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Chapter 1

Introduction

This very brief chapter is here in an attempt to give motivation and structure to the rest of

the document.

Theorem 1.1 (Martino–Priddy conjecture) Let G and H be finite groups, with Sylow

p-subgroups P and Q respectively, Then FP (G) ∼= FQ(H) if and only if BG∧p
∼−→BH∧p .

This theorem, conjectured by Martino and Priddy [1] and proved by Bob Oliver [2] [3]

links the algebraic field of fusion systems with the topological field of p-completions and

homotopy equivalence. In our course in Michaelmas, we spent a term discussing the fusion

systems, the symbols FP (G) and FQ(H) in the statement of the equivalence of two strings

of meaningless gobbledegook above. The second side of the equivalence, BG∧p , is the focus

of this course.

The idea is to understand the statement of the theorem firstly, and then the basic tools

involved in the topological theory of fusion systems. These are gaining importance, not just

in the field of fusion systems, but in several different fields in algebra, and a reasonable grasp

of what is on offer from this side of things seems like a good idea, if only to know what can

be proved.

We begin with simplicial sets. These sound quite impressive, and might bring to mind

simplicial complexes. Indeed, a simplicial complex is a special type of simplicial set. I

will give the definition of a simplicial set in all of its glory, so that you may marvel at

how topologists (or in this case category theorists I suppose) manage to put meaning into

handwaving nonsense.

Definition 1.2 Let Tos denote the category whose objects are the finite, non-empty totally

ordered sets, and whose morphisms are all order-preserving monotonic maps. A simplicial set
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is a contravariant functor from Tos to Set. A map of simplicial sets is a natural transformation

of functors.

That definition is concise and rigorous, but for an algebraist isn’t really all that helpful.

It’s like describing a monoid as a one-point category. In the next chapter we will unravel

this particular definition, and try to get some intuition about it and how to use simplicial

sets.

As a special type of simplicial set we have an object that should be the classifying space of

a finite group, but we need to turn a simplicial set, which is just a functor, into a topological

space, maybe even something like a CW-complex. The classifying space, and some of its

properties, will be seen after simplicial sets.

We then move on to the first major construction of the course: given a space X, we

will construct the R-completion of X, where R is a suitable ring. The case when R = Fp
is an important one for us. In particular, the Fp-completion of X will be denoted by X∧p .

The spaces X and X∧p – at least in the case where X is p-good, which includes the spaces

we are interested in – have the same mod-p cohomology, and so it might well be useful to

p-complete a space before trying to study its cohomology. The Martino–Priddy conjecture

seems to suggest that the mod-p cohomology of a group, which is the same as its classifying

space, might be easier to get hold of via BG∧p , since this behaves well with respect to the

fusion system.

Enough about the statement: what about the proof? We will not go into much detail

here. It requires the classification of the finite simple groups, for a start; we aren’t massively

interested in that aspect, since we’re meant to be looking at the topology side. One thing

we will want to look at are homotopy colimits: the point here is that taking colimits (direct

limits) does not react well to the concept of homotopy. What I mean is that taking homo-

topies between spaces, and then taking colimits, gives you things that are not necessarily

homotopy equivalent at the end. The point is, that if you are interested in things only up

to homotopy (and we are), then homotopy colimits are the right thing to do, rather than

ordinary colimits.

The reason that homotopy colimits are interesting is that the p-completion of BG can

be expressed as the p-completion of the homotopy colimit of BH, for various subgroups H.

Since these should be smaller than G, by induction we can assume that we know these. (In

practice of course, this step might not be true.)

Now that we have expressed BG∧p as a p-completion of a homotopy colimit, we need to

understand how to pull mod-p cohomology through this junk to get H∗(G;Fp). For this,
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we need spectral sequences. We will see more about these later, but essentially they are a

horrific gadget that, if wielded properly, makes everything work.
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Chapter 2

Simplicial Sets

Simplicial sets – we saw the definition in the introduction, although it wasn’t very helpful –

are a generalization of simplicial complexes. While simplicial complexes are relatively easy

to define, they have some inconvenient properties, and they aren’t sufficiently general to

be able to capture everything that we are interested in. One of the main ways in which

simplicial sets are better than simplicial complexes are in products.

We recall the definition from the introduction.

Definition 2.1 Let Tos denote the category whose objects are the finite, non-empty totally

ordered sets, and whose morphisms are all order-preserving maps. A simplicial set is a

contravariant functor from Tos to Set. A map of simplicial sets is a natural transformation

of functors. (Denote by sSet the category of simplicial sets.)

What does this really mean? Let [n] denote the totally ordered set with the numbers

{0, 1, . . . , n} in the usual order. Any element of the category Tos given in the definition is

isomorphic to one of the objects [n], and so to define a simplicial set we really are talking

about giving a set for each element [n] in a way that behaves well with respect to the ways

that totally ordered sets can be mapped between each other. If X is a simplicial set, then

the image of [n], Xn, are the n-simplices. Because the functor is contravariant, this gives

maps f∗ : Xn → Xm when there is a map f : [m]→ [n], which should act like the face maps.

It is possible to give a presentation of the category ∆ of the totally ordered sets [n],

which means that to determine the maps f∗ it suffices to specify face maps and degeneracy

maps. An n-simplex is called degenerate if it is in the image of f∗, for some f : [m] → [n]

with m < n; in some sense, a degenerate simplex should come from a smaller simplex by

repeating vertices.

Let’s come up with an algebraic way to defining simplicial sets, which might help us since

we are algebraists. Let di : [n] → [n + 1] (for 0 6 i 6 n + 1) denote the injection that does
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not hit the element i, an order-preserving map, and let si : [n]→ [n− 1] (for 0 6 i 6 n− 1)

be the surjection that sends both i and i+ 1 to i, again an order-preserving map. Then the

di and sj satisfy the following relations:

didj = dj+1di (i 6 j), sisj = sjsi+1 (i > j), sidj =


dj−1si i < j − 1

id i = j − 1, j

djsi−1 i > j

.

[These should be read right-to-left.] Since these are generators and relations, in order to have

a functor, it suffices to define a collection of sets Xn, together with face maps di : Xn+1 → Xn

and degeneracy maps si : Xn−1 → Xn satisfying the relations given above in the opposite

order (since the functor is contravariant). [Notice that, while di is a map from Xn to Xn+1,

di is a maps from Xn+1 to Xn, again because the functor is contravariant.] This gives

a relatively easy way of checking that a given candidate for a simplicial set actually is a

simplicial set.

Now we have an algebraic idea of what a simplicial set is, we can see how simplicial

complexes are simplicial sets. Let Y be a simplicial complex, and choose a total ordering

on the set of vertices of Y . Each n-simplex is determined by its collection of vertices, and

so, the collection Xn is the set of all sets of vertices of simplices. (We must also include

all m-simplices for m < n, by repeating vertices: these are the degenerate simplices.) The

maps di send an n-simplex to one of its faces (the one with the ith vertex in the ordering

on the vertices removed), and the maps si send a sequence to the same sequence but with i

repeated once. These maps satisfy the relations given above, in the opposite order, and so

form a simplicial set.

As a functor, it is slightly more finnicky to define: it is the functor taking [n] to the set

of all order-preserving maps f from [n] to the set of vertices of Y , where each f has the

property that the image of f is the set of vertices of a simplex. One should note that not all

simplicial sets arise in this way, so the category sSet of simplicial sets is strictly bigger than

that of simplicial complexes.

By unravelling the functorial definition of a simplicial set into a set of algebraic conditions

that are relatively easy to check, we have a new way of looking at simplicial sets. The benefit

of having both the functorial definition and the algebraic definition is that they can be used

for different things. Intuitively (for me anyway), it is much easier to define the simplicial set

arising from a simplicial complex the algebraic way.

Let C be a category. There is a way of forming a simplicial set from C , called the nerve

of C . Let Cn denote the category consisting of the numbers 0, 1, . . . , n and a single arrow

5



i→ j if i 6 j, with composition the only thing it can be. A map [m]→ [n] in the category

of totally ordered finite sets gives rise to a functor Cn → Cm. The n-simplices in the nerve of

C are the functors Cn → C , and maps in the simplicial set come from the functors between

the categories Cn.

The concrete way, via the Xn, is rather nice: the n-simplices are all ordered sets of n

composable morphisms in C (with the obvious ordering), the degeneracy maps involve in-

serting an identity morphism, and the face maps involve composing two adjacent morphisms.

A morphism C → D gives rise to a map of simplicial sets between the nerves of C and D .

