
Groups, Geometries and Representation Theory

David A. Craven

Spring Term, 2013



Contents

1 Combinatorics of partitions 1

1.1 Previous knowledge about symmetric groups . . . . . . . . . . . . . . . . . . 1

1.2 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 James’s abacus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 The Robinson–Schensted correspondence . . . . . . . . . . . . . . . . . . . . 11

1.6 Tabloids and polytabloids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Two orderings on partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8 An ordering on tabloids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Constructing the representations of the symmetric group 19

2.1 Mλ and Sλ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 The branching rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 The characteristic p case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Young’s rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 The Murnaghan–Nakayama rule 32

3.1 Skew tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 The Littlewood–Richardson rule . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 The Murnaghan–Nakayama rule . . . . . . . . . . . . . . . . . . . . . . . . . 37

i



Chapter 1

Combinatorics of partitions

1.1 Previous knowledge about symmetric groups

A few facts about the symmetric group first that we need, that should be known from

earlier courses. We will use cycle notation for the elements of the symmetric group Sn, i.e.,

(1, 2, 5)(3, 4). We multiply left to right, so that (1, 2)(1, 3) = (1, 2, 3).

Writing a permutation σ ∈ Sn as a product of disjoint cycles, the cycle type of σ, writ-

ten 1a12a2 . . . nan , is the string where ai is the number of cycles of length i in σ. Hence

(1, 2, 3)(4, 5, 6)(7, 8)(9) ∈ S9 has cycle type 112132.

Recall that conjugation acts by acting on the cycle itself by the conjugating element, so

that (1, 2, 3)(4, 5), acted on by (2, 5, 3), becomes (1, 5, 2)(4, 3). This immediately yields the

following result.

Proposition 1.1 Two elements of Sn are conjugate if and only if they have the same cycle

type.

Along with conjugacy classes come centralizers. The centralizer of a given cycle (1, 2, 3, . . . ,m)

is the cyclic group of order m generated by the element itself. If a group element g =

(1, 2, 3)(4, 5) say is made up of disjoint cycles all of differing lengths (i.e., the exponents in

the cycle type above are all either 0 or 1) then its centralizer is generated by these different

cycles, and so is the direct product of the cyclic subgroups generated by them. However, the

centralizer of (1, 2)(3, 4) in S4 also includes the element (1, 3)(2, 4) which swaps the cycles.

In general we get the following theorem.

Theorem 1.2 The order of the centralizer of a cycle of type 1a12a2 . . . nan with
∑
i · ai = n

is
n∏
i=1

iai · ai!.
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1.2 Partitions

Since the cycle type of an element of Sn is given by 1a12a2 . . . nan with
∑
i · ai = n, we have

that the conjugacy classes of Sn are in one-to-one correspondence with partitions of n.

Definition 1.3 A partition of a non-negative integer n is a sequence λ = (λ1, . . . , λr) of

positive integers such that λi > λi+1 and
∑

i λi = n. We write n = |λ| is the length of λ,

and often λ ` n.

The empty partition is the only partition of 0, and the partitions of four are (4), (3, 1),

(2, 2), (2, 1, 1) and (1, 1, 1, 1). In general the number of partitions grow sub-exponentially

but super-polynomially.

Partitions can be represented via Young diagrams. These are essentially pictures with

rows of boxes, whose ith row has λi boxes in it. For example, the partition (4, 4, 3, 1) is given

by the diagram

.

Young diagrams are named after Alfred Young, and called Ferrers diagrams by some people,

mostly combinatorialists. The combinatorics of Young diagrams is expansive, and we will

only meet a small amount of it at the moment. The first object that is very easy to define

using Young diagrams is the conjugate partition. Simply draw a line diagonally from the

top-left box down and to the right, and then reflect the partition. One ends up with another

partition of the same number, in the example above it is

,

and for example the partitions (n) and (1, 1, . . . , 1) are swapped. This action induces a

bijection on the set of all partitions of n, and this bijection has order 2. The conjugate

partition has a variety of different notations in the literature, such as λ′, λc, λ̄, and we do

not fix a particular notation here to maintain flexibility.

One of the most fundamental objects in the combinatorial theory of partitions are hook

lengths. An algebraic definition is horrific, but a pictorial definition is fairly easy. Choose a

box x in a Young diagram. The hook ηx consists of the box x, all boxes to the right of x,

and all boxes below x. (If x has coordinates (i, j) then the hook is also written ηi,j.) The
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arm is those to the right, and the leg is all boxes below x. The hook length, arm length and

leg length are the number of boxes in the hook, arm and leg respectively. It is clear that the

hook length is the sum of the arm length, leg length, and 1. In the diagram above, adding

hook lengths, we get

7 5 4 2

6 4 3 1

4 2 1

1

.

The hook lengths along the first column of the partition are rather uninspiringly called the

first-column hook lengths. Notice that taking conjugate partitions swaps arms and legs,

so leaves the hook length of (the reflection of) a box unchanged. We come to our first

proposition about partitions.

Proposition 1.4 (i) If λ is a partition then the hook lengths along any row or column

strictly increase towards the left and top respectively.

(ii) The act of taking first-column hook lengths induces a bijection between the collection

of all partitions of all non-negative integers and the set of all finite subsets of the

positive integers.

Proof: If a box x is further to the left than the box y but on the same row, then the arm

length of x must be larger than that of y, and the leg length is at least as high, so the hook

length of x is larger than that of y. Taking conjugates gives the same result for columns.

This proves (i).

In order to prove (ii), we note that firstly by (i) the map is well defined. We show how

to reconstruct the partitions λ from its first-column hook lengths {h1, . . . , hr}, and we order

the hi for simplicity so that hi > hi+1. The relationship between the hi and the λi is given

by

hi = λi + r − i.

Since r is fixed, we can move between the λi and hi, so the function of taking first-column

hook lengths is indeed a bijection.

1.3 James’s abacus

In this section we will introduce James’s abacus and prove the uniqueness of t-cores. The

abacus is a pictorial representation of the first-column hook lengths of a partition that can

be manipulated to extract various combinatorial data about it, most notably its core.
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Definition 1.5 Let λ be a partition and let t be a positive integer. A t-hook is a hook in λ

of length t. The process of removing a t-hook consists of deleting the boxes that comprise

a hook of length t, then moving the boxes that are currently below and to the right of the

hook one box up and one box left, to construct another partition of |λ|− t. We write λ \ {η}
for the result of removing the hook η from the partition λ.

Algebraically, if λ = (λ1, . . . , λr) is a partition, and x = (a, b) is a box in λ, then removing

the hook ηx at x (which has leg length l) results in the partition (µ1, . . . , µr), where µi = λi

for i < a, µi = λi+1 − 1 for a 6 i < a + l, µa+l = b − 1, and µi = λi for i > a + l. If i = 1

then some of the µi might be zero, in which case these are removed.

The only part of the algebraic description that needs confirming is that µa+l = b−1, and

to see this we note that once the disconnected partition has been moved upward one row,

there is nothing extra to add onto row a+ l, so that row a+ l must end where the hook was

taken away, i.e., µa+l = b− 1.

Before we present James’s abacus, we want to describe the effect of removing a hook

from a partition on its set of first-column hook lengths. For this, the algebraic description

comes in handy. The only problem is that the act of removing the zeros from the end of

µ is difficult to describe, so we wish to leave them in; however, then we don’t have a ‘real’

partition, and we need to expand our collection of partitions and first-column hook lengths

to accommodate zeros.

Definition 1.6 A β-set (also called a set of β-numbers) is a finite collection of non-

negative integers. We place an equivalence relation on the set of all β-sets by X ∼ Y

if

Y = {0} ∪ {i+ 1 | i ∈ X},

and taking the reflexive, symmetric and transitive closure of this relation. In other words,

X ∼ Y if one can get Y from X (or the other way round) by adding n to each element of X

and appending {0, . . . , n− 1}, for some n > 0.

As examples, the β-sets {0, 1, 4, 6, 8} and {0, 3, 5, 7} are equivalent, and {0, 1, 2} is equiv-

alent to the β-set ∅.
Inside each equivalence class of β-sets there exists one X for which 0 /∈ X, and X is the

set of first-column hook lengths for a partition λ. (This is the empty partition when X = ∅.)
Hence there is a bijection between partitions of non-negative integers and equivalence classes

of β-sets, so to any β-set we can associate a partition, and to any partition we can associate

some β-set.
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A way of thinking of β-sets that are not first-column hook lengths for a partition is to

take a partition λ, add finitely many zeroes to the end of λ, and then use for formula

xi = λi + r − i

where λ has r parts, to produce a β-set of λ. It is easy to see that adding a zero to λ has

the effect of increasing all the xi by 1 and appending 0 to the end, so that this is indeed a

β-set of λ.

We can now describe the process of removing a hook from λ in terms of β-sets as follows.

Proposition 1.7 Let X = {x1, . . . , xr} be a β-set of a partition λ. Suppose that the hook

at x = (a, b) has length t. If Y is a β-set obtained by removing the hook at x, then (one

choice of) Y is obtained from X by subtracting t from xa and keeping all other xi the same.

Proof: Let µ be the partition obtained from λ by removing the hook at x, and leave any

zeroes at the end of µ. The algebraic definition of removing a t-hook is that λi = µi for i < a

and i > a+ l, where l is the leg length of the hook at x, and µi = λi+1− 1 for a 6 i < a+ l,

with µa+l = b− 1. We will construct the β-set Y of µ that has the same number of elements

as X.

Since the number of parts of λ and µ are the same, if λi = µi then xi = yi, so every

element apart from those for a 6 i 6 a+ l are good. For a 6 i < a+ l, we have

yi = µi + r − i = λi+1 − 1 + r − i = λi+1 + r − (i+ 1) = xi+1,

and finally, since λa = (b− 1) + t− l (the hook had length t, started at box b, and only the

leg, with l boxes, is not in row a, which had λa boxes in total)

ya+l = µa+l+r−(a+l) = (b−1)+r−(a+l) = (λa−t+l)+r−a−l = (λa+r−a)−t = xa−t.

Hence we see that Y can be obtained from X by removing t from xa and leaving all other

β-numbers the same.

We now introduce the abacus. Let X be a set of β-numbers. The abacus of X has t

runners for some positive integer t, labelled runners 0, 1, . . . , t−1, pointing downwards. Each

runner consists of positions, one for each non-negative integer, and the value of position i at

runner j is i · t+ j; so the value of positions on runner i are always congruent to i modulo t.

