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Chapter 0

Preliminaries

We assume that the reader is familiar with the concepts of a group, subgroup, normal

subgroup, quotient, homomorphism, isomorphism, normalizer, centralizer, centre, simple

group.

Definition 0.1 A p-group is a group, all of whose elements have order a power of p.

Proposition 0.2 let G be a finite p-group. Then |G| = pn for some n, and Z (G) 6= 1.

Definition 0.3 Let G be a finite group, and let p be a prime. Suppose that pm | |G|, but

pm+1 - |G|. A Sylow p-subgroup of G is a subgroup P of G of order pm.

Theorem 0.4 (Sylow’s theorem, 1872) Let G be a finite group, and let p be a prime.

(i) Sylow p-subgroups exist, and the number of them is congruent to 1 modulo p.

(ii) All Sylow p-subgroups are conjugate in G.

(iii) Every p-subgroup is contained in a Sylow p-subgroup.

Definition 0.5 Let G be a group. A series for G is a sequence

1 = G0 P G1 P G2 P · · · P Gr = G

of subgroups of G with Gi−1 P Gi for all 1 6 i 6 r. It will sometimes also be denoted (Gi).

If Gi/Gi−1 is abelian, (Gi) is an abelian series. If Gi/Gi−1 is simple, (Gi) is a composition

series. The length of a series is the number of terms in it, so in the example above it has

length r.

If a group possesses an abelian series, we say that it is soluble.
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Theorem 0.6 (Burnside’s pαqβ-theorem, 1904) Any finite group whose order is of the

form pαqβ, for primes p and q, is soluble.

Definition 0.7 Let G be a group.

(i) Let h and k be elements of G. The commutator of h and k, denoted [h, k], is the

element h−1k−1hk.

(ii) Let H and K be subgroups of G. The commutator of H and K, denoted [H,K], is the

subgroup generated by all commutators [h, k] for h ∈ H and k ∈ K. (Note that

the elements of [H,K] are products of commutators, and not necessarily commutators

[h, k].)

(iii) The derived subgroup of G, denoted G′, is [G,G]. Write G(1) = G′ and define G(i) =

[G(i−1), G(i−1)].

(iv) By [x, y, z] we mean the left-normed commutator [[x, y], z]. We extend this notation

by induction, so that

[x1, x2, x3, . . . , xn−1, xn] =
[
[x1, x2, . . . , xn−1], xn

]
.

Definition 0.8 Let G be a finite group. If G possesses a norrmal subgroup K and a sub-

group H such that K ∩H = 1 and G = HK, then G is the (internal) semidirect product of

K by H.

If K is a finite group and φ : H → Aut(K) is a homomorphism, then we may construct

a group G such that G = K o H and the elements h of H act on K by conjugation as

hφ ∈ Aut(K). This is to define a multiplication on the set H ×K by

(h′, k′)(h, k) = (h′h, (k′)hφk).

This group so defined is denoted G = K o H or G = H n K. This formula is meant to

mimic the conjugation formula

h′k′hk = h′h(k′)hk

in any finite group. This is often referred to as the external semidirect product. If G = KoH
is an external semidirect product, then the natural subgroups K̄ = {(1, k)} and H̄ = {(h, 1)}
make G into an internal semidirect product, and the other direction is equally easy. Hence

from now on we will identify internal and external semidirect products.

Theorem 0.9 Any finite abelian group is the direct product of cyclic groups.
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Definition 0.10 Let G be a permutation group on a set X. We say that G is transitive if,

for any two points x and y in X, there is an element g ∈ G such that xg = y. We denote by

Gx the stabilizer of x in G, i.e., the elements g ∈ G such that xg = x.

Definition 0.11 (i) If V is a vector space, GL(V ) is the set of linear transformations of

V . If V = (Fq)n we denote GL(V ) by GLn(q), and consider it as all invertible n × n
matrices.

(ii) SL(V ) is the subset of GL(V ) consisting of all transformations of determinant 1.

(iii) The dihedral group D2n is the group with the presentation

〈x, y : xn = y2 = 1, xy = x−1〉.

(iv) By Cn we denote the cyclic group of order n.

(v) The symmetric group on n letters is denoted by Sn, and the alternating group on n

letters is denoted by An.

(vi) By Epn we mean the elementary abelian p-group of order pn, i.e., the direct product of

n copies of Cp.

Proposition 0.12 (i) If G = Cpn then AutG is abelian, of order pn−1(p− 1).

(ii) If G = Epn then AutG ∼= GLn(p).

Theorem 0.13 For n > 5, An is simple.

Proposition 0.14 If G is a simple group of order 60 then G is isomorphic with A5.

Proof: We will show that G has a subgroup of order 12, since in this case the standard

homomorphism from G into S5 must be injective (as G is simple) and lie inside A5 (again,

since G is simple). Notice that G cannot have any subgroups of index less than 5 because

Sn has order less than 60 for n 6 4. To find a subgroup of order 12, we show that if P is a

Sylow 2-subgroup of G then either NG(P ) or CG(t) for some t ∈ G of order 2, has (at least)

order 12. Certainly |NG(P )| is either 4 or 12, since it is an odd multiple of 4 not greater

than 12, so we assume that P = NG(P ). In this case, there are fifteen Sylow 2-subgroups of

G.

Let Q be a Sylow 5-subgroup of G. We see that NG(Q) has order at most 10 (since

G has no proper subgroups of order greater than 12) and so there are at least six Sylow

5-subgroups of G, yielding at least 24 elements of G of order 5. This implies that at least
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two Sylow 2-subgroups intersect non-trivially, else there would be 45 elements of order 2 or

4, a contradiction. Let t be an element of order 2 in P ∩ P g for some g ∈ G, and consider

|CG(x)|. This contains P , so has order a multiple of 4, and is larger than P , so has order at

least 12, completing the proof.

Definition 0.15 Let G be a finite group. A G-module is an abelian group A, together with

a group action · : A×G→ A such that (a+ b) · g = a · g + b · g.

We will meet G-modules (as opposed to CG-modules) when we deal with cohomology in

Chapter 2.
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Chapter 1

The 1900s

1.1 Beyond Transitivity

In the previous year you have seen permutation groups, but we recall the exact definition

now to remove any ambiguity.

Definition 1.1 A permutation group is a subgroup G of the group Sym(X), where X is a

set.

In particular, any permutation group is faithful. The orbits of G on X are the equivalence

classes of the relation x ∼ y if and only if there exists g ∈ G such that xg = y, and G is

transitive if there is a single equivalence class.

Notice that, if ∼ is the equivalence relation of the previous paragraph then ∼ is G-

equivariant, i.e., if x ∼ y then xg ∼ yg for all x, y ∈ X and g ∈ G. To see this, suppose that

xh = y; then xg(hg) = xgg−1hg = xhg = yg.

There are always two obvious G-equivariant equivalence relations, namely that with a

single equivalence class, and that whose equivalence classes are singleton sets. These two

equivalence relations are in some sense trivial, and non-trivial G-equivariant equivalence

relations are of interest. If G is not transitive then the orbit relation is such an example, so

we are more interested in transitive examