all i ∈ Z, and so

Ω2(K) ⊕ Ω2(K) | M(wL−1
q Ri

q) ↓Y .

If i is a suitably large negative number, then wL−1
q Ri

q ends with a−1. This yields a contradiction, since by Lemma 6.3, K must
be a summand ofM(wL−1

q Ri
q) ↓Y .

Thus in Propositions 6.4 and 6.5 only the first possibility can occur, and so Theorem 6.1 is proved. �

For blocks with Klein four or semidihedral defect groups, it is easy to construct examples with more than one algebraic
module on a component. Since a block with a Klein four defect group has only one component of non-periodic modules,
the group A4 has three algebraic (as A4 is soluble, and all simple modules for soluble groups are algebraic) simple modules,
each of which has trivial source, and so is non-periodic. In the case of the semidihedral group of order 16, we see that both
the trivial module and the self-dual endo-trivial module of order 2 in the Dade group lie on the same component, and are
non-periodic. Since an endo-trivial module is algebraic if and only if it is of finite order in the Dade group, both of these
modules are algebraic.
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7. Relating algebraicity and periodicity

The results above tell us nothing about the indecomposable modules for Cp × Cp. In this case, there is a very strong
conjecture regarding the relationship between algebraic modules and periodic modules, as given in the Introduction. We
will discuss the computational evidence gathered by the author. We firstly note that neither direction of Conjecture E is
obvious, or indeed even known.

The author has constructed all indecomposable modules for C3 × C3 of dimensions 3 and 6 over GF(3), and for each of
them, has analyzed whether it is algebraic. There are twelve such indecomposable modules of dimension 3, and over two-
hundred absolutely indecomposable modules of dimension 6. The periodic modules are proved to be algebraic simply by
decomposing tensor powers of them. (This incidentally provides hundreds more examples of periodic, algebraic modules.)
The non-periodic indecomposable modules can each be proved to be non-algebraic by Corollary 3.5. This fact might be of
interest, since it might offer a method by which one half of Conjecture E could be proved.

The author has also constructed all of the 5-dimensional modules for C5 ×C5 over GF(5), and is in the process of verifying
this conjecture for these modules.

In addition, in the author’s work on sources of simple modules for sporadic groups [9], many hundreds more modules
have been proved to satisfy the conjecture for C3 × C3 and C5 × C5.

All told, thousands of periodicmodules for Cp×Cp are known to be algebraic, and aswell as the infinitude of non-algebraic,
non-periodic modules provided for by Theorem B, thousands more low-dimensional non-algebraic, non-periodic modules
have been found. (Of course, the non-periodic modules arising from Theorem B have large dimension in general.)

Moving away from the group Cp ×Cp to general groups, if G is a generalized quaternion group, then G possesses periodic,
non-algebraic modules. This is therefore true for any 2-group with a quaternion subgroup, such as the semidihedral groups.
For odd p, however, no periodic, non-algebraic indecomposable modules are known. It would be interesting to find such a
module, if one exists.
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