Each position is occupied by a bead if the value of that position is in X, and a gap otherwise.

Thus if t = 3 and X = {0, 1, 3, 5, 6, 8}, we have the following diagram.
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◦ ◦
◦ ◦
◦ ◦

We can move from one β-set to an equivalent one by shifting all beads one to the right and

adding a bead to the bottom, like this:

◦ ◦ ◦
◦

◦ ◦
◦

Proposition 1.7 proves that to obtain the β-set corresponding to removing a t-hook, we

simply push a particular bead up one position on the abacus, like so:

◦ ◦ ◦
◦
◦ ◦

To see this in Young diagrams, we have the following hook removal:

× ×
×

−→

Notice that, if the β-set of the unmodified diagram is {1, 3, 4, 6} then removing the 3-hook

above yields {0, 1, 4, 6}, which is equivalent to {2, 4}, the first-column hook lengths of the

partition on the right.

This process of removing a t-hook now makes well defined the following definition.

Definition 1.8 A t-core is a partition λ with no t-hooks. If λ is any partition, then the

t-core of λ is the partition obtained by removing all t-hooks from λ.

A priori, it is not obvious that the order in which you remove the hooks does not matter.

However, on the abacus, it is now clear that the t-core of a partition is obtained by simply

shifting all beads as far up their runners as possible. The t-core of a partition is a fundamental

object in the representation theory of the symmetric group, and we will see this importance

(much) later in the course.

6



1.4 Tableaux

A tableau is a filling of the boxes in a Young diagram with the numbers 1 to n, as for example

in the following.

1 5 4

3 2

We say that a tableau is standard if the numbers in the rows and columns are in increasing

order. For example, the above tableau is not standard and the following tableau is standard.

1 3 5

2 4

The next lemma is clear, and no proof is needed.

Lemma 1.9 The number of Young tableaux for a given partition λ of size n is n!. There is

at least one standard Young tableau with shape λ.

For almost all diagrams, i.e., not (n) and (1n), there are at least two standard tableaux for

that diagram.

1 3 5

2 4

1 2 3

4 5

We write fλ for the number of standard tableau with shape λ.

Definition 1.10 A removable node in a Young diagram λ is one whose hook length is 1, i.e.,

a box which may be removed and the remaining daigram is that of a partition. An addable

node is a removable node x in a Young diagram µ such that λ = µ \ {x}. Write Rem(λ) for

the set of all removable nodes of λ and Add(λ) for the set of addable nodes for λ.

Removable nodes are important since they allow us to compare partitions of n with

partitions of n − 1. Notice that if x is a box in a standard tableau, then all boxes in the

arm or leg of the hook corresponding to x must have larger numbers than that of x, so

whichever box is filled with n must be removable. Furthermore, removing this box, and its

filling, results in a standard tableau for the Young diagram λ \ {x}.
What we see is that there is a bijection between the set of all standard tableaux with

shape λ and the union, over all removable nodes x of λ, of the standard λ \ {x}-tableaux.

In other words, we have

fλ =
∑

x∈Rem(λ)

fλ\{x}.

Clearly we also have f (n) = f (1n) = 1, as we mentioned before, so that any function g on the

set of partitions that satisfies g((1)) = 1 and the recursion above, is a formula for fλ. We
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will prove the remarkable identity

fλ =
n!∏

(i,j)∈λ

hi,j
,

where λ ` n, (i, j) runs over all boxes in λ, and hi,j is the hook length of the box (i, j).

The method of proof will be exactly as described, noting that clearly the right-hand side

evaluates to 1 for the partition (1).

We first rewrite this in terms of the first-column hook lengths hi,1.

Lemma 1.11 Let λ = (λ1, . . . , λr) be a partition of n. We have

∏
(i,j)∈λ

hi,j =

r∏
i=1

(hi,1)!∏
16i<j6r

(hi,1 − hj,1)
.

Proof: For each 1 6 i 6 r we have that there are no repetitions in the set

hi,1, hi,2, . . . , hi,λi , hi,1 − hi+1,1, hi,1 − hi+2,1, . . . , hi,1 − hr,1,

i.e., the hook length of the box x = (1, i), the hook lengths of the boxes in the arm of x, and

the difference between the hook length of x and the hook lengths of the boxes in the leg of

x. To see this, we first notice that removing the first i − 1 rows from λ does not affect the

numbers in the hook of the box, so we can assume that i = 1.

It is clear that no two hook lengths among x and the boxes in the arm of x are the same,

and similarly no two hook lengths in the leg of x are the same. Furthermore, h1,1 − hk,1

can never be equal to h1,1, so that the only possible equality is h1,j = h1,1 − hk,1 for some

1 < j 6 λ1 and 1 < k 6 r. Writing l for the leg length of (1, j), we get that h1,1 = λ1 +r−1,

hk,1 = λk + r − k, and h1,j = λ1 − j + 1 + l, so the equality becomes

(j − 1) + (k − 1) = l + λk.

If λk 6 j − 1 then the hook at (1, j) cannot reach down to row k, so that the leg length, l,

must be less than k − 1, so that the equality above cannot hold. Conversely, if λk > j − 1

then the hook at (1, j) definitely does reach down, possibly past, row k, so that the leg length

l must be at least k− 1; hence again the equality above cannot hold, and so there can be no

repetitions in the sequence above.

We now return to the proof of the lemma: As there are exactly hi,1 entries in the hook

at box x, and they are all at most hi,1, their product must be (hi,1)!. Therefore

(hi,1)!
∏
i<j

(hi,1 − hj,1) =

λi∏
j=1

hi,j.
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Finally, the product of all hook lengths is the double product over rows and columns, and

gives the required formula.

It is this version of the hook length formula that we wish to prove, by induction via

removable nodes, so we aim to show that

fλ = n!

∏
16i<j6r

hi,1 − hj,1

r∏
i=1

(hi,1)!

.

By induction, we have that

fλ =
∑

x∈Rem(λ)

(n− 1)!

∏
16i<j6r(x)

h
(x)
i,1 − h

(x)
j,1

r(x)∏
i=1

(h
(x)
i,1 )!

,

where r(x) is the number of parts in λ \ {x} and h
(x)
i,j are the hook lengths in λ \ {x}. If x

does not lie in row r, or λr > 1, then r(x) = r and h
(x)
i,j = hi,j except h

(x)
x,1 = hx,1 − 1. If x lies

in row r and λr = 1 then r(x) = r − 1 and h
(x)
i,1 = hi,1 − 1 for all i.

Notice that there is at most one removable node per row, the last row always has a

removable node, and a row i has a removable node if and only if hi,1 − hi+1,1 > 1. In other

words, we can replace the formula above with

fλ =
r∑

x=1

(n− 1)!

∏
16i<j6r(x)

h
(x)
i,1 − h

(x)
j,1

r(x)∏
i=1

(h
(x)
i,1 )!

,

where the definition of r(x) and h
(x)
i,j is as above; the extra terms included are all zero, since

if there is no removable node in row i then h
(x)
i,1 − h

(x)
i+1,1 = 0. Our goal is to rearrange this to

get something involving only r and hi,1: fixing 1 6 x 6 r (assume λr > 1), we see that

r(x)∏
i=1

(h
(x)
i,1 )! =

r∏
i=1

(hi,1)!

/
hx,1,

and ∏
16i<j6r(x)

h
(x)
i,1 − h

(x)
j,1 =

( ∏
16i<j6r

hi,1 − hj,1

)∏
i>x

hx,1 − 1− hi,1
hx,1 − hi,1

∏
x>i

hi,1 − hx,1 + 1

hi,1 − hx,1
.
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If λr = 1 then both right-hand sides of the two displayed equations differ from the left by a

factor of
∏r−1

i=1 hi,1, so their quotient is still correct. Substituting back in, we now get

fλ = (n− 1)!

∏
16i<j6r

hi,1 − hj,1

r∏
i=1

(hi,1)!

·
r∑

x=1

hx,1 ·
∏
i 6=x

(
1 +

1

hi,1 − hx,1

)
.

Comparing this formula with the one we want, we need to prove that

r∑
x=1

hx,1 ·
∏
i 6=x

(
1 +

1

hi,1 − hx,1

)
= n.

In fact, this statement holds for any r distinct complex numbers whose sum is n+r(r−1)/2.

That is to say, we have the following proposition.

Proposition 1.12 Let z1, . . . , zr be r points in C. We have that

r∑
i=1

zi −
r(r − 1)

2
=

r∑
i=1

zi ·
∏
j 6=i

(
1 +

1

zj − zi

)
.

Proof: Define a function f : C→ C by

f(z) = z
r∏
i=1

(
1 +

1

zi − z

)
,

and note that f is holomorphic on C but not the zi, with a simple pole at each of the zi.

Thus we can apply Cauchy’s residue theorem to get that, for C a circle of large radius at

the origin, ∫
C

f(z)dz = 2πi
r∑
i=1

Res(f, zi).

The residue of the function f at zi is given by −zi
∏

j 6=i(1 + 1/(zj − zi)). We now use the

residue at infinity; since we have that f is holomorphic on an annulus of infinite outer radius,

−1

2πi

∫
C

f(z)dz = Res(f,∞) = Res

(
−1

z2
f

(
1

z

)
, 0

)
.

Now we just have to understand −1/z2 · f(1/z), which is

−1

z3

r∏
i=1

(1− z − ziz2 + · · · ),

and the z−1 term of this is
∑r

i=1 zi (squares times constant) minus r(r − 1)/2 (linear times

linear). Substituting this in gives the result.
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This now proves the second version of the hook length formula, and so the original version

is proved.

Theorem 1.13 (Frame, Robinson, Thrall) If λ is a partition of n, then

fλ =
n!∏

(i,j)∈λ

hi,j
.

It turns out that the number of standard tableaux of a given shape is the dimension of a

particular representation of the symmetric group Sn. In the next chapter, when we construct

all of these, we will associate a ZSn-module Sλ to any partition λ, and we will see that it has

dimension fλ. These modules, called Specht modules, will be the complete set of irreducible

representations over the complex field. In particular, this means that∑
λ`n

(fλ)2 = n!.

However, in order to prove the facts we just stated about Specht modules we will need

to know this fact! The next section, on the Robinson–Schensted correspondence, will in

particular show this fact (Corollary 1.15).