We now come on to one of the main reasons why we deal with simplicial sets rather than

simplicial complexes, and that is that products of simplicial sets are much nicer. Firstly, we

recall how CW-complexes work. (We don’t need to know much about them here.) If A and B

are CW-complexes, then A×B is not a CW-complex using the normal product topology. We

must define a new topology on A×B, making a set open if and only if the intersection with

every compact subset of A × B, under the product topology, is open. Using this topology,

A× B becomes a CW-complex. The definition for simplicial sets is rather easier: if X and

Y are simplicial sets, then (X × Y )n is simply Xn × Yn. The reason that this works is that

degenerate simplices, which are not visible in the simplicial complex viewpoint, might stop

being degenerate in the product; in other words, the product of two degenerate n-simplices

might well be a non-degenerate n-simplex, and this is why the definition is better.

The easiest example is the standard 1-simplex, which we denote by ∆1. We know that

∆1 × ∆1 should be something like a square (even if we don’t yet have a way of realizing

simplicial sets geometrically), and indeed it is: the 0-simplices are (0, 0), (1, 0), (0, 1), and

(1, 1), the non-degenerate 1-simplices are (00, 10), (00, 01), (01, 11), and (11, 01), and the

non-degenerate 2-simplices are (001, 011) and (011, 001). (These last two both come from

degenerate 2-simplices in the components, since all 2-simplices are degenerate in ∆1.) The

standard n-simplex is denoted by ∆n.

The idea is that with simplicial sets, everything works how it should do. For example,

we have the following theorem.

Theorem 2.2 Let C and D be two categories, and let C and D denote their nerves. Then

the nerve of C ×D is C ×D.

The second way in which simplicial sets are better than simplicial complexes are with

function spaces. If X and Y are topological spaces, then the set Map(X, Y ) of continuous

maps forms a topological space with respect to the compact open topology. (This means: for

all compact subsets U ⊆ X and open subsets V ⊆ Y , let C(U, V ) be the set of all maps f in
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Map(X, Y ) such that f(U) ⊆ V . The sets C(U, V ) are the generating sets for the compact

open topology.) However, we are interested in CW-complexes, and so we want Map(X, Y )

to be a CW-complex if X and Y are both CW-complexes. We need to alter the topology,

like with products, to get the nice result, and even then we don’t quite get that Map(X, Y )

is a CW-complex. We say that a subset of Map(X, Y ) is open if it has open intersection

with any subset that is open in the compact-open topology. With this definition, we get the

following theorem.

Theorem 2.3 (Milnor) IfX and Y are CW-complexes then Map(X, Y ) is homotopy equiv-

alent to a CW-complex.

We are interested in simplicial sets rather than CW-complexes, and so we need a definition

of Map(X, Y ) that should be a simplicial set for simplicial sets X and Y . This will be done

as follows: the set of n-simplices of Map(X, Y ) is defined to be the set of all morphisms in

the category of simplicial sets between X ×∆n and Y .

If X, Y and Z are CW-complexes, then we have the homeomorphism

Map(Y,Map(X,Z)) ∼= Map(X × Y, Z).

This statement is that products and mapping sets are adjoints. We have a similar statement

for mapping spaces for simplicial sets.

Theorem 2.4 Let X, Y and Z be simplicial sets. There is a natural isomorphism of sim-

plicial sets

Map(Y,Map(X,Z)) ∼= Map(X × Y, Z).

One of the reasons that we like simplicial sets is that we are going to do some homotopy

theory with them. However, classical homotopy theory takes place with CW-complexes.

Later on we will discuss the categorical setting for homotopy theory, including so-called

model categories. However, for now we don’t need this extra machinery, and we delay the

implementation of any more category theory than we need, particularly things like Kan

complexes and fibrations. In the next chapter we will construct a CW-complex corresponding

to a simplicial set, called the geometric realization of the simplicial set, and construct the

classifying space as the geometric realization of a particular type of simplicial set. Once

we have this particular facet, we will be in a position to discuss the equivalence between

the homotopy categories of simplicial sets and CW-complexes. This means that simplicial

sets are perfectly reasonable objects with which to study homotopy theory, just as classical

CW-complexes are.
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Chapter 3

From Simplicial Sets to

CW-Complexes

Given a simplicial set X, we would like to construct some simplicial complex from X; how-

ever, as we said before, the category of simplicial sets is in some sense larger than that of

simplicial complexes, and so we should not expect to be able to get a simplicial complex,

but we might reasonably expect to get a CW-complex from a simplicial set.

3.1 The Geometric Realization

Firstly, we want the geometric realization of the simplicial n-simplex ∆n: this is given by

{(a0, . . . , an ∈ Rn+1 | ai > 0,
n∑
i=0

ai = 1}.

An order-preserving map f : [m]→ [n] gives rise to a map f∗ from |∆m| to |∆n| by specifying

the jth co-ordinate of the image to be the sum of ai, as i runs over all elements whose image

is j itself.

Definition 3.1 Let X be a simplicial set. For each non-degenerate n-simplex in X, take a

copy of |∆n|, and glue the simplices together via monotonic maps in Tos, together with the

induced linear maps above. The resulting CW-complex is called the geometric realization of

X, and denoted by |X|. More formally, define

|X| =
∐
n

(Xn × |∆n|)/ ∼,

where each Xn is a discrete set, and ∼ is the equivalence relation generated by

(f ∗x, u) ∼ (x, f∗u).
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This is not in general a simplicial complex, since the faces of an n-simplex can be identi-

fied. As a remark, it is not difficult to show that the geometric realization of the simplicial

set ∆n is actually the simplicial n-simplex, so at least things start off consistently.

It also turns out that the geometric realizations of products are correct as well.

Proposition 3.2 Let X and Y be simplicial sets. Then |X×Y | and |X|×|Y | are homotopy

equivalent, if |X| × |Y | is endowed with the topology making it a CW-complex.

The map | | is a functor from simplicial sets to CW-complexes, and in general to Top,

the category of topological spaces. We want a functor in the opposite direction, from Top

to sSet. Given a topological space Y , we consider the set of all continuous maps |∆n| → Y ,

for various n. This set of the continuous maps will be the element Xn of a new simplicial

complex, Sing(Y ). We need to specify the face and degeneracy maps between the sets Xn,

and Xn−1 and Xn+1. If f is a continuous map in Xn, then f : |∆n| → Y . The face and

degeneracy maps on ∆n induce face and degeneracy maps on Xn via the map f → f∗ seen

earlier.

We would like a relationship between the functor X 7→ |X| and the functor Y 7→ Sing(Y ),

and in fact they form an adjoint pair, as we shall see later.

Now that we have a way of going from simplicial sets to CW-complexes, we will construct

the classifying space of a finite group. Firstly we recall the definition.

Definition 3.3 Let G be a finite group. A classifying space is a topological space X such

that π1(X) = G and the universal covering group of X is contractible, i.e., all other homotopy

groups are 0

It is traditional to write BG for a space so described, and EG for its universal covering

group. Note also that if X and Y are homotopy equivalent and X is a classifying space for G,

then so is Y . The converse is also true, leading us to talk of ‘the’ classifying space, although

with the warning that this space is only defined up to homotopy. As well as uniqueness, we

want existence, and this will be given now by constructing a classifying space.

Definition 3.4 Let G be a finite group. Let B(G) denote the category with one object

∗, and whose morphism set is given by HomB(G)(∗, ∗) = G with composition given by the

group structure. Let E (G) denote the category with object set G, and a unique morphism

from g to h, for all objects g and h. (This is action by the element g−1h.)

The category E (G) has a free action of G on it by right multiplication, and it is not

difficult to see that the orbit category, E (G)/G, is simple B(G). We claim that the geometric
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realization of the nerve of B(G), namely |B(G)|, is BG, and the geometric realization of

the nerve of E (G) is EG.

Let us describe the simplicial set got from B(G) properly, rather than simply saying that

it is the nerve. Let BG0 = {∗}, BG1 = G, BG2 = G×G, and in general BGn is the n-fold

Cartesian product of G. The degeneracy map si : BGn → BGn+1 involves inserting a 1 in

the ith place, and the face map di : BGn → BGn−1 is defined by

di(g1, g2, . . . , gn) =


(g2, . . . , gn) i = 0

(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn) 1 6 i 6 n− 1

(g1, . . . , gn−1) i = n

.

It is a simple exercise to check that this is the nerve of B(G). The actual space BG is much

harder to define directly: the space EG is slightly easier, and the space BG can be thought

of as EG/G. Firstly, recall (!) that the join, X ∗ Y , of two topological spaces X and Y , is

the product space X × I × Y quotiented out by the relation

(x1, 0, y) ∼ (x2, 0, y) xi ∈ X, y ∈ Y

(x, 1, y1) ∼ (x, 1, y2) x ∈ X, yi ∈ Y.

Note that if X and Y are CW-complexes, then this is a CW-complex as well. Milnor defined

EG to be the infinite join G ∗G ∗ · · · of copies of G. We can define a G-action on this space

by letting G act on each factor of the join simultaneously. This is a free action since the

right regular representation is free, and we may define BG to be the quotient space EG/G.

(The contractibility of EG is not completely obvious, and do not prove it here.)

3.2 Model Categories

Suppose that you want to do homotopy theory. If you are in the first half of the twentieth

century, then CW-complexes are the way forward: they are general enough for you to have

every space you want, and good enough for you to be able to do homotopy theory. These

two statements can be made more precise; the second says that there is a combinatorial

description of the homotopy groups of CW-complexes. The first statement can be made

very precise, but we first need a definition. Recall that a continuous, basepoint-preserving

map f : X → Y of topological spaces induces a map f ∗n : πn(X)→ πn(Y ).

Definition 3.5 Let f : X → Y be a continuous map of topological spaces. Then f is

called a weak homotopy equivalence if f induces an isomorphism of all homotopy groups

with respect to all choices of base point.
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Every homotopy equivalence is a weak homotopy equivalence, but not conversely in

general. We can now say precisely how the category of CW-complexes sits inside the category

of Hausdorff topological spaces.

Theorem 3.6 (Whitehead) (i) Every weak homotopy equivalence between CW-complexes

is a homotopy equivalence.

(ii) A weak homotopy equivalence induces isomorphisms in homology and cohomology with

any coefficients.

(iii) Every topological space is weakly homotopy equivalent to a CW-complex. In particular,

it is weakly homotopy equivalent to the geometric realization of its singular simplices.

The problem with the third statement is that you have to know an awful lot about

your topological space in order to construct the singular simplices, and if you have this

information you can calculate homotopy groups anyway, so this doesn’t really help you with

specific examples. However, psychologically it is nice, because it tells you that any topological

space shares its homotopy groups with some CW-complex.

It is also nice for reasons other than psychological: many times, one wants to ‘invert’

things like weak homotopy equivalences. For example, in the derived category, one formally

inverts quasi-isomorphisms, which are morphsms of chain complexes that induce isomor-

phisms in cohomology. If one is interested in studying homotopy, then all weakly homotopy

equivalent objects should be made isomorphic in some sort of ‘homotopy category’.

A procedure for formally inverting morphisms in categories exists, but for arbitrary cat-

egories it has a problem, which is that one loses control over morphism sets. In particular,

the collection of maps between two objects in this quotient category might be too large to

be a set. In addition, the maps in this localized category, in which weak equivalences (in

whatever guise they may be) are inverted, are complicated.

The theory of model categories overcomes these two difficulties, by placing extra structure

on the category C . The first is a collection of maps called weak equivalences, which are the

maps that will be inverted. The easiest condition that these satisfy is that, if f and g are

composable morphisms and any two of f , g, and fg are weak equivalences, so is the third. The

other two collections are fibrations and cofibrations, which satisfy some technical conditions

asserting that they are big enough for ‘lifting’ procedures to be possible; for example, every

morphism can be factorized into a weak equivalence (that is also a cofibration) followed by

a fibration, and also as a cofibration followed by a fibrant weak equivalence. The axiomatic

definition of a model category is too complex to state here, and at any rate it is only tangential

to our main goal.
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One of the consequences of the axioms of a model category is that they always contain

an initial object and a terminal object. If C is a model category, we call an object fibrant

if the map from it to the terminal object is a fibration, and we call an object cofibrant

if the map from the initial object is a cofibration. The factorization of morphisms above,

applied to maps from the initial and to the terminal objects, results in the concept of fibrant

replacements, i.e., a fibrant object weakly equivalent to any given object; this process is

called resolution. We also write Cc for the full subcategory on the cofibrant objects, Cf for

that on the fibrant objects, and Ccf for the full subcategory on those objects that are both

fibrant and cofibrant. For Ccf (but not for C itself), there is a well-behaved notion of a

homotopy between maps, and hence of a homotopy equivalence between objects in Ccf .

Theorem 3.7 Let C be a model category.

(i) Every object in C is weakly equivalent to an object in Ccf .

(ii) If two objects in Ccf are weakly equivalent then they are homotopy equivalent.

We have two examples of model categories already; topological spaces and simplicial

sets. The first can be made into a model category with the weak equivalences being weak

homotopy equivalences, all objects being fibrant, and the cofibrant objects being those that

are homotopy equivalent to CW-complexes, recovering Whitehead’s theorem above. In the

case of simplicial sets, there is a model category structure on it, but in order to understand

it we will need both the concept of Kan complexes (the fibrant objects in this category) and

of the homotopy groups of simplicial sets.

Associated with any model category is a homotopy category : this is where we formally

invert the weak equivalences. Doing this with respect to the model category of topological

spaces recovers the standard homotopy category of topological spaces. Doing this with

respect to simplicial sets yields a different, but equivalent category.

Theorem 3.8 The singular simplices functor is a right adjoint to the geometric realization

functor. Hence, if X is a simplicial set and Y is a topological space, then

HomTop(|X|, Y ) ∼= HomsSet(X, Sing(Y )),

where Top is the category of topological spaces with continuous maps, and sSet is the category

of simplicial sets.

This adjunction is much more interesting than it first appears.
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Theorem 3.9 The adjunction in Theorem 3.8 induces an equivalence of categories

Ho(sSet)→ Ho(Top),

where Ho(C ) is the homotopy category of the model category C .

3.3 Simplicial Objects and the Dold–Kan Correspon-

dence

A simplicial set is a contravariant functor from Tos to Set. By replacing the category Set

with an arbitrary category C , we get the concept of a simplicial object in C . We denote a

simplicial object by X., because it is contravariant. (This suggests that we will meet the

covariant version later, which we will.)

We gave an alternative description of simplicial sets, in terms of a particular collection of

n-simplices that satisfied a bunch of relations, and this is again possible here. In this case,

there should be a collection Xn of objects from C , with face maps di and degeneracy maps

si that are morphisms in C , such that the relations

didj+1 = djdi (i 6 j), sisj = sj+1si (i 6 j), djsi =


sidj−1 i < j − 1

id i = j − 1, j

si−1dj i > j

hold. (These have been reversed from the original relations given in the previous chapter

since the functor is contravariant.)

The collection of all simplicial objects in a category C forms a category in its own right,

denoted by C .. One of the reasons for passing to simplicial sets, rather than CW-complexes,

is that it might make calculation of homotopy groups better since, since they might be

definable combinatorially, and hence their calculation is potentially easier. It turns out that

this works properly for so-called fibrant objects (also called Kan complexes), and in this case,

the homotopy groups we define coincide with those of the geometric realization.

Definition 3.10 Let X be a simplicial set, with face maps di : Xn → Xn−1 and degeneracy

maps si : Xn → Xn+1. Then X is called fibrant if, for every n and k 6 n+1, and n-simplices

x0, x1, . . . , xk−1, xk+1, . . . , xn+1 such that dj−1xi = dixj for all i and j with i < j and i, j 6= k,

then there is an (n+ 1)-simplex y such that diy = xi for all i 6= k.

The rough idea about this condition is that, if you have a bunch of n-simplices that have

face maps that look as if they come from an (n+ 1)-simplex apart from possibly in one face,
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then they do. The xi are meant to be the faces of some (n + 1)-simplex, and the condition

dj−1xi = dixj is a slight alteration of the face relation didj+1 = djdi.

If your simplicial set is the underlying set of a simplicial group, then it is automatically

fibrant, and hence so are the underlying simplicial sets of simplicial R-modules (which are

abelian groups). In general, there are simplicial sets that are not fibrant, although every

simplicial set is weakly equivalent to a fibrant one, via the singular simplices functor, taking

geometric realizations then singular simplices; i.e., if X is a simplicial set, then Sing(|X|) is

a fibrant simplicial set, and their geometric realizations have the same homotopy groups.

Proposition 3.11 For any finite group G, the simplicial set BG is fibrant.

Fibrant simplicial sets are very nice, and allow us to make the following definition of

homotopy groups.

Definition 3.12 Let X be a simplicial set, and let ∗ be a basepoint in X0. Also write ∗
for the element s0(∗) for each Xn inductively, and set Zn = {x ∈ Xn | dix = ∗ for all i =

0, 1, . . . , n}. We say that x and x′ in Zn are homotopic (written x ∼ x′) if there is an

(n+ 1)-simplex y (a homotopy from x to x′) such that

diy =


∗ i < n

x i = n

x′ i = n+ 1

.