1.5 The Robinson–Schensted correspondence

The Robinson–Schensted algorithm is another fundamental procedure in the combinatorics

of symmetric groups. It assigns to each permutation of n points two standard tableaux of

the same shape. We will prove that there is a bijection between permutations of Sn and all

pairs of standard tableaux of the same shape, and so the formula∑
λ`n

(fλ)2 = n!

in the previous section immediately drops out.

Let σ ∈ Sn be a permutation, sending i to iσ. We will construct a sequence of ‘partial’

tableaux (of the same shape)

(P0, Q0) = (∅, ∅), (P1, Q1), . . . , (Pn, Qn);

at each stage i the number iσ is inserted into the tableau Pi−1 at some place, and i is added

to Qi−1 (in an addable node) to maintain the same shape as Pi. It is clear from what we

have just said that Qi is always standard, and Pi contains numbers 1 to n – but not all of

them – and they increase along rows and columns. The procedure, called row insertion, is

as follows, to insert a number x into a partial tableau P :
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(i) Consider the first row of the tableau P : if x is larger than any element of this row,

then add x to the end of the row and stop.

(ii) If x is smaller than some element of this row, let y denote the smallest element in the

row that is larger than x, replace y by x. (The element y is said to be bumped to the

next row.)

(iii) Perform the same procedure on the second row of P , with the new value y. Continue

until you add a value to the end of a row and stop. (This might be a row that does

not exist in P .)

We construct (Pi, Qi) from (Pi−1, Qi−1) by row inserting iσ into Pi−1 and adding i to an

addable node of Qi−1 to make it the same shape as Pi. For example, if σ = (1, 6, 3)(2, 4), we

get the Pi to be

P0 = ∅ P1 = 6 P2 = 4

6
P3 = 1

4

6

P4 = 1 2

4

6

P5 = 1 2 5

4

6

P6 = 1 2 3

4 5

6

The Qi are simply

Q0 = ∅ Q1 = 1 Q2 = 1

2
Q3 = 1

2

3

Q4 = 1 4

2

3

Q5 = 1 4 5

2

3

Q6 = 1 4 5

2 6

3

The process of row insertion definitely yields a partial tableau, and so Pn is a standard

tableau. We therefore have constructed an algorithm to produce, given any σ ∈ Sn, a pair

of standard tableau Pn = P (σ) and Qn = Q(σ) of the same shape. We now want to reverse

the algorithm, taking any pair (P,Q) of standard tableaux of the same shape and returning

an element σ of Sn such that P = P (σ) and Q = Q(σ).

Theorem 1.14 The Robinson–Schensted correspondence is a bijection between permuta-

tions and pairs of standard tableaux of the same shape.

Proof: Write (P,Q) for a pair of standard tableaux of the same shape. Let (Pn, Qn) =

(P,Q); we will proceed by induction to construct a sequence (Pi, Qi) and a permutation σ

such that the (Pi, Qi) are the steps in the Robinson–Schensted algorithm. We prove that we

can ‘reverse’ the algorithm at one particular stage.

The procedure is as follows:

(i) Find the box of Qn filled by n: this is the removable box of Pn that was added from

‘Pn−1’, filled with x. Delete this box.

12



(ii) Move to the row above the row that had x in it. To find the box that used to contain

x but was bumped by another number, find the largest number y on the row that is

smaller than x, put x in the box instead of y and carry y up to the next row.

(iii) Continue this until we run out of rows. The number carried forward this time is σn,

and the partial tableau that remains is Pn−1.

It is clear from our construction that row inserting σn into Pn−1 yields Pn, and so by induction

we may construct a sequence (Pi) and a permutation σ such that P (σ) = P and Q(σ) = Q.

This completes the proof of the theorem.

This yields the corollary mentioned twice before, which is explicitly given for future

reference.

Corollary 1.15 If n is a positive integer, then∑
λ`n

(fλ)2 = n!.

Proof: There is a bijection between the permutations of Sn (which total n!) and pairs of

standard λ-tableaux (which number (fλ)2) as λ ranges over all partitions of n. This yields

the above equation.

1.6 Tabloids and polytabloids

A tableau is a Young diagram with the numbers 1 to n filling them. We can let Sn act on

the set of Young tableaux of a fixed shape by permutation of the entries, so that

1 2 3

4

5

· (1, 5, 4)(2, 3) = 5 3 2

1

4

.

A tabloid is where we have a tableau but we ignore the ordering along the rows, so that

1 2 3

4 6

5

and 3 1 2

6 4

5

are ‘the same’. To demonstrate this equality, we remove the vertical bars, as so:

1 2 3

4 6

5

.

13



If t is a tableau, denote by {t} the associated tabloid.

While the action of Sn on tableau was regular (i.e., transitive and the point stabilizer

is trivial), the action of Sn on tabloids is transitive but generally far from regular; in the

example above the stabilizer is clearly Sym(1, 2, 3)×Sym(4, 6) 6 S6. Subgroups of symmetric

groups of this type, direct products of symmetric groups acting naturally, are called Young

subgroups. The isomorphism type is determined completely by the shape of the tabloid,

leading to a ‘standard’ Young subgroup

Sλ = Sλ1 × Sλ2 × · · · × Sλr ,

associated to a partition λ = (λ1, . . . , λr), with each Sλi acting on the next λi points.

Given a tableau, the stabilizer of the corresponding tabloid is called the row stabilizer,

for obvious reasons. Exactly analogously, there is a column stabilizer. Denote the row and

column stabilizers of a tableau t by Rt and Ct respectively. Combining the two stabilizers

results in the concept of a polytabloid, a formal linear combination of tabloids.

Let t be a tableau. The polytabloid of t is the formal linear combination∑
σ∈Ct

sgn(σ){t · σ},

where sgn(σ) is the sign of the permutation σ and as we said before {·} denotes the operation

of taking a tabloid of a given tableau. For example, the polytabloid of the tableau

1 2 3 4

5 6

is
1 2 3 4

5 6
− 1 3 4 6

2 5
+ 3 4 5 6

1 2
− 2 3 4 5

1 6
.

If t is a tableau, denote the associated polytabloid by t. The element
∑

σ∈Ct sgn(σ)σ will be

denoted by κt, so that t = {t} · κt.
Since the symmetric group acts on tabloids it also acts on formal linear combinations

of them, so on polytabloids. It also can act on polytabloids by acting on the underlying

tableau. We have actions of the symmetric group on many different objects now, and a

quick lemma will tell us that these actions are all ‘nice’.

Lemma 1.16 If σ ∈ Sn, λ ` n and t is a tableau of shape λ, then we have that (Rt)
σ = Rt·σ,

(Ct)
σ = Ct·σ, and κt · σ = κt·σ.

The first two parts follow immediately from the fact that Rt is the stabilizer of t as a

tabloid and Ct is the stabilizer of t as a ‘column tabloid’, in which case this is standard
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theory of transitive permutation groups. That κt · σ = κt·σ follows since Ct is transported

this way and the sign of a permutation is preserved by conjugation.

We also need to record the action of Sn on the tabloids and polytabloids.

Lemma 1.17 Let σ ∈ Sn, t be a tableau of shape λ for some λ ` n. We have that

{t} · σ = {t · σ} and t · σ = t · σ.

Proof: To see that {t} · σ = {t · σ}, notice that the action of taking a tabloid is simply

to delete the vertical lines, which obviously commutes with the action of Sn. Finally, since

t = {t} · κt, we have that

t · σ = ({t} · κt) · σ = ({t} · σ) · κσt = {t · σ} · κt·σ = t · σ.

This proves that Sn acts transitively on the set of tabloids and polytabloids of a given

shape.

1.7 Two orderings on partitions

There are two natural orderings on partitions that we will discuss here. The first is standard

lexicographic ordering.

Definition 1.18 Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs) be two partitions of n. The

lexicographic ordering is defined as follows: we have that λ > µ if, for the first i that λi 6= µi,

we have λi > µi.

In this total ordering the partition (n) is the largest element and (1n) is the smallest element.

For the partitions of 4 we have

(4) > (3, 1) > (2, 2) > (2, 1, 1) > (14)

and for 5,

(5) > (4, 1) > (3, 2) > (3, 1, 1) > (2, 2, 1) > (2, 13) > (15),

The other, more subtle, ordering, is a partial ordering called the dominance ordering.

Definition 1.19 Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs) be two partitions of n. The

dominance ordering is defined as follows: we have that λ Q µ if for all 1 6 n 6 r, we have

n∑
i=1

λi >
n∑
i=1

µi.
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The dominance ordering is certainly a partial ordering rather than a total ordering, but

again it has a unique maximal element of (n), and a unique minimal element of (1n). For

the partitions of 4 and 5, the dominance ordering is the same as the total ordering, but for

n = 6,

(6) > (5, 1) > (4, 2) > (4, 1, 1) > (3, 3) > (3, 2, 1) > (3, 13) > (2, 2, 2) > (2, 2, 1, 1) > (2, 14) > (16),

whereas (4, 1, 1) and (3, 3) are incomparable under Q. Chains that match up with > are

(6) Q (5, 1) Q (4, 2) Q (4, 1, 1), (3, 3) Q (3, 2, 1) Q (3, 13), (2, 2, 2) Q (2, 2, 1, 1) Q (2, 14) Q (16),

and we can connect the three chains via (4, 1, 1) Q (3, 2, 1) and (4, 2) Q (3, 3) for the former

two, and (3, 13) Q (2, 2, 1, 1) and (3, 2, 1) Q (2, 2, 2) for the latter two.

The following obvious lemma, suggested in the examples above, relates the partial dom-

inance ordering to the total lexicographic ordering.

Lemma 1.20 If λ P µ then λ 6 µ.

We need one lemma on the dominance ordering in the next chapter.

Lemma 1.21 (Dominance lemma) Let t be a tableau of shape λ and let s be a tableau

of shape µ. If, for every index i, the elements of row i of s lie in different columns of t, then

µ P λ.

Proof: We will relabel the entries 1, . . . , n of t, preserving the columns of t: we can do this

so that the entries in the first i rows of s can all be placed in the first i rows of t. (To see

that this is possible, since for each row the entries in s appear in different columns of t, there

are at most i entries from the first i rows of s in each column of t.) Doing this, we see that

the number of entries in the first i rows of t is at least that of the first i rows of s, so that

µ P λ, as claimed.