If X is fibrant, then ∼ is an equivalence relation on Zn, and so we may form the quotient

πn(X) = Zn/ ∼. If X is fibrant, then πn(X) = πn(|X|), and so we have defined homotopy

groups entirely combinatorially for the geometric realizations of simplicial sets.

As an exercise, compute the homotopy groups of the simplicial sets BG, where G is a

finite group. (You should get that π1(BG) = G and πi(G) = 1 for i > 2.)

The Dold–Kan correspondence gives a nice correspondence in abelian categories. (An

abelian category is a nice type of category, one that has a zero object, pullbacks and pushouts,

and kernels and cokernels, together with an addition on Hom-sets. One may think of module

categories here.) To state the theorem properly, we need a few preliminary definitions.

Suppose that X is a simplicial object in the abelian category C . The normalized chain

complex N(X) is the chain complex with

Nn(X) =
n−1⋂
i=0

ker(di : Xn → Xn−1),
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and differential map ∂ = (−1)ndn. We may define πn(X) to be Hn(N(X)). If C is the

category of abelian groups or R-modules, then this definition of πn(X) is the same as the

previous definition.

The map X 7→ N(X) is a functor from the simplicial objects in C to all chain complexes

in C in non-negative degree; i.e., Ch>0(C ). In fact, this gives an equivalence of categories.

Theorem 3.13 (Dold–Kan correspondence) Let C be an abelian category. The functor

N(−) gives an equivalence of categories between the simplicial objects in C and the category

Ch>0(C ). Under this correspondence, homotopy groups correspond to homology groups.

In order to convince you even slightly of this, I should construct an inverse to this functor,

which will take a chain complex C to a simplicial set K(C). Define K(C)n to be the direct

sum ⊕
m6n

⊕
φ

Cm[φ],

where for each m 6 n the index φ ranges over all surjections [n]→ [m] in ∆ and Cm[φ] is a

copy of the ”m”th term of the complex. This turns out to be a simplicial set, although the

remainder of the proof is not at all easy.

3.4 Cosimplicial Objects

Put simply, a cosimplicial object is the opposite of a simplicial object; that is to say, a

cosimplicial object in a category C is a covariant functor from Tos to C . (A simplicial

object was a contravariant functor.) This is equivalent to specifying some sets Xn, and

coface and codegeneracy maps di (0 6 i 6 n+1) and si (0 6 i 6 n−1) going in the opposite

direction to the face and degeneracy maps, such that the same relations that hold in ∆ hold

for the sets Xn. Recall that these original relations are

didj = dj+1di (i 6 j), sisj = sjsi+1 (i > j), sidj =


dj−1si i < j − 1

id i = j − 1, j

djsi−1 i > j

.

Cosimplicial objects in a category C are denoted by X
.
, and the subcategory of such objects

is denoted by C
.
.

Theorem 3.14 (Dual Dold–Kan correspondence) Let C be an abelian category. The

functor N∗(−) gives an equivalence of categories between the cosimplicial objects in C and

the category of cochain complexes Ch>0(C ). Under this correspondence, homotopy groups

correspond to cohomology groups.
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One example of a cosimplicial set is the cosimplicial simplex. For this, the sole n-simplex

is the simplicial n-simplex ∆n, and the coface maps and codegeneracy maps are the exact

same maps as given from [n] in the derivation of the algebraic description of the category ∆.

We denote the cosimplicial simplex by ∆
.
.

Given that we are thinking of simplicial sets as topological spaces, we will often write

‘space’ when we mean ‘simplicial set’. In this case, a cosimplicial space is a covariant functor

from Tos to sSet, or equivalently a collection Xn of simplicial sets with coface and codegen-

eracy maps between them. (It can also be thought of as a functor from Tosop × Tos to Set.)

Following our earlier definition, the category of cosimplicial spaces will be denoted sSet
.
.

We can think of cosimplicial spaces in a different way: suppose that X
.

is a cosimplicial

space, and let m and n be natural numbers: write Xn
m for the value of X

.
on ([m], [n]), where

X
.

is thought of as a functor from Tosop × Tos → Set. Thus X
.

is a sequence of simplicial

sets Xn (whose mth set is Xn
m) with a map Xn → X` whenever there is an order-preserving

map [n] → [`], which is the same as giving coface and codegeneracy maps satisfying the

relations given a few paragraphs up.

In the next chapter we will use cosimplicial spaces in an important way when defining

the Bousfield–Kan R-completion of a space (simplicial set). We will be very interested in

applying this R-completion when R = Fp and the simplicial set X is BG, when we denote

it by BG∧p .
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Chapter 4

Bousfield–Kan Completions

4.1 Introduction

Suppose that we have a space X, (say a CW-complex) and we want to understand its

homology modulo p. Weak equivalences from X preserve homology, and if you are interested

in homology modulo p, you should think of the weaker mod-p homology equivalences. What

might be of interest is a functor F from Top to itself, such that, if f is some continuous map,

then f is a mod-p homology equivalence if and only if Ff is a homotopy equivalence. This

would mean that two spaces X and Y with the same mod-p homology via some map would

have homotopy equivalent spaces F (X) and F (Y ). The space F (X) might be thought of

as some sort of a completion of X, since it shares some universal property in the homotopy

category Ho(Top).

We don’t quite have such a functor, unfortunately. However, for the kind of spaces we care

about (namely BG for G finite) such a functor does exist; this functor is the p-completion

(−)∧p . This is a special case of a more general R-completion, which exists for any unital ring

R; the p-completion is the case where R = Fp.
The process of R-completing a space X gives rise to a functor X → R∞X (the target

space is the R-completion of X) that in some cases produces a mod-R homology equivalence.

A space X is said to be R-complete if this map is a weak homotopy equivalence, R-good if

it is a mod-R homology equivalence, and R-bad if it is not R-good. It is true that R∞X is

R-complete if and only if X is R-good; completing bad a space cannot make it good, and

completing a good space once is enough. (This is helpful, because the construction would

not be fun to iterate...)

We will assume that X is a simplicial set (as we said we would last chapter when we

talked about ‘spaces’) and in this case, R∞X is fibrant. Therefore if f : R∞X → R∞Y is a

weak equivalence, it is a homotopy equivalence. The final piece of the puzzle is that a map
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f : X → Y is an R-homology equivalence if and only if the induced map f ′ : R∞X → R∞Y

is a homotopy equivalence of completions. Hence this R-completion object is exactly the

right thing we want.

In the first section we will construct a cosimplicial space (i.e., a cosimplicial simplicial

set) out of the construction RX, denoted by R.X, and in the second section define mapping

spaces and total spaces. With these constructions, the definition of the R-completion is easy.

In the section after this we discuss the properties of the R-completion, together with the

cases where X = BG and R = Fp.

4.2 Simplicial R-Modules

Let R be a ring and X be a simplicial set. We are interested in the homology H∗(X;R) and

the reduced homology H̃∗(X;R). Both of these may be easily characterized as the homotopy

groups of a simplicial set related to X and R.

Define R⊗X to be the simplicial set whose n-simplices are all formal linear combinations∑
rixi, where xi ∈ Xn and the coefficients ri lie in R. By RX we denote the simplicial subset

of R⊗X consisting of all those elements such that
∑
ri = 1. The simplicial set R⊗X is a

simplicial R-module, and in fact

Hn(X;R) = πn(R⊗X).

Choosing a basepoint ∗ ∈ X0 (and repeating our trick of writing ∗ for s0(∗)) makes each

(RX)n into a free R-module on the basis Xn \ {∗}, because the coefficient of ∗ in an element

of (RX)n is determined by the others. Thus RX is a simplicial R-module as well, and

H̃n(X;R) = πn(RX).

We will use the construction of RX to build up a cosimplicial space R
.
X corresponding

to X and a ring R. (This isn’t quite the R-completion of X, but is nearly it, in the sense

that once we have R
.
X it is one more step to get the R-completion.) For any space X we

have an obvious map φ : X → RX given by φ : x 7→ 1 · x. While it’s not easy to make a

map RX → X, we can make a map ψ : RRX → RX by multiplication in R:

ψ :

(∑
i

ri

(∑
j

tijxij

))
7→
∑
i,j

(ritij)xij.

These two maps allow us to define a cosimplicial space R
.
X, whose n-simplices (R

.
X)n =

Rn+1X (so that the 0-simplices are RX), with coface and codegeneracy maps

di = 1iφ1n+1−i : (R
.
X)n → (R

.
X)n+1,

si = 1iψ1n+1−i : (R
.
X)n → (R

.
X)n−1.
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The idea of R
.
X is that it is a free resolution of X over R, if such a thing makes sense.