1.8 An ordering on tabloids

Here we will construct an analogue of the dominance ordering on partitions, but this time

for tabloids of a fixed shape λ. For our purposes – proving that polytabloids associated to

standard λ-tableaux are linearly independent – there are several different partial orderings

that will work. The key property is the following: if t is a standard tableau, then for any

σ ∈ Ct, {t} dominates {t · σ}. Since polytabloids are formal linear combinations of tabloids

it makes sense to take linear combinations of polytabloids. To see that the property we

highlighted just now is the appropriate one, we prove the result.
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Proposition 1.22 Suppose that
∑

i aiti = 0 is a linear combination of standard λ-polytabloids

ti with ai ∈ R and R a commutative ring. If P is a partial ordering on tabloids such that if

t is a standard tableau then for any σ ∈ Ct, {t} Q {t · σ}, then all ai are zero.

Proof: Order the ti so that whenever {ti} P {tj} we have i > j. Notice that {ti} appears

with coefficient ai in aiti. We claim that {t1} does not appear in any other ti, so that since

the sum is zero, a1 must be zero. By induction then, all ai are zero. If {t1} appears in ti

then by the fundamental property of P, t1 Q ti. This contradicts the ordering on the ti, and

so the result holds.

In order to prove that the ti are linearly independent then, it suffices to prove the existence

of such an ordering P. There are several choices for such an ordering: one is given in Exercise

2.1, and we give a simpler one here. If {t} is a tabloid, let t be the tableau with increasing

rows whose tabloid in {t}. The column word of such a tabloid is the sequence of integers

between 1 to n, starting in the left-most column of t and reading from bottom to top. We

write {t} Q {s} if the largest number, i.e., n where t has size n, appears earlier in t than in

s, and if n appears in the same place then consider n − 1, and so on. If the column words

of s and t are equal, then write {t} Q {s} if {t} = {s}. For example, if {t} is the tabloid

7 5 3 8 1

9 4 2

6 10

,

then the column word is 6, 2, 1, 10, 4, 3, 9, 5, 7, 8, and the maximal element has position 4.

Notice that there are many tabloids with the same column word, but if one fixes the

column word and the shape then one fixes the tabloid. Also, if {t} is a tabloid and σ ∈ Sn,

then either {t · σ} = {t} or the column words of {t} and {t · σ} are different, in which case

{t} and {t · σ} are comparable under P.

If t is a standard tableau then the column word of {t} is the column word of t, and along

each column the entries increase down the column; if σ ∈ Ct and i is the largest integer

moved by σ, then i appears further up the column of {t · σ}. Hence all integers greater than

i appear in the same place in the column words of {t} and {t · σ}, and i appears earlier in

{t} than in {t · σ}. Thus if t is standard then {t} Q {t · σ}, exactly the property required.

We need to use this result in a different context, so we rewrite it in terms of general

vector spaces.

Proposition 1.23 Let e1, . . . , en be a basis for a finite-dimensional vector space V , and let

Q be a partial order on the elements of V . Suppose that v1, . . . , vm are elements of V such
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that the vi each contain a unique maximal element mi under Q, and the mi are all distinct,

then the vi are all linearly independent.
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Chapter 2

Constructing the representations of

the symmetric group

2.1 Mλ and Sλ

The first construction is of the Mλ, the ambient module within which we will construct the

Sλ.

Definition 2.1 Let λ be a partition of n. The Young module, denoted Mλ, is the permuta-

tion module of Sn with basis the set of tabloids of shape λ.

This is of course just the permutation module on the cosets of the Young subgroup

Sλ. This definition is independent of the field, or even ring, over which we want to do our

representation theory. Traditionally a lot of these definitions are done over Z, since this

encapsulates both the modular theory (the field Fp) and the ordinary theory (the field C).

The construction of Sλ is almost as easy.

Definition 2.2 Let λ be a partition of n. The Specht module, denoted Sλ, is the submodule

of Mλ generated by the polytabloids of shape λ.

A cyclic module is a module M such that there exists m ∈ M with M = 〈m〉 (as a

module). We see that, since Sn acts transitively on tabloids and polytabloids, both Young

and Specht modules are cyclic, generated by any tabloid and polytabloid respectively.

Unlike the case of Mλ, the generating set for Sλ is not a basis. We already know the

dimension of Sλ – it should be fλ, and so one good guess for a basis of Sλ is the set of

polytabloids t where t is a standard tableau of shape λ. Indeed, this is the case, but this

will take some time to prove. First, we need to prove that Specht modules are irreducible,

at least over C, which we do now.
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Let (·, ·) denote the unique bilinear form such that ({t}, {s}) = δ{t},{s}. (Since the tabloids

form a basis for Mλ, such a bilinear form exists.) We first prove that if t is a λ-tableau and

s is a µ-tableau, then {s} · κt = 0 unless λ dominates µ, and if λ = µ then {s} · κt is a

(possibly zero) scalar multiple of {t}.
Suppose that {s} · κt 6= 0. If a and b are two labels in the same row of s that also lie in

the same column of t, then (a, b) ∈ Ct and we therefore see that κt = (1− (a, b))x, where x

consists of all the even permutations in Ct by Exercise 2.2. As {s}(a, b) = {s} by hypothesis,

{s} · κt = {s} · (1− (a, b))x = 0.

Thus no two entries in the same row of s lie in the same column of t, and firstly λ dominates µ

by the dominance lemma, and moreover the argument in the proof of the dominance lemma

states that there exists σ ∈ Ct such that {t} · σ = {s}. We therefore get

{s} · κt = ({t} · σ)κt = sgn(σ)({t} · κt) = ±t.

The equality σκt = κtσ = sgn(σ)κt when σ ∈ Ct is Exercise 2.2.

Theorem 2.3 (James’s submodule theorem) Let V be a submodule of Mλ. Either V

contains Sλ or V ⊂ (Sλ)⊥.

Proof: By the above paragraph, if t and s are two λ-tableaux then {s} · κt is a scalar

multiple of t. We therefore see that if m is any element of Mλ and t is a tableau of shape λ,

then mκt is a scalar multiple of t, simply because m is expressible as a linear combination

of λ-tableaux, and we apply the displayed equation above.

Suppose that there exists v ∈ V and t a tableau of shape λ such that v · κt 6= 0. As V

is a submodule, v · κt ∈ V , but v · κt is a scalar multiple of t, so t ∈ V . This proves that

Sλ 6 V since Sλ = 〈t〉.
Conversely, we could have that, for all v ∈ V and t a tableau of shape λ, v · κt = 0.

Exercise 2.2 now tells us that, given any λ-tableau t and v ∈ V , we have that

(v, t) = (v, t · κt) = (v · κt, t) = 0.

Consequently, V 6 (Sλ)⊥ (since the t span Sλ as a vector space), as claimed.

All of this was done over any field, in fact over any ring R where we think of RG-modules

as free over R (technically these are RG-lattices, but since we will be solely interested in

fields, this distinction need not be made). We see the following corollary.

Corollary 2.4 If λ is a partition of n then Sλ/(Sλ ∩ (Sλ)⊥) is either 0 or irreducible.
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Over a field of characteristic 0, since our bilinear form is clearly non-degenerate, we see

that Sλ ∩ (Sλ)⊥ = 0, so that the Specht modules are irreducible. We now prove that if

λ 6= µ then Sλ and Sµ are non-isomorphic. This will unfortunately require the field to be

the complex numbers for now, although we will later repair this deficiency and prove that

the Sλ form a complete set of irreducible kSn-modules for any field k of characteristic 0 or

p > n.

Theorem 2.5 If Hom(Sλ,Mµ) is non-zero then λ dominates µ, and Hom(Sλ,Mλ) consists

of multiplication by a scalar. Consequently, the modules Sλ for λ ` n form a complete set

of irreducible kSn-modules for any field k of characteristic 0.

Proof: Let φ ∈ Hom(Sλ,Mµ) be non-zero, so that there exists some λ-tableau t such that

tφ 6= 0. As char k = 0, Mλ = Sλ ⊕ (Sλ)⊥, so let φ̄ ∈ Hom(Mλ,Mµ) be given by extending

φ via projection along Sλ first. Hence

0 6= ({t} · κt)φ = ({t}φ)κt =

∑
{s}

cs{s}

κt =
∑
s

cs({s} · κt).

In the paragraph before James’s submodule theorem we proved that if {s} · κt 6= 0 then λ

dominates µ, where t has shape λ and s has shape µ. The displayed equation above proves

that in our case λ dominates µ as one of the {s} ·κt must be non-zero. Furthermore, if λ = µ

then {s} ·κt is either 0 or a scalar multiple of {t}, so that tφ = ct for some (non-zero) scalar

c. As Sλ is generated by t, we have that φ is scalar multiplication by c, as needed.

To see that the Specht modules form a complete set of irreducible kSn-modules, firstly

there are the correct number of them, namely equal to the number of partitions of n, so

it suffices to show that they are pairwise non-isomorphic. Suppose that Sλ = Sµ; then in

particular Hom(Sλ,Mµ) and Hom(Sµ,Mλ) are non-zero, so that λ dominates µ and vice

versa, yielding λ = µ, and this completes the proof.

This also shows that the permutation module Mµ decomposes as a sum of mλ,µS
λ for

various λ Q µ, with mλ,λ = 1. The mλ,µ are called Kostka numbers, and have a purely

combinatorial description in terms of so-called ‘semistandard’ tableaux, which we will see

later in this chapter.

We end with a result that we promised earlier.

Theorem 2.6 Over any commutative ring, a basis for Sλ consists of the standard λ-polytabloids,

and dimSλ = fλ.
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Proof: The standard λ-polytabloids are linearly independent by Proposition 1.22, so dimSλ >

fλ. However, by the Robinson–Schensted correspondence n! =
∑

λ(f
λ)2, and since

n! = |Sn| =
∑
λ`n

dim(Sλ)2 >
∑
λ`n

(fλ)2 = n!,

we see that the polytabloids t for t a standard λ-tableau are a basis for Sλ, yielding dimSλ =

fλ.

2.2 The branching rule

What happens when you restrict the CSn-module Sλ from Sn to Sn−1? In the inductive

proof of the hook length formula, we obtained the formula

fλ =
∑

x∈Rem(λ)

fλ\{x},

and since fλ = dimSλ, the obvious guess would be

Sλ =
⊕

x∈Rem(λ)

Sλ\{x}.

The obvious guess turns out to be correct. Since the dimensions of both sides agree, and

Specht modules are all irreducible, it suffices to show that for every x ∈ Rem(λ), the module

Sλ\{x} appears as a composition factor in the restriction of Sλ, for then by Maschke’s theorem

we are done.

In order to prove this we will construct a tower of submodules whose successive quotients

will, as Sn−1-modules, consist of Sλ\{x}, for x starting at the uppermost removable node and

proceeding down λ.

Since there is at most one removable node in a given row, we can label the rows with

removable nodes r1, . . . , rm, with ri < ri+1. If t is a standard tableau, then the label n must

lie in one of the rows ri. Let Vi be the subspace of Sλ spanned by standard polytabloids t

where the label n appears in the first ri rows of t. We claim that Vi is an Sn−1-submodule

of Sλ and that Vi/Vi−1 is isomorphic as an Sn−1-module to Sλ
(i)

, where λ(i) is obtained from

λ by removing the last box on row ri. This then proves, at least if char p = 0 or char p > n,

the direct sum decomposition of the restriction of Sλ as described above.

Since Sn−1 fixes the box containing n, it permutes the polytabloids with n in row at

most ri; hence the subspaces Vi are also Sn−1-submodules of Sλ. Construct a linear map

φi : Mλ →Mλ(i) by specifying {t}φ = 0 unless the label n appears in the rith row, in which

case {t}φ is {t} with the label n removed. Since Sn−1 preserves the location of the label n, its
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action commutes with the removal of the label n, so φi is a CSn−1-module homomorphism.

If t is a standard tableau with n in the rith row then, if s lies in the Ct-orbit of t, the label

n appears in row ri if and only if any element of Ct mapping t to s lies in Ct ∩ Sn−1, and is

also true if and only if sφi is non-zero. Hence we get

tφi = ({t}κt)φi =
∑

σ∈Ct∩Sn−1

sgn(σ){t′} · σ = t′,

where t′ denotes the tableau obtained from t by removing the label n. If t is a standard

tableau with n in the rith row then t′ is a standard tableau of shape λ(i), so the image

of Sλ under φi, which contains t′, must contain all of Sλ
(i)

since Sλ
(i)

is generated as an

Sn−1-module by t′. Thus Sλφi contains Sλ
(i)

, and we have proved that Sλ has each Sλ
(i)

as

a composition factor. This completes the proof of the branching rule, by our observation at

the start.

(In fact, it is possible to prove without much more effort that Vi/Vi−1 ∼= Sλ
(i)

, since we

notice that Sλ
(i)

dominates Sλ
(j)

whenever j < i. We do not need this, however.)

We now use Frobenius reciprocity to get the full branching rule.

Theorem 2.7 (Branching rule) Let λ be a partition of n. We have that, as CSn-modules,

(i) Sλ ↓Sn−1=
⊕

x∈Rem(λ)

Sλ\{x} and

(ii) Sλ ↑Sn+1=
⊕

x∈Add(λ)

Sλ∪{x}.

Proof: The first part has been proved above. To see the second one, we use Frobenius

reciprocity; this states that if H is a subgroup of G, M is a CG-module and N is a CH-

module, then Hom(M ↓H , N) = Hom(M,N ↑G). Specializing to the case G = Sn+1, H = Sn,

M = Sµ for µ ` (n + 1), N = Sλ for λ ` n, we see that Hom(Sµ, Sλ ↑Sn+1) is equal to

Hom(Sµ ↓Sn , Sλ). This latter space is 1-dimensional if λ = µ \ {x} for some removable node

x, or equivalently µ = λ ∪ {x} for some addable node x, so Sλ ↑Sn+1 contains a single copy

of Sλ∪{x} for each x ∈ Add(λ), and nothing else. Maschke’s theorem now tells us that this

is a direct sum, yielding (ii).

2.3 The characteristic p case

In Corollary 2.4 we said that Sλ/(Sλ ∩ (Sλ)⊥) is either 0 or irreducible. If it is non-zero, call

this module Dλ. It turns out that, as in the characteristic 0 case, the Dλ yield all irreducible

representations of Sn, and furthermore that no two of them are isomorphic. However, in the
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modular case (i.e., characteristic p where p 6 n) we will have fewer irreducible representations

of Dn than partitions, so for some partitions λ we must have that Sλ 6 (Sλ)⊥, so that there

is no Dλ. We saw this already in Exercise 2.4 with the partition (1n) and p 6 n; we wish to

generalize this and come up with a necessary and sufficient condition for Sλ 6 (Sλ)⊥.

We start with proving one direction of this, that if there are p parts of a partition λ that

have the same length then Sλ 6 (Sλ)⊥.

Proposition 2.8 Let t and t′ be λ-tableaux. Write aj for the number of parts of λ of size

j. We have that (t, t′) is a multiple of
∏

j aj!. In particular, if k is a field of characteristic p

and aj > p for some j, then ( , ) is the zero form on Sλ (viewed as a kSn-module), so that

Sλ 6 (Sλ)⊥.

Proof: Let X denote the set of all λ-tabloids that appear in both t and t′. Firstly note that

if {u} is a λ-tabloid in X, and {v} can be obtained from {u} by reordering the rows, then

{v} ∈ X: there is definitely a permutation in σ ∈ Ct that reorders the rows to send {u} to

{v} (and therefore also τ ∈ Ct′), and moreover since the sign of this permutation is simply

determined by the action on the rows, sgn(σ) = sgn(τ). This implies that the product of

the signs with which {u} appears in both t and t
′

is the same as that for {v}. Thus X is

a union of equivalence classes Xi under this action of row reordering, and furthermore the

products of the coefficients in front of each element of a fixed Xi from t and t′ are the same,

so the contribution of Xi to (t, t′) is ±|Xi|. As |Xi| =
∏
aj!, we get the result.

Finally, if one of the aj is at least p then p divides the result of evaluating the bilinear

form on every pair of generating elements for Sλ, so over k of characteristic p this is the zero

form, and Sλ 6 (Sλ)⊥.

We say that a partition λ of n is t-regular if there are at most t − 1 parts of any given

size in λ. We see here that the if λ is not p-regular then there is no simple module Dλ

in characteristic p. Of course, we are now tasked with proving the converse, namely that

Dλ 6= 0 if λ is p-regular.

We have proved that the form evaluated on two polytabloids is a multiple of
∏
aj!. We

now find two λ-tableaux, t and t∗, for which the form evaluates to a small multiple of this

product. Since this is non-zero in a field of characteristic p whenever λ is p-regular, this

proves that Dλ > 0, and completes the proof. (We then of course need to show that no two

Dλ are isomorphic, and that these are all irreducibles over a field of characteristic p.)

Proposition 2.9 Let λ be a partition of n, and suppose that it has exactly aj parts of size

j. If t is a λ-tableau, and t∗ is the λ-tableau obtained by reversing the entries in the rows of
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t, then

(t, t∗) =
∏
j

(aj!)
j.

In particular, if k is a field of characteristic p and aj < p for all j, then ( , ) is not the zero

form on Sλ (viewed as a kSn-module), so that Sλ 66 (Sλ)⊥.

Proof: Suppose that {tσ} = {t∗σ∗} is a tabloid appearing in both t and t∗ (so that σ ∈ Ct
and σ∗ ∈ Ct∗). We claim that σ = σ∗. Without loss of generality, suppose that the (1, 1)

entry of t is 1: then the (1, λ1) entry of t∗ is also 1, and σ∗, stabilizing column λ1, can only

send 1 into a row that is also of size λ1.

Hence if there are b1 parts of λ that have size λ1, then the last entries in these b1 rows of

t∗ (and also of t) must be permuted. Since {tσ} = {t∗σ∗}, tσ and t∗σ∗ have the same rows,

so that σ and σ∗ must agree on the set of entries in the first and last column of the first b1

rows of t.

Now consider the next b2 rows that have the same size, directly below the first b1 rows.

The last entries of these rows of t and t∗ can only be sent to the first b1 +b2 rows by elements

of Ct and Ct∗ , and the row that σ and σ∗ send a given entry must be the same since tσ and

t∗σ∗ have the same tabloid. However, the first entries of the first b1 rows are fixed, so in fact

the last entries of these rows of t and t∗ must be permuted amongst themselves; hence σ and

σ∗ agree on these elements by the same argument as for the first b1 rows.

Repeating this argument proves that σ and σ∗ agree on the entries in the first column

of both t and t∗. We now remove the first and last columns of t and t∗ and apply induction

on the number of columns of a tableau to see that σ = σ∗. What we also see that is that σ

sends entries in a given row i only to rows of the same length as i.

Hence this element σ actually lies in Ct ∩Ct∗ . This intersection consists of exactly those

permutations that stabilize the union of the rows of a given length, the property of σ in the

previous paragraph. We therefore see that the set of tabloids appearing in both t and t∗ is

{{tσ} | σ ∈ Ct ∩ Ct∗}.

Thus

(t, t∗) =
∑

σ∈Ct∩Ct∗

(sgn(σ) · {tσ}, sgn(σ) · {t∗σ}) = |Ct ∩ Ct∗|.

Finally, we see that Ct ∩Ct∗ stabilizes the blocks consisting of rows of equal size, and thus it

acts as the symmetric group of size aj on each of the j columns in each block, so each block

constributes (aj!)
j. Hence

|Ct ∩ Ct∗ | =
∏
j

(aj!)
j,

as required.
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Having done this, we now isolate a bit about which Dλ can appear in a given Sµ in

characteristic p.

Proposition 2.10 Let k be a field of characteristic p. Suppose that λ, µ ` n, and that

λ is p-regular. If V is any submodule of Mµ, and there exists a non-zero homomorphism

φ : Sλ → Mµ/V then λ dominates µ. If λ = µ and t is a λ-tableau, then tφ ∈ 〈t + V 〉.
Consequently, if Dλ and Dµ are isomorphic then λ = µ.

Proof: Suppose that λ has aj parts of size j, so that
∑
jaj = n. Let t be any λ-tableau, and

write t∗ for the tableau obtained from t by reversing the entries in each row, as in Proposition

2.9. Just before Theorem 2.3 we proved that {s}κt is a scalar multiple of t for all λ-tableaux

s, so t∗κt = γt for some γ. Utilizing Exercise 2.2 and Proposition 2.9, and the fact that

(t, {t}) = 1 we compute

γ = γ(t, {t}) = (t∗κt, {t}) = (t
∗
, {t}κt) = (t

∗
, t) =

n∏
j=1

(aj!)
j.