The R-completion, R∞X, is simply defined to be the total space of R
.
X. Since we

haven’t met the total space yet, this is what we must now define.

4.3 Mapping and Total Spaces

This section will produce a version of the mapping space for cosimplicial spaces. Thus

we want to define Map(X
.
, Y
.
) for two cosimplicial spaces X

.
and Y

.
, and this should

be a cosimplicial space itself. For ordinary simplicial sets, we defined Map(X, Y ) to have

n-simplices HomsSet(X ×∆n, Y ). We will do almost exactly the same thing.

If X
.

is a cosimplicial space and Y is a space, we can make the product set X
.× Y into

a cosimplicial space by making

(X
.× Y )nk = Xn

k × Yk.

This is similar to the definition of the product of spaces in the previous chapter. Using this

definition, we can define the mapping space between two cosimplicial spaces.

In the previous chapter, we defined the n-simplices of Map(X, Y ) to be the simplicial set

morphisms between X ×∆n and Y ; since X
.

and Y
.

are now cosimplicial spaces, we want

the n-simplices of Map(X
.
, Y
.
) to be the cosimplicial space morphisms between X

. × ∆n

and Y
.
. Now that we have turned X

.×∆n into a cosimplicial space, this definition makes

sense. The face and degeneracy maps again come from those of ∆n. Therefore

Map(X
.
, Y
.
)n = Hom

sSet
.(X.×∆n, Y

.
),

and the total space of a cosimplicial space is simply TotX
.

= Map(∆
.
, X
.
).

4.4 Properties of the Bousfield–Kan Completion

We alluded to some of the properties of the R-completion in the introduction, but here we

will discuss them rigorously. These properties will be given as a list, although each of them

is interesting in its own right. Taken together, they illustrate the power of the R-completion.

Firstly, note that the fact that R-completion is a functor means that a map f : X → Y

induces a map R∞f : R∞X → R∞Y .

Definition 4.1 Let X be a space and R be a ring. We say that X is R-complete if the map

X → R∞X is a weak equivalence. We say that X is R-good if the map X → R∞X is a

mod-R homology equivalence, and we say that X is R-bad if it is not R-good.
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(i) For any space X, the R-completion R∞X is fibrant.

(ii) Any weak equivalence between completions of spaces is a homotopy equivalence. (This

follows from the fact that completions are (cofibrant) fibrant objects in the category.)

(iii) If f : X → Y is a continuous map of spaces, then f is a mod-R homology equivalence

if and only if R∞f : R∞X → R∞Y is a homotopy equivalence.

(iv) If f : X → Y is a mod-R homology equivalence, then X is R-good if and only if Y is

R-good, and so R∞f : R∞X → R∞Y is a homotopy equivalence.

(v) If X is connected and πn(X) is finite for all n > 1, then X is R-good for any subring

R of Q.

(vi) If X is connected and π1(X) is finite, then X is Fp-good.

We are mostly interested in the cases where R = Z or R = Fp, and X = BG for some

finite group G.

Proposition 4.2 Let G be a finite group.

(i) The map

Z∞BG→
∏
p

BG∧p

is a homotopy equivalence.

(ii) The map (Z(p))∞BG → BG∧p is a homotopy equivalence. (Here Z(p) is the p-local

integers.)

(iii) π1(BG∧p ) = G/Op(G).

(iv) G is nilpotent if and only if BG is Z-complete, and BG is Fp-complete if and only if

G is a p-group.

Now that we know some facts about classifying spaces, we want to know what all this

R-completion nonsense does to what we are interested in, group cohomology.

Theorem 4.3 Let G be a finite group.

(i) BG is Z-good, so the map in integral homology

H̃∗(BG;Z)→ H̃∗(Z∞BG;Z)
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and the map in integral cohomology

H̃∗(Z∞BG;Z)→ H̃∗(BG;Z)

are both isomorphisms. The fundamental group π1(Z∞BG) is G/H, where H is the

nilpotent residual of G.

(ii) BG is Z(p)-good and Fp-good, and the map (Z(p))∞BG→ BG∧p is a homotopy equiv-

alence, so the maps in homology

H∗(BG;Z(p))→ H∗(BG
∧
p ;Z(p)), H∗(BG;Fp)→ H∗(BG

∧
p ;Fp)

are isomorphisms. Similarly the maps

H∗(BG∧p ;Z(p))→ H∗(BG;Z(p)), H∗(BG∧p ;Fp)→ H∗(BG;Fp)

are isomorphisms.

These theorems help explain why we focus on Fp-completions; they are the building

blocks from which we can understand both mod-p and integral homology and cohomology.

In the next chapter we will see how to break up BG∧p into smaller pieces, via a gadget called

the homotopy colimit.
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Chapter 5

Homotopy Colimits

The concept of a homotopy colimit is needed because the ordinary colimit doesn’t behave

very well with respect to weak equivalences. The homotopy colimit is intended to behave

like a colimit but in a ‘homotopy-ish’ way. Following Benson and Smith, we start with the

case of a pushout diagram, before going to the full colimit.

5.1 Homotopy Pushouts

Recall that a pushout is a completion of the diagram

A B

C

//

��

to a commutative square in a universal way. For topological spaces A, B, and C, this is

equivalent to taking a copy of B and a copy of C and identifying the images of A inside B

and C. For a homotopy colimit, this precise identification will not work, and one has to use

a ‘mapping cylinder’ construction in this case. If we start with the diagram

A B

C

//
f

��

g

we construct two copies of a cylinder A× [0, 1], and attach these along A× {0}, and attach

the first copy of A× {1} to B via f , and the second copy of X × {1} to C via the map g.

In fact, this homotopy pushout is already an interesting object. What we want to do is

consider a poset of subgroups of a finite group G, and then take a homotopy colimit over
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spaces BH attached to each of the subgroups H in the poset. The case of a homotopy

pushout is where we have two subgroups H1 and H2, and their intersection H1,2, and hence

we have the diagram

BH1,2 BH1

BH2

//
f

��

g .

Theorem 5.1 Suppose that f and g in the diagram above are injections (in particular, the

case where they are inclusions in a group). The homotopy pushoutX of the diagram is weakly

equivalent to the classifying space B(H1 ∗H1,2 H2) of the free product with amalgamation.

For the first time in this course, we are able to give some applications of this stuff to

finite groups, or at least some finite groups.

Example 5.2 Let G be a finite group of Lie type, and suppose that G has rank 2. Let P1

and P2 denote the two maximal parabolics, and P1,2 be their intersection, a Borel subgroup.

This triple (P1, P2, P1,2) satisfies the structure of the 1-simplex above. There are five sporadic

simple groups, namely M11, M12, J2, Th and ON , that also have an associated triple of

subgroups (H1, H2, H1,2). These are described below

Group H1 H2

M11 Q8 o S3 S4

M12 21+4
+ o S3 (C4 × C4) oD12

J2 21+4
− o A5 22+4 × (C3 × S3)

Th 21+8
+ · A9 E16 · PSL5(2)

ON C4 · PSL3(4) o C2 (C4)3 · PSL3(2)

In all of these sporadic groups, we have the following: if G is the group and X is the homotopy

pushout of the diagram corresponding to the triple (H1, H2, H1,2), then

BG∧2
∼−→X∧2 ,

and in the case of groups of Lie type we have that BG∧p
∼−→X∧p .

In the language of the next chapter, this collection of subgroups is said to be ample.

More generally, we would like conditions on when a homotopy pushout gives the classify-

ing space (after p-completion), and this is in some sense characterized in the next theorem.
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Theorem 5.3 Suppose that H1 and H2 are subgroups of the finite group G, that 〈H1, H2〉 =

G, and that H1,2 = H1∩H2 contains a Sylow p-subgroup of G. Write F for the kernel of the

map H1 ∗H1,2 H2 → G, and X for the homotopy pushout of the diagram H1 ← H1,2 → H2.

The following are equivalent:

(i) X∧p
∼−→BG∧p ;

(ii) the map H1 ∗H1,2 H2 → G is a mod-p cohomology equivalence;

(iii) H∗(G,H1(F ;Fp)) = 0; and

(iv) the signed restriction maps give a short exact sequence of Fp-vector spaces

0→ H∗(G;Fp)→ H∗(H1;Fp)⊕H∗(H2;Fp)→ H∗(H1,2;Fp)→ 0.

To understand (and to define properly) the homotopy colimit, we need the concept of

simplicial spaces.