In particular, γ is not the zero element of the field k of characteristic p. The Specht module

Sλ is a cyclic module, generated by t, and φ is a non-zero homomorphism, so tφ must be

non-zero, so

t∗φκt = γtφ 6= 0;

we see that t∗φ = v has a non-zero product with κt. Since Mµ has basis the µ-tabloids, there

must be a µ-tabloid {r} such that {r}+V appears in v and vκt 6= 0. Again, above Theorem

2.3 we proved that this implies that λ Q µ. Furthermore, if λ = µ then Mλκt = 〈t〉, so we

get the result.

Finally, if Dλ and Dµ are isomorphic then λ Q µ and µ Q λ, so λ = µ, completing the

proof.

Thus any composition factor Dλ of Mµ satisfies λ Q µ. Write dλ,µ for the number of

copies of Dµ in Sλ. The previous proposition has the following corollary.

Corollary 2.11 Ordering the rows of the matrix D = (dλ,µ) by lexicographic order on the

p-regular partitions first, then the partitions that are not p-regular, and the lexicographic

order on the columns, we see that D is lower trinagular.

The matrix D is the decomposition matrix, and basically measures how simple modules

over the complex numbers decompose into irreducibles when viewed over a field of charac-

teristic p. Drawing a graph with vertices the Sλ and connecting two vertices Sλ and Sµ if

there exists ν such that dλ,ν and dµ,ν are both non-zero (so that there is a column that has
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non-zero entries for both Sλ and Sµ at the same time in the decomposition matrix), the

connected components of this matrix are the blocks of Sn. (This graph and definition can

be made for all groups.) The connection between cores and the representation theory can

be made now.

Theorem 2.12 (Nakayama conjecture) Let λ and µ be partitions of n. Two Specht

modules Sλ and Sµ lie in the same p-block if and only if λ and µ have the same p-core.

The proof of this theorem is beyond the scope of this course, but it places a further

restriction on the decomposition numbers dλ,µ.

The final thing we need to do is prove that any simple kSn-module is one of the Dλ.

Brauer proved that the number of simple modules over an algebraically closed field of char-

acteristic p is the number of conjugacy classes of p-regular elements, i.e., elements or order

prime to p. For symmetric groups, this is conjugacy classes of elements without a pm-cycle

for some m, or equivalently the number of partitions whose parts have size prime to p. Hence

we need the following result.

Theorem 2.13 (Glaisher’s theorem) Let n and d be positive integers. The number of

partitions of n for which there are at most d−1 parts of any given size is equal to the number

of partitions whose parts have size not divisible by d.

Proof: Write An for the set of all partitions n with at most d − 1 parts of any given size,

and write Bn for the set of partitions of n whose parts have size not divisible by d. Let λ be a

partition of n, with exactly aj parts of size j. We will define two mutually inverse functions

between An and Bn.

Let φ : An → Bn be defined by the following: if there is a part λi of λ ∈ An of size

divisible by d, replace λi by d parts of size λi/d. This (eventually) results in a partition of

n without any parts divisible by d, so φ has the right codomain.

Let ψ : Bn → An be defined by the following: if there are d parts of size λi, replace them

by one part of size dλi. This (eventually) results in a partition of n with at most d− 1 parts

of any given size, so ψ has the right codomain.

It is easy to see that φ and ψ invert each other, so these two sets have the same cardinality.

Corollary 2.14 The modules Dλ for λ a p-regular partition of n form a complete set of the

simple kSn-modules, for any field k of characteristic p.
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2.4 Young’s rule

The permutation module Mµ can be written, over the complex field certainly, as a sum of

Specht modules. We now that Hom(Sλ,Mµ) is non-zero, i.e., Sλ appears as a summand of

Mµ, only if λ dominates µ, so we would like to know the multiplicities mλ,µ, the Kostka

numbers as they were called earlier in this chapter.

Young’s rule determines these Kostka numbers. To compute them we need the concept of

a semistandard tableau, which is like a standard tableau although the numbers may repeat.

If µ is a composition (with zeroes allowed) of n then a tableau of type µ is a Young diagram

with entries in its n boxes, with µi copies of the number i. For example, a Young tableau of

type (0, 2, 0, 1, 1) is the tableau

2 4

5 2
.

If µ is the composition (1n) then a Young tableau of type µ is simply a Young tableau.

We will write t for a tableau whose type is not necessarily (1n), reserving symbols like t for

genuine tableaux. A Young tableau of type µ is semistandard if the entries weakly increase

along the rows and strictly increase along the columns. We generally take µ itself to be a

partition, in which case we get the following lemma.

Lemma 2.15 Let λ and µ be partitions of n. If there exists a semistandard partition of

shape λ and type µ then λ dominates µ, and there is exactly one semistandard tableau of

shape λ and type λ.

Proof: If t is a semistandard λ-tableau then any number i appears in at most the ith row

of t. Hence, since there are µ1 + · · ·+ µi numbers that are at most i in t,

λ1 + λ2 + · · ·+ λi > µ1 + µ2 + · · ·+ µi;

thus λ Q µ. If µ = λ, we see that there is a unique way of placing λ1 + · · · + λi copies

of i in the first i rows for all i, namely row i consists solely of is. Hence there is a single

semistandard tableau of shape λ and type λ.

That looks like the conditions that mλ,µ > 0 implies λ dominates µ and mλ,λ = 1. In

fact, this is not a coincidence.

Theorem 2.16 (Young’s rule) The Kostka number mλ,µ is the number Kλ,µ of semistan-

dard tableaux of shape λ and type µ.

To prove this theorem we need an alternative definition of the permutation module Mµ.

Let Tλ,µ denote the set of all tableaux of shape λ and type µ. The first thing to notice is
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that there are the same number of these as there are tabloids of shape µ. To see this, clearly

the shape of λ is irrelevant, as we can place the rows of λ one after another in a single row,

so that λ becomes the partition (n). In this case, there are n! different ways of placing the

entries, but all 1s are alike, as are 2s and so on, giving n!/
∏

j aj! (where µ has aj parts of

size j), the same as the number of µ-tabloids.

Hence the vector space spanned by formal linear combinations of tableaux of shape λ and

type µ is isomorphic as a vector space to Mµ. To make them isomorphic as kSn-modules we

must transport the Sn action to the vector space kTλ,µ. To do this, fix a λ-tableau t, and for

any tableau s of shape λ of any type, write si for the entry of d in the position labelled by i

in the fixed tableau t. We could for simplicity fix t to be the standard λ-tableau that uses

the integers 1 to n in order from left to right then top to bottom, so for λ = (3, 3, 2) we get

1 2 3

4 5 6

7 8

.

In which case, if s is the λ-tableau

7 4 2

1 1 4

2 3

then s4 = s5 = 1 and s1 = 7.

Given any tabloid {s} of shape µ, produce a tableau s of shape λ and type µ by setting

si to be the row in which i appears in {s}, so that if s is the tableau

8 1 5 2

3 7

6

4

of shape (4, 2, 1, 1) then s is the tableau

1 1 2

4 1 3

2 1

.

of shape λ and type µ. We get that this map φ : {s} 7→ s is a bijection between the µ-tabloids

and Tλ,µ. We define the action of Sn on Tλ,µ to be ‘the same’ as on the set of µ-tabloids,

i.e., we want that φ is an isomorphism of kSn-modules. For this to hold, we need for {s} a

µ-tabloid to have

({s} · σ)φ = ({s}φ) · σ = s · σ.
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To do this, we actually have to define (s · σ)i to be siσ−1 . To see that this is the right

definition, we see that

(s · σ)i = row number of iσ−1 in {s}

= row number of i in {s · σ}

= s · σi

This proves that φ is a module homomorphism, essentially because we defined it to be so.

For a tableau s of shape λ and type µ, define φs to be the map sending the fixed tableau

t to the sum of all members of Tλ,µ that are row equivalent to s, then extend this to a map

φs : Mλ → kTλ,µ by the fact that {t} generated the kSn-module Mλ. (Notice that this map

is well defined since the stabilizer of {t} under the action of Sn is the row stabilizer Rt, and

by definition of the action of Sn on Tλ,µ, this permutes the rows of s, hence preserves the

sum of all members of Tλ,µ that are row equivalent to s.

We may also restrict this action to Sλ, to get homomorphisms φs : Sλ → Mµ. Some

of these will be zero, and for k = C at least, the rest will be isomorphisms. (If k has

characteristic p then there might be maps that are neither 0 nor isomorphisms.) We claim

that, whenever s is semistandard, φs is non-zero, and also that these maps between vector

spaces are linearly independent. To prove this latter statement, we need the following obvious

lemma.

Lemma 2.17 Let V and W be vector spaces, and let φ1, . . . , φn be a set of linear maps

φi : V → W . If there exists v ∈ V such that the vφi are linearly independent in W , then

the φi are linearly independent.

Let us now prove that they are linearly independent. As with the Specht module, we

prove linear independence using a partial ordering on the semistandard tableaux, and a

result that looks exactly like Proposition 1.22. Write {s} for the row equivalence class in

Tλ,µ containing s.

We have that

(t)φs = ({t}κt)φs =

∑
u∈{s}

u

κt.

This consists of tableau in Tλ,µ obtained from s by first permuting the rows and then per-

muting the columns. The appropriate column word we need now, since the rows can also be

permuted, is to read from the last column to the first, reading from the bottom to the top,

so the column word of
1 4 5 2

4 4 3

1 6
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becomes 2, 3, 5, 6, 4, 4, 1, 4, 1. The appropriate partial order we need is the following: for

s, u ∈ Tλ,µ, and j is the largest integer such that µj is non-zero, we write the column words

for s and u, and declare s Q u if for all i, the ith occurrence of an entry µj is earlier in s

then in u (or of course, s = u); if the ns are in the same place, we move to the (n− 1)s and

so on, as with the partial order on tabloids.

The next easy lemma gives the property of Q that we need.

Lemma 2.18 If s ∈ Tλ,µ is semistandard and u appears in the expression tφs, then s Q u.

Proof: Let j be the largest integer such that µj > 0. The entries of s that are µj must be

at the end of their columns and of their rows, by the semistandard nature of s. For each

particular entry x that is labelled µj, applying a row equivalence must move it to an earlier

column (or swap it with another µj, which can be ignored), and then any column equivalence

results in it still appearing later than it does in s. Hence all occurrences of µj in the column

word of s are earlier than those in u.

We can now apply Proposition 1.23. In this case, the vi are the tφs for s semistandard

and the mi are the s themselves. Hence the tφs are all linearly independent and therefore

the φs are.