5.2 Simplicial Spaces

We continue our convention of calling simplicial sets ‘spaces’. In the previous chapter we

defined a cosimplicial space, and here we will do the ‘opposite’; that is, we will define a

simplicial space. The obvious definition of a simplicial space is a simplicial object in the

category of spaces. Thus it is sometimes referred to as a bisimplicial set, a contravariant

functor from Tos×Tos to Set. We will associate to each pair ([m], [n]) a set Xm,n, and this can

be thought of as a grid of sets. It can be thought of as the m-simplices of the nth horizontal

space X−,n or the n-simplices in the mth vertical space Xm,−. As an example, the Dold–

Kan correspondence applied twice gives an equivalence of categories between bisimplicial

R-modules and double chain complexes.

Definition 5.4 (i) Let X and Y be spaces. The external product, X ×. Y , of X and Y

is the simplicial space with

(X ×. Y )m,n = Xm × Yn,

with the obvious face and degeneracy maps.

(ii) If X. is a simplicial space, then the diagonal space, Diag(X.), is the simplicial set whose

nth simplex is the set Xn,n, with face and degeneracy maps taken as doing the vertical

and then horizontal face and degeneracy maps. (The order doesn’t matter because a

simplicial space is a functor.)
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5.3 The General Homotopy Colimit

Before we do the homotopy colimit, let us refresh our minds about the ordinary colimit. In

group theory, we often produce diagrams showing subgroups ordered by inclusion. Formally,

this may be thought of as a functor from a particular poset, considered as a category in the

obvious way, and the poset category of all subgroups of a group.

We first want a category I to act as the poset category in the example, and it will be

called an indexing category. The covariant (normally faithful) functor F : I → C provides

a means to see a copy of I embedded inside C . The case of pushouts is where I is simply

the poset category

· ← · → ·.

If I is an indexing category and F : I → C is a covariant functor, then a cone to F

is an object N in C , together with maps ψx : N → F (x) that makes the obvious triangle

commute. A limit of the diagram F : I → C is a cone (L, φ = {φx : x ∈ I }) such that,

for any other cone N and maps ψ, there is a unique morphism N → L making the obvious

diagrams commute.

For colimits, we need to simply reverse all of the arrows: a cocone of a diagram F is an

object in C with maps ψx : F (x) → C with commutative triangles, and a colimit is a cone

(C, φ) such that if (N,ψ) is any other cocone, then there is a unique map C → N making

the obvious diagrams commute.

We are mainly interested in the case where the target category is sSet, so that the objects

in the diagrams are spaces. One such case was the pushout above, which is a colimit. We

had to change the construction of the pushout to get something homotopy invariant, and we

will have to do the same with the colimit.

We will define a simplicial space, q.F from I and F : the vertical spaces are the com-

ponent spaces F (i) for i ∈ I , and the horizontal maps (what remains to be defined) come

from morphisms in I .

The simplicial space q.F has nth vertical space (q.F )n,− given by∐
σ∈(NI )n

F (σ0),

where the disjoint union is over all n-simplices σ = (σ0 → · · · → σn) in the nerve NI , and

take the first space F (σ0) associated to σ. The degeneracy map si in the horizontal direction

(so from (q.F )n to (q.F )n+1) is got by sending F (σ0) isomorphically to the copy indexed

by si(σ). The face map di does the same thing to σ (sending it to the copy of di(σ) unless

i = 0, in which case this cannot work. In this case, the (n− 1)-simplex d0(σ) is that labelled
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by removing σ0 from σ, so it is a copy of F (σ1). The map F (σ0)→ F (σ1) is the map given

by the image of σ0 → σ1 under F .

Given this large simplicial space, the homotopy colimit is given by

Hocolim−−−−−→
I

F = Diag q .F.

This might seem like a strange construction, but here is one proposition that tells you

that we might have the right notion.

Proposition 5.5 Let f : F → F ′ be a natural transformation of functors, with F, F ′ : I →
sSet. Suppose that the map f(i) : F (i)→ F ′(i) is a weak equivalence for every i. Then the

map

Hocolim−−−−−→
I

F → Hocolim−−−−−→
I

F ′

is a weak equivalence.

Thus our definition of the homotopy colimit behaves in a homotopy invariant way in

the sense that the homotopy groups of the two spaces are the same, and if we pass to

p-completions, we have that the two spaces are homotopy equivalent.

Proposition 5.6 Let F : I ×I ′ → sSet be a I ×I ′-diagram of spaces. Then

Hocolim−−−−−→
I

(
Hocolim−−−−−→

I ′

F

)
∼= Hocolim−−−−−→

I×I ′

F ∼= Hocolim−−−−−→
I ′

(
Hocolim−−−−−→

I

F

)
.

5.4 Simplex Categories

An important subcase of homotopy colimits is where the indexing category I is a simplex

category. In the case of a homotopy pushout, the category associated is (the opposite of) all

non-empty subsets of {1, 2}. (This is why we labelled the three subgroups as H1, H2, and

H1,2 = H1 ∩H2. In general we have as indexing category the opposite category of the poset

category of non-empty subsets of In = {1, . . . , n}. Write Dn for this indexing category; the

homotopy pushout is the case of D2. In the first section we gave the example that five of the

sporadic simple groups, M11, M12, J2, Th, and ON , are the homotopy pushout for certain

subgroups.

The remaining Mathieu groups, HS, McL, Suz, Co3, J3, HN , He and Ru can all be

expressed as the homotopy colimit over D3, J4, Co2, Co1, Fi22, Fi23 and Ly can be expressed

as the homotopy colimit over D4, and Fi′24, B and M need D5.

There’s another case where a homotopy colimit can be used, and that is the trivial

case where the homotopy colimit takes place over D1. Of course, this is true with the
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space itself as the one point. However, in J1 for example we have that the inclusion of

spaces BNG(P ) → BG (where P ∈ Syl2(G)) is a mod-p homology equivalence. This is

true whenever NG(P ) controls G-fusion in P , so in the case where G has abelian Sylow

p-subgroups, or TI Sylow p-subgroups.

The case of D4 is the following cool diagram, included only for fun.

B123 B12

B1234 B124 B13 B1

B23 B2

B134 B14

B234 B24 B3

B34 B4

//
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??

//
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//
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//
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//
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//

//
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??

The case of D3 is the pushout cube, given below.

B12

B1 B2

B123

B13 B23

B3

ww ''

OO

ww ''

OO

'' ww

OO

The final case, D5, would be difficult to draw...

The idea is to take a collection of subgroups, take a homotopy colimit over the poset

of subgroups, and get the original space back. Normally this isn’t possible, but we can

get a space that’s mod-p homology equivalent. Taking p-completions afterwards gives us a

homotopy equivalence. In the next chapter we will examine collections of subgroups that,

when a homotopy colimit is taken over, we get a space mod-p homology equivalent to the

original space.
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Chapter 6

Homotopy Decompositions

In the last chapter we looked at the concept of the homotopy colimit. In that construction,

we took a collection of subgroups of a finite group and expressed the (p-completed) classifying

space as the (p-completion of the) homotopy colimit of the collection of classifying spaces of

subgroups.

One might be interested in how to use these decompositions to compute cohomology, and

we saw a bit of that in the last chapter, but before we do that in the next chapter, we will

consider collections of subgroups over which one make take homotopy colimits and get the

right space at the end.

6.1 Groups of Lie Type, Quillen, and Brown

Let G be a finite group of Lie type, and write P for the collection of all parabolic subgroups

of G containing any Borel subgroup. If H is an element of P , it has a unipotent radical,

and the collection of such will be denoted by U . The collection U is a poset of p-subgroups

of G, with the same poset structure as P . The complex of parabolic subgroups is called the

building of G.

In fact, we have that BG∧p is homotopy equivalent to the p-completion of the homotopy

colimit over the poset P .

After the 1960s, Brown considered all p-subgroups simultaneously – write Sp(G) for the

poset of all non-trivial p-subgroups of G – and the following result on contractibility of

certain complexes.

Theorem 6.1 For any Q ∈ Sp(G), the Q-fixed subcomplex Sp(G)Q and the set⋃
16=R6Q

Sp(G)R
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are contractible.

Using this contractibility theorem, Quillen was able to prove G-homotopy equivalences

(G-equivariant maps f and g such that fg and gf are G-homotopic to the identity) for

certain subcollections, notably the elementary abelian groups. Let Ap(G) denote the subset

of all elementary abelian subgroups of Sp(G).

Theorem 6.2 (Quillen) The inclusion Ap(G) ⊆ Sp(G) induces a G-homotopy equivalence.

If Bp(G) denotes the p-radical subgroups (non-trivial p-subgroups Q satisfying Q =

Op(NG(Q))), then Bouc proves exactly the same result.

Theorem 6.3 (Bouc) The inclusion Bp(G) ⊆ Sp(G) induces a G-homotopy equivalence.

The connection comes for groups of Lie type now: Quillen proved the following interesing

result.

Theorem 6.4 (Quillen) If G is a finite group of Lie type, then Ap(G) is G-homotopy

equivalent to the building of G.

Brown used the contractibility theorem above to start modern homotopy decomposition

theory and its connections with homology.

Theorem 6.5 The map of Borel constructions

EG×G Sp(G)→ EG×G ∗ = BG

induces an Fp-cohomology equivalence, so we have isomorphisms of Fp-chain complexes

H̃∗G(Sp(G);Fp)→ H̃∗G(∗;Fp) = H̃∗(BG;Fp) = H̃∗(G,Fp).

The fact that Sp(G) looks like the building for a group of Lie type means that the complex

(and any other poset that is G-homotopy equivalent to it, like Ap(G) and Bp(G)) should

serve as an analogue for arbitrary finite groups of the building for groups of Lie type.

6.2 Homotopy Colimits and Collections

We were studying homotopy colimits over collections of subgroups in the previous chapter:

in this section we will look at various collections of subgroups such that the classifying space

of G is mod-p homology equivalent to the homotopy colimit over the collection.
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Definition 6.6 LetG be a finite group and let p be a prime dividing |G|. A collection (closed

under conjugation) C of subgroups is called ample if the map from the Borel construction

on the nerve of C
EG×G NC → EG×G ∗ = BG

is an Fp-homology equivalence.

If C is an ample collection of subgroups, then there are three types of decomposition

available, corresponding to the subgroups, the normalizers and the centralizers over the

collection. Before we describe these three decompositions of the space as a homotopy colimit,

we want to know some ample collections of subgroups.

Theorem 6.7 Let G be a finite group and let p be a prime dividing |G|. The following sets

of p-subgroups form an ample collection:

(i) all p-subgroups Sp(G);

(ii) all elementary abelian p-subgroups Ap(G);

(iii) all p-radical subgroups Bp(G);

(iv) all p-centric (CP (Q) is a direct factor of CG(Q)) subgroups Cep(G); and

(v) all centric radical subgroups Bcen
P (G).

In order to describe the three decompositions, we need the following definition.

Definition 6.8 Let G be a finite group. A collection C of subgroups of G is a set of

subgroups that is closed under conjugation. We may regard C as a poset under inclusion,

and so also as a category.

The orbit category OC of a collection C is defined to be the category of transitive G-sets

G/H, where H ∈ C. The morphisms are G-maps between G-sets, which may be thought of

as the compositions of inclusions between members of C and G-conjugations.

The conjugation category AC of a collection C of subgroups is the category whose objects

are the pairs (H,α), whereH is a finite group and α is a G-conjugacy class of monomorphisms

i : H → G such that i(H) ∈ C for all i ∈ α. A morphism from (H,α) to (K, β) consists of a

group monomorphism j : H → K such that α = {k ◦ j : k ∈ β}.

The centralizer decomposition will take place over AC, the subgroup decomposition will

take place over OC, and the normalizer decomposition over a more complicated category.

Suppose that G is a finite group and R is a ring. An R-homology decomposition of BG
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consists of an I -diagram X to transitive G-sets with the property that the following map

is an R-homology equivalence:

EG×G Hocolim−−−−−→
I

X ∼= Hocolim−−−−−→
I

(EG×G X(−))→ BG.

(This map is the composition of the Borel construction with the map from the homotopy

colimit over X to the point, with the added theorem that the Borel construction commutes

with taking homotopy colimits.) One would like to write

Hocolim−−−−−→
i∈I

BHi,

where Hi is the point stabilizer of i ∈ I , but this only gives a diagram in the homotopy

category, and this is not enough to determine the homotopy colimit. Although we can think

of it as the homotopy colimit over the BHi, we need the actual maps in order to take the

homotopy colimit.

Centralizers

The easiest decomposition to describe is that of the centralizer. This will use the opposite of

the conjugation category. Let C be a collection, and consider the opposite of the conjugation

category A = Aop
C . The functor

α̃C : A→ G-Set

takes an object (H, γ) to the transitive G-set γ, so a conjugacy class of monomorphisms into

G, and takes an arrow j : (H, γ)→ (K, δ) to composition with j, thought of as a map from

δ to γ. Taking the homotopy colimit over A of α̃C, we get a G-space X. Combining with

with the Borel construction, we get a map

Hocolim−−−−−→
A

(EG×G α̃C(−)) = EG×G Hocolim−−−−−→
A

α̃C → BG.

Abbreviate the composition of the Borel construction and α̃C as αC

Theorem 6.9 The collection of subgroups C is ample if and only if αC is a mod-p homology

decomposition, so that the map

Hocolim−−−−−→
A

αC → BG

is a mod-p homology equivalence.

The image of each point of A under αC is really the space B CG(i(H)), and this is why

we needed to reverse the structure of the poset.
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Subgroups

Let C denote a collection of subgroups of G, and consider the category O = OC. The functor

β̃C : O → G-Set

takes G/H regarded as an object of O to G/H as a G-set. Again, we denote by βC the

composition of β̃C with the Borel construction to get the following theorem.

Theorem 6.10 The collection of subgroups C is ample if and only if βC is a mod-p homology

decomposition, so that the map

Hocolim−−−−−→
O

βC → BG

is a mod-p homology equivalence.

The image of a point here is βC(G/H) = EG×G G/H ∼= BH. Thus this is some kind of

homotopy colimit over the collection C itself.

Normalizers

The problem that we are going to have here is that unlike centralizers and subgroups, there is

no obvious ordering on a collection C of normalizers. To solve this we actually have to replace

C with the barycentric subdivision of C: this is a new category sC, defined by the non-empty

chains of inclusions, so that the objects are of the form σ = (H0 < H1 < · · · < Hn), and the

arrows are all reverse inclusions of chains.

Just as with the homotopy colimit, there is a functor sC → C taking a chain to its intial

element. and takes a containment of chains to the inclusion of initial elements. The group

acts on both C and sC, and the functor sC → C commutes with the G-action. Construct

the orbit category sC/G; the objects of this are G-orbits of inclusion chains from C. The

morphisms in the orbit category need some explaining: a containment of chains of subgroups

induces a restriction map on orbits; since a finite group cannot be isomorphic to a proper

subgroup of itself, at most one conjugate of a chain can be a subchain of a longer chain, so

the restriction map is well-defined.

Define a diagram of G-spaces as follows: the functor δ̃C : sC/G→ G−sSet takes an object

given by a G-orbit of chains of subgroups in C to the orbit itself, so defines a transitive action.

Again, by δC we mean the composition of the Borel construction with the functor δ̃C.

Theorem 6.11 The collection of subgroups C is ample if and only if δC is a mod-p homology

decomposition, so that the map

Hocolim−−−−−→
sC/G

δC → BG
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is a mod-p homology equivalence.
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Chapter 7

From Homotopy Decompositions to

Homology Decompositions

Now that we have some decompositions of the p-completed classifying space BG∧p into various

subspaces (the normalizer, centralizer, and subgroup decompositions above) we want to

know how to use these decompositions to make the calculation of homology and cohomology

easier. We begin by discussing spectral sequences in general, then look at the Bousfield–Kan

spectral sequence in particular, which is the one that we use to understand the cohomology

of homotopy colimits. After this, we will examine the notion of sharpness, which indicates

when the Bousfield–Kan spectral sequence collapses on its E2 page: this means that the

cohomology comes out as a nice alternating sum formula over the elements in the homotopy

colimit.

7.1 Spectral Sequences

Let X be a space. One way to compute the homology of X is to use a spectral sequence: these

will be defined properly later, but it roughly consists of the following: double complexes of

modules, called pages, for which the collection of modules with total degree i (i.e., p+ q = i,

where p and q are the co-ordinates of the module) on each page in some way converge to

Hi(X). The best type of spectral sequence are those where after one or two pages there is

only one non-zero term among the modules with total degree i, in which case this is simply

the homology.

Definition 7.1 Let A be an abelian category. A homology spectral sequence (starting at

the Ea page) in A consists of

(i) objects {Er
p,q} from A for all p, q and all r > a;
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(ii) maps drp,q : Er
p,q → Er

p−r,q+r−1 such that drdr = 0; and

(iii) isomorphisms between Er+1
p,q and the homology of Er

∗,∗, so that

Er+1
p,q
∼= ker(drp,q)/ im(drp+r,q−r+1).