We claim that Kλ,µ = Kλ,µ from Exercise 2.5. As with the proof that the standard

λ-tableaux are a basis for Sλ, we need only count dimensions. Exercise 2.5(iv) states that∑
λ`n

Kλ,µ dimSλ = dimMµ,

so that since we know that there are at least Kλ,µ copies of Sλ lying in Mµ then we are done.

This completes the proof of Young’s rule.
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Chapter 3

The Murnaghan–Nakayama rule

The Murnaghan–Nakayama rule is a combinatorial algorithm to compute the character values

of any character χλ of a Specht module Sλ on any conjugacy class of cycle type µ. In order

to prove this rule, we will need to firstly deal with the Littlewood–Richardson rule, which

computes the multiplicity of χµ in the induced character (χλ⊗χµ) ↑Sn , where λ is a partition

of m, µ is a partition of n − m, and this tensor product is thought of as a character for

Sm × Sn−m, viewed as a Young subgroup of Sn.

We start with skew tableaux, which are needed for the Murnaghan–Nakayam rule, and

then the Littlewood–Richardson rule, which also needs these skew tableaux.

3.1 Skew tableaux

Skew partitions and skew tableaux are objects obtained by removing boxes from a Young

diagram to form a snake-like object.

Definition 3.1 Let λ and µ be partitions, with µi 6 λi for all i. Write λ \ µ for the object

obtained by removing all boxes from λ that are also present in µ. This is called skew partition

of shape λ \ µ. If the boxes of λ \ µ are filled with numbers, we call this a skew tableau of

shape λ \ µ and type ν in the same way as for tableaux. If the entries of a skew tableau are

weakly increasing along rows and strictly increasing down columns then it is semistandard.

Definition 3.2 A lattice word is a sequence a1, . . . , am from the integers 1, . . . , n, such that,

for every initial subword of a1, . . . , am, for every i the number of aj that are equal to i is at

least as many as there are equal to i+ 1.

In other words, a lattice word is one where, if one draws a histogram with 1, . . . , n on

the x-axis and the number of aj equal to a given i on the y-axis, then as more of the aj are

added to the total, the columns of the histogram never increase reading from left to right.
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A lattice word is sometimes called a ballot word for the following voting interpretation:

if the candidates are labelled 1, . . . , n, then as the ballots are counted, candidate i is always

beating or tied with candidate i+ 1 for all i.

An example of a lattice word is 1123213, and an example of a word that is not a lattice

word is 11123132.

Definition 3.3 The row-reversed word of a skew tableau is the word obtained by reading

each row from right to left, from the top row to the bottom row. A Littlewood–Richardson

skew tableau is a skew semistandard tableau for which the row-reversed word is a lattice

word.

While there are always Littlewood–Richardson tableaux of a given shape ν \λ, if one also

fixes the type µ then sometimes there are some, and sometimes there are none. It is easy to

see that in a Littlewood–Richardson tableau the first row consists solely of 1s, so that is a

first condition. Write cνλ,µ for the number of Littlewood–Richardson tableaux of shape ν \ λ
and type µ. We always assume that |λ|+ |µ| = |ν| in what follows.

The following lemma looks trivial, but in fact describes the branching rule of the previous

chapter, although it will take some time to prove this.

Lemma 3.4 Suppose that |ν| = |λ| + 1, and that µ = (1). We have that cνλ,µ = 1 if

ν = λ ∪ {x} for some x ∈ Add(λ), and cνλ,µ = 0 otherwise.

In a similar vein, this next lemma is Young’s rule for Kλ,µ, where µ is a two-part partition.

Lemma 3.5 Suppose that λ = (m) and µ = (n − m). We have that cνλ,µ is equal to 1 if

ν = (n− a, a) for a 6 m, and 0 otherwise. This coincides with the number of semistandard

tableaux of shape ν and type (n−m,m).

Again the proof is omitted, but what these two lemmas are trying to say is that the

coefficients cνλ,µ are describing the multiplicity of the character χν in some χλ ⊗ χµ induced

up to Sn. This will be proved in the next section.

3.2 The Littlewood–Richardson rule

The branching rule computed the consistuents of χλ ↑Sn , where λ ` (n − 1). Viewing Sn−1

as a Young subgroup Sn−1×S1, corresponding to the partition (n− 1, 1), the branching rule

really computes the multiplicity of χµ (for µ ` n) in the induced character (χλ ⊗ χ(1)) ↑Sn ,

where χλ ⊗ χ(1) is viewed as a character on the direct product Sn−1 × S1.
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At the same time, Young’s rule computes the multiplicity of Sλ in the permutation module

Mµ. One may think of Mµ as the induced module from the trivial module for Sµ1×· · ·×Sµs ,
and so Young’s rule actually computes the decomposition into irreducible characters of the

permutation character

(χ(µ1) ⊗ χ(µ2) ⊗ · · · ⊗ χ(µs)) ↑Sn .

The Littlewood–Richardson rule simultaneously generalizes both of these, by computing

the characters of any irreducible character, not just the trivial, induced from any Young

subgroup, not just Sn−1.

Theorem 3.6 (Littlewood–Richardson rule) We have that

(χλ ⊗ χµ) ↑Sn=
∑
ν`n

cνλ,µχ
ν .

In order to prove this theorem we need to extend our situation to a more general one.

Let Λ denote the set of all partitions of all integers (including 0), and let QΛ denote the

vector space of all (finite) linear combinations of elements of Λ. (This is really nothing more

than a notational device, somewhere to make our statements.) Similar to lattice words, if

a1, . . . , am is any word, with entries from 1, . . . , n, we say that aj is good if either aj = 1,

or in the initial sequence a1, . . . , aj, the number of good terms equal to aj is at most the

number of good terms equal to aj − 1. (Notice that this definition is inductive.) The quality

of a word a1, . . . , am, is α1, . . . , αn, where αi is the number of good terms in the word equal

to i. A word is a lattice word if and only if all terms are good.

We introduce operators [µ∗, µ] on QΛ for µ a composition and µ∗ a partition with µ∗i 6 µi

in a similar way to lattice words: define

λ[µ
∗,µ] =

∑
aνν,

where aν = 0 unless λi 6 νi for all i (i.e., the skew diagram ν \ λ exists) and in this case

it is equal to the number of skew semistandard tableaux of shape ν \ λ and type µ whose

row-reversed words has quality at least µ∗ (i.e., the quality β1, . . . , βr satisfies βi > µ∗i ). Since

a word is a lattice word if and only if all terms are good, a skew semistandard tableau of

type µ is a Littlewood–Richardson tableau if and only if its quality is µ. Hence the operator

[µ, µ] applied to λ yields

λ[µ,µ] =
∑

cνλ,µν.

Statements we can prove about the operator [µ∗, µ] will specialize to statements about cνλ,µ

by setting µ∗ = µ, so we have indeed extended our situation.

The two operators of interest are [0, ν] and [ν, ν], and we will want to be able to move

between them easily. Most of our preparation will be in understanding these operators and

their effect.
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Lemma 3.7 If µ = (µ1, . . . , µs) is a composition of n, then (0)[0,µ] =
∑

ν`nKν,µν, i.e., the

constituents of the permutation module Mµ. If µ is a partition, then 0[µ,µ] = µ.

Proof: Every sequence is of quality 0, . . . , 0, so in this case we are counting the (skew)

semistandard tableaux of shape ν \ ∅ and type µ, i.e., Kν,µ, as claimed.

For the second part of the lemma, we need to understand the number of semistandard

tableaux of shape ν ` n and weight µ whose row-reversed word is a lattice word. Firstly,

placing entry i into row i yields a semistandard tableau of shape µ and weight µ with the

required property, and furthermore it is the only semistandard tableau of shape µ and type

µ, so µ appears in 0[µ,µ] with coefficient 1. We also know that if Kλ,µ > 0 then λ Q µ, so

let s be a semistandard tableau of shape λ and type µ. If λ1 > µ1 then there exist integers

greater than 1 in the first row of s, hence its row-reversed word is not a lattice word. Hence

λ1 = µ1, and by the same argument applied repeatedly we get λi = µi for all i, as the first i

for which λi 6= µi we must have λi > µi since λ Q µ. This completes the proof.

We now examine the operator [0, µ] a bit more closely, where µ = (µ1, . . . , µr). This

requires us to add all possible skew semistandard tableaux of type µ onto a given parti-

tion λ, but with no condition on the row-reversed word. In other words, this is the same as

sequentially adding the µ1 boxes with entry 1, then the µ2 boxes with entry µ2, the only con-

dition being the semistandardness of the resulting skew tableau, which is the same as simply

requiring semistandardness of each addition. Hence we get the equivalence of operators

[0, µ] ≡ [µ1, µ1][µ2, µ2] . . . [µr, µr].

The previous lemma, together with this, proves the following.

Corollary 3.8 Let µ = (µ1, . . . , µr) be a composition of n. We have that

0[µ1,µ1]...[µr,µr] =
∑
ν`n

Kν,µν.

The last bit of information we need is to do with adding and raising operators. This is

only needed for one simple fact, and the proof is complex, so we will omit it, but struggle

with it in the exercise sheet instead. (Yippee.)

Let µ∗ and µ be as above, and suppose that µ∗ 6= µ. Let i > 1 be such that µ∗i < µi but

µ∗i−1 = µi−1.

We define the adding operator to be as follows: µ∗Ai, µ is the pair 0, 0 if µ∗i−1 = µ∗i , and

if not then µ∗Ai differs from µ∗ in that the ith component has 1 added to it. Notice that

µ∗Ai remains a partition if µ∗ is.
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We define the raising operator as follows: µ∗, µRi is the pair of compositions obtained

from µ∗ and µ by replacing µi by µ∗i and replacing µi−1 by µi−1 + µi − µ∗i . In other words,

this shifts boxes from the ith row to the (i−1)th row. The compositions µ and µRi are both

compositions of the same integer, and we still have that µ∗j 6 (µRi)j for all j.

These adding and raising actions affect the operators [µ∗, µ] in a nice way.

Proposition 3.9 As operators, whenever µ∗i−1 = µi−1 but µ∗i < µi we have

[µ∗, µ] ≡ [µ∗Ai, µ] + [µ∗, µRi].

Write λ◦µ for the sum
∑

ν c
ν
λ,µν, so that (with the obvious meaning) (χλ⊗χµ) ↑Sn= χλ◦µ.