The second condition tells us that the lines of slope −(r + 1)/r on the Er page form

chain complexes, and note that as r grows, this eventually tends to slope −1. Since Er+1
p,q is

a subquotient of Er
p,q, if we have some mild boundedness conditions, either on A or on the

spectral sequence itself, then there will be some r such that for all s > r we have Es
p,q
∼= Er

p,q.

In this case, we denote this by E∞p,q

Definition 7.2 A spectral sequence is said to be bounded if, for each total degree n = p+ q,

there are only finitely many of the Ea
p,q that are non-zero. A bounded spectral sequence

converges to H∗ if the family of objects Hn in A , each having a finite filtration

0 = FsHn ⊆ Fs−1Hn ⊆ · · ·FtHn,

such that E∞p,q
∼= FpHp+q/Fp−1Hp+q. If the spectral sequence converges, we denote this by

Ea
p,q ⇒ Hp+q.

Thus there are two parts to a spectral sequence: the first is to try to construct the

objects E∞p,q, and the second is determine whether the spectral sequence converges to anything

interesting. The following special case helps a lot with both problems.

Definition 7.3 A spectral sequence is said to collapse at the Er page if Er
p,q = 0 except

along a single line, either horizontal or vertical.

If the spectral sequence converges to H∗ and it collapses on the Er page to the line p = 0

(say), then Hq = Er
0,q is particularly easy to understand. If it collapses at the rth page, not

only do you need only compute the one line in this page, but also one gets the actual object

H∗, rather than just filtrations for the objects in it.

7.2 Bousfield–Kan Spectral Sequence

Let I be an indexing category. We need to understand the projectives in the category of

R-modI of I -diagrams of R-modules; i.e., the category of functors from I to R-modules.

If M is an R-module and i ∈ I , then we construct the I -diagram

P (i,M)(j) =
⊕
α:i→j

Mα,
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where Mα is a copy of M and the sum is over all arrows i→ j in I . This gives the objects;

if β : j → k is a morphism in I , then its image

P (i,M)(β) : P (i,M)(j)→ P (i,M)(k)

takes Mα isomorphically to Mβα.

Proposition 7.4 If M is a projective R-module and i is an object in I then P (i,M) is a

projective object in R-modI .

These form enough projectives in the category that we can take projective resolutions.

Proposition 7.5 Every I -diagram of R-modules is a quotient of a direct sum of diagrams

of the form P (i,M), where i is an object in I and M is a projective R-module.

Not only do we get this, but we also have a way of constructing such a module. If F :

I → R-mod is an I -diagram of R-modules, let M(i) be a projective R-module surjecting

onto F (i). The diagram
⊕

i P (i,M(i)) is a projective I -diagram of R-modules surjecting

onto F .

Now that we have enough projectives, we may construct projective resolutions, and hence

product left derived functors of colim (a right exact functor). To do this, let F be any I -

diagram of R-modules, and construct a projective resolution of F using the fact that we

have enough projectives. Apply the functor colim to this projective resolution and remove

the last term. The ith left-derived functor for colim is the ith term from the right of this

projective resolution.

Theorem 7.6 If F : I → R-mod is an I -diagram of R-modules, then

colim−−−→
I

p F ∼= πn q .F.

Let A. be a bisimplicial R-module. The spectral sequence of this double complex takes

the form

πs,−π−,tA.⇒ πs+tDiagA..

If X. is a simplicial space, then to each space in X. we may apply the constructions R⊗ (−)

and R(−) to yield two more simplicial spaces. We can apply the spectral sequence above,

remembering that the homotopy πn of R⊗X is Hn(X;R) and πn(RX) = H̃n(X;R), and so

π∗,−(R⊗X.) = H∗,−(X.;R), π∗,−(RX.) = H̃∗,−(X.;R);
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the spectral sequence above gives the homology spectral sequence of a simplicial space

πp,−H−,q(X.;R)⇒ Hp+q(DiagX.;R), πp,−H̃−,q(X.;R)⇒ H̃p+q(DiagX.;R).

If F is a diagram of spaces, there are two bisimplicial sets that one may take: q.R ⊗ F
and q.RF . They are got by applying the construction X 7→ R ⊗ X and X 7→ R to each

space of q.F . These are both bisimplicial R-modules, and so we may take the spectral

sequences above.

Theorem 7.7 (Bousfield–Kan spectral sequence) Let F : I → sSet be a diagram of

spaces. The spectral sequences of the bisimplicial R-modules take the form

E2
p,q = colim−−−→

i∈I

pHq(F (i);R)⇒ Hp+q

(
Hocolim−−−−−→

i∈I

F (i);R

)
,

E2
p,q = colim−−−→

i∈I

p H̃q(F (i);R)⇒ H̃p+q

(
Hocolim−−−−−→

i∈I

F (i);R

)

7.3 Sharpness

A homology decomposition is referred to as sharp if the associated Bousfield–Kan spectral

sequence collapses on the E2 page to the vertical line p = 0, so that only E2
0,q is non-zero.

In this case, we have

E2
0,∗ = colim−−−→

i∈I

(
HG
∗ (X(i);Fp)

) ∼= H∗(G,Fp).

Just because a collection is ample does not mean that the normalizer, centralizer, and

subgroup decompositions are sharp. In fact, we have the following table for reference.

Collection Normalizer-sharp? Centralizer-sharp? Subgroup-sharp?

Sp(G) Yes Yes Yes

Ap(G) Yes Yes No

Bp(G) Yes No Yes

Cep(G) Yes No Yes

There are plenty of other collections, some of which are sharp, but these are general

collections found throughout the literature.

In order to get a nice formula, we need to generalize our normalizer decomposition that

we gave before. In that case, we considered the homotopy colimit over the category sC/G.

The category sC is simply the poset got from a simplicial complex, and so we may replace sC
by any admissible G-complex ∆. (Admissible means that the setwise stabilizer of a simplex

is equal to the pointwise stabilizer, and so there is a natural orbit ∆/G.)
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Definition 7.8 Let G be a finite group and let p be a prime dividing |G|. An admissible

G-complex ∆ is called ample if the map from the Borel construction

EG×G ∆→ EG×G ∗ = BG

is an Fp-homology equivalence.

Proposition 7.9 If ∆ is an admissible G-simplicial complex such that ∆Q is contractible

for all p-subgroups Q of G, then ∆ is ample.

As before, we define a ∆/G diagram of transitive G-sets as a functor δ̃∆ : ∆/G→ G− sSet,

and then get a map

Hocolim−−−−−→
∆/G

∆∆ → BG

(where ∆∆ is ∆̃∆ composed with the Borel construction) and ∆ is ample if and only if this

is an Fp-homology equivalence.

Assume that G acts flag-transitively on ∆, so that ∆/G is a simplex ∆, with I denoting

the vertex set of ∆. The stabilizer of a vertex in ∆ is denoted Hi, and for a subset J ⊆ I,

let HJ =
⋂
i∈J Hi. The terms in the normalizer decomposition are simple BHJ , and so if the

collection is normalizer-sharp, we get the following very nice formula:

H∗(BG;Fp) =
⊕
∅6=J⊆I

(−1)|J |−1H∗(BHJ ;Fp).

In the case of the sporadic groups that we have met, this decomposition holds, and so

we get a nice alternating sum decomposition formula, generalizing Webb’s formula for the

cohomology of the groups of Lie type via the building.
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Chapter 8

Conclusion

The conclusion of all this work is that we have done what we set out to do in the introduction.

We wanted an inductive way to calculate group cohomology: we took a finite group, then

took its classifying space, knowing that their cohomologies are the same. By taking p-

completions, we kept all of the mod-p cohomology. Now we consider homotopy colimits, and

notice that, for certain collections of subgroups, the p-completed classifying space of G is the

same as the p-completion of a homotopy colimit. Since the p-completion functor is a mod-p

homology equivalence, we can take the mod-p cohomology of the homotopy colimit; this can

be accomplished via the Bousfield–Kan spectral sequence, and then we get the cohomology

as an alternating sum formula over the subgroups, as long as the decomposition is sharp.

The other way is to completely forget about the homotopy colimits, p-completions, and

classifying spaces, and work with the fusion system. By the Martino–Priddy conjecture, the

p-completed classifying spaces are homotopy equivalent if and only if the fusion systems are

isomorphic, and so there should be some way of computing mod-p cohomology simply from

the fusion system. At the moment (as far as I am aware) this hasn’t been fulfilled yet.
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