Using Proposition 3.9, we may write, for any partition ν ` n, the operator [0, ν] as a

sum of operators cγ[γ, γ] for γ ` n, where each cγ is a non-negative integer, cν = 1, and

cγ = 0 unless γ dominates ν. To see this, firstly note that [0, ν] = [ν1, ν], since any 1 is good,

so we can apply A2 and R2 to [ν1, ν] and get us started. Firstly, Ai always increases |ν∗|,
so induction on that means that it can never decrease. Secondly, νRi yields a composition

higher up the dominance ordering than ν, so induction on the dominance ordering proves

that we eventually end with pairs of partitions [γ, γ], with γ Q ν. To see quickly that cν = 1,

use Lemma 3.7.

Thus the matrix of such coefficients cγ is unitriangular, hence invertible. This yields

expressions

[λ, λ] =
∑
α

aα[0, α], [µ, µ] =
∑
β

bβ[0, β].

We will use these expressions to derive the result. We calculate as follows:

λ[µ,µ] =
(
0[λ,λ]

)[µ,µ]
=
(
0
∑
aα[0,α]

)∑ bβ [0,β]

= 0
∑
α,β aαbβ [α1,α1]...[αa,αa][β1,β1]...[βb,βb]

=
∑
α,β

aαbβ
∑
ν

Kν,α∪βν.

Since (Mλ ⊗Mµ) ↑Sn= Mλ∪µ, this expression, which is a sum of permutation characters of

Mα∪β, can be factorized into:

=

(∑
α

aα
∑
λ

Kλ,αλ

)(∑
β

bβ
∑
ν

Kν,βν

)
=
(
0
∑
aα[0,α]

)
◦
(
0
∑
bβ [0,β]

)
= 0[λ,λ] ◦ 0[µ,µ]

= λ ◦ µ.
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This proves that λ[µ,µ] = λ ◦ µ, and this is the statement of the Littlewood–Richardson rule,

completing its proof.

Corollary 3.10 For any partitions λ and µ, λ[µ,µ] = µ[λ,λ], so cνλ,µ = cνµ,λ.

3.3 The Murnaghan–Nakayama rule

In this section we use the Littlewood–Richardson rule to determine character values of χλ

on a permutation σ of cycle type µ. Suppose that µ 6= (n); then (choosing a conjugate of

σ) we can write σ = πρ, where π = (1, . . . ,m) has cycle type (µ1) and ρ has cycle type

ν = (µ2, . . . , µr). Notice that πρ lies in the subgroup Sm × Sn−m, so this suggests that we

can use the Littlewood–Richardson rule and Frobenius reciprocity. We see that

χλ(πρ) = χλ ↓Sm×Sn−m (πρ) =
∑
α`m

β`n−m

aλα,βχ
α(π)χβ(ρ),

where aλα,β are some positive integers. However, Frobenius reciprocity says that there should

be a connection between χλ ↓Sm×Sn−m and (χα ⊗ χβ) ↑Sn ; this is in fact that

aλα,β = 〈χλ ↓Sm×Sn−m , χα ⊗ χβ〉 = 〈χλ, (χα ⊗ χβ) ↑Sn〉 = cλα,β,

so the aλα,β are really just Littlewood–Richardson coefficients. So we have accomplished

something here. We have

χλ(σ) =
∑

β`n−m

χβ(ρ)
∑
α`m

cλα,βχ
α(π).

We have two things to sort out now: the first is to evaluate χα(π), which is this case of σ

being an n-cycle again, and computing cλα,β. Then we will have a recursive description of

χλ(σ), since β has fewer parts than λ.

We can put off the n-cycle case no longer, and so here it is.

Proposition 3.11 Let σ ∈ Sn be an n-cycle, and let λ ` n. We have that

χλ(σ) =

(−1)` λ = (n− `, 1`),

0 otherwise.

Proof: Let 0 < m < n be any integer, and let α be a partition of m and β be a partition of

n−m. We claim that if either α or β satisfies α2 > 1 or β2 > 1, then so does every partition

supported in α[β,β]. If α2 > 1 then this clear, and since α[β,β] = β[α,α] the result holds. If

α2, β2 6 1 – such partitions are called hook partitions – then we next claim that α[β,β] is
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supported on only two hook partitions, namely (a + b, 1n−a−b) and (a + b − 1, 1(n−a−b+1).

To see this, we need to add a Littlewood–Richardson skew semistandard tableau of weight

β = (b, 1n−m−b) to α = (a, 1m−a). The only way we can do this is to add either all 1s to the

first row of α and then 2, 3, . . . , n−m− b + 1 to the bottom of the first column, or all but

one of the 1s to the first row of α, and then 1, 2, 3, . . . , n −m − b + 1 to the bottom of the

first column. This proves the claim.

Finally, we get to the proof of the proposition. We see that the inner product of χα◦β

with the alternating sum of all χγ for γ a hook partition, i.e.,〈
χα◦β ,

n∑
c=1

(−1)n−cχ(c,1n−c)

〉
= 0,

since either α ◦ β has either no hook partitions at all or two with differing signs. More-

over, letting φ denote the alternating sum of characters of hook partitions, we see that since

〈χα◦β, φ〉 = 0, the same holds for 〈χα ⊗ χβ, φ ↓Sm×Sn−m〉, so that φ ↓Sm×Sn−m has no con-

stituents at all, i.e., is the zero character, and this holds for any 0 < m < n. Therefore

φ(τ) = 0 unless τ is an n-cycle, since else τ ∈ Sm × Sn−m for some m.

Now consider the character table of Sn, and let v denote the column vector consisting

of (−1)n−c for the character χ(c,1n−c) and 0 for all other characters, so that this is the repre-

sentation of φ in the character table. We have shown that, apart from the class of n-cycles,

this column vector is orthogonal to all other columns, so since the character table of any

finite group is invertible (Exercise 3.2) this column must be a scalar multiple of the column

of n-cycles. However, we know that χ(n)(1) = 1, and this is the entry for the first row of v as

well, so that v must be exactly the column of character values on n-cycles. This completes

the proof.

We therefore have reduced the expression for χλ(πρ) that was given before the proposition

to

χλ(σ) =
∑

β`n−m

χβ(ρ)
m−1∑
a=0

cλ(a,1m−a),β(−1)m−a.

The last thing to do is evaluate cλ(a,1m−a),β = cλβ,(a,1m−a), and then do a little bit of algebra to

get the final form.

Definition 3.12 Let λ be a partition of n. The rim of λ is the collection of boxes x = (i, j)

such that there is no box (i+ 1, j+ 1) in λ. A rim hook is a connected subcollection ξ of the

rim such that λ \ ξ is a partition.

If ξ is a hook then there is a corresponding rim hook, which consists of the part of the

rim between the ends of the arm and leg of ξ, and this action is a bijection between rim
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hooks and hooks. This allows us to talk about rim t-hooks, leg lengths ll(ξ) of rim hooks,

and so on. Removing a rim hook is the same as removing the corresponding hook, so we

have not done anything really new. For example, the rim of (5, 5, 3, 3, 2) is the following:

×
× × ×
×

× ×
× ×

The projection of a hook onto the rim is easy to visualize:

× × × × ×
×
×
×
×

−→ ×
× × ×
×

× ×
× ×

Proposition 3.13 Let β be a partition of n − m, λ be a partition of n, and write α =

(a, 1m−a). If cλβ,α > 0 then λ \ β is a disconnected union of rim hooks. If there are k

components spanning c columns, then

cλβ,α =

(
k − 1

c− a

)
.

Proof: Since α = (a, 1m−a), the entries in the skew tableau λ \ β are a copies of 1 and the

numbers 2, . . . ,m−a+ 1. Firstly we show that there can be no two-by-two subsquare in the

skew tableau λ \ β. To see this, column strictness means the bottom-left and bottom-right

entries of the subsquare are greater than 1, say i and j respectively, then semistandardness

tells us that i < j. This however contradicts the lattice word property, as in the row-reversed

word, j appears before i (and there is only one copy of each). Hence there are no two-by-two

squares, so λ \ β is a subset of the rim of λ. This proves the first part of the proposition.

Let k denote the number of conencted components, and let ξ be such a component.

Running down any column of the component ξ, only the top entry can be a 1 by column

strictness. Note that each integer greater than 1 appears exactly once, so in the row-reversed

word, i must occur before i+ 1, so i+ 1 must occur either below or to the left of i. However,

semistandardness requires that i + 1 appears to the right of i if they are in the same row,

so no two integers greater than 1 appear in the same row. Thus every row consists either

entirely of 1s or of 1s followed by an integer greater than 1. This means that the only

flexibility about which integers go where in ξ is whether the top-right box consists of a 1 or
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not. Notice that since the top of every column of ξ is a 1, apart possibly from the far-right

column, if ξ spans c′ columns then we must use c′ − 1 copies of 1.

We now count how many 1s we have left once we use them across the column tops of

the components. If there are c columns spanned by k components, we saw above that we

are forced to place c − k copies of 1 there. This leaves a − (c − k) copies of 1 for the k

components. However, the top component much have a 1 at the start, by the lattice word

condition, so there are a− c+ k − 1 to distribute amonst k − 1 components. This gives(
k − 1

a− c+ k − 1

)
=

(
k − 1

c− a

)
ways.

We now need a binomial fact: we have that

b∑
a=0

(−1)a
(
b

a

)
= δb,0.

Using this, we get that

m−1∑
a=0

cλ(a,1m−1),β(−1)m−a =
m−1∑
a=0

(−1)m−a
(
k − 1

c− a

)
.

Since the binomial expression is 0 outside of the range 0 6 c − a < k, i.e., c − k < a 6 c,

which values definitely appear in the sum, so this sum becomes

=
c∑

a=c−k+1

(−1)m−a
(
k − 1

c− a

)
=

(−1)m−c k = 1,

0 otherwise.

The statement k = 1 means that λ \ β is a single skew hook with m squares and c columns,

so that m− c is the leg length of λ \ β. Putting all this together, we get that

χλ(πρ) =
∑
|ξ=m|

(−1)ll(ξ)χλ\ξ(ρ).

This gives us the Murnaghan–Nakayama rule.

Theorem 3.14 (Murnaghan–Nakayama rule) Let λ be a partition of n, and let µ =

(µ1, . . . , µr) be a composition of n. If σ has cycle type µ and τ ∈ Sn−µ1 has cycle type

(µ2, . . . , µr), then

χλ(σ) =
∑
ξ

(−1)ll(ξ)χλ\ξ(τ),

where the sum runs over all rim µ1-hooks of λ.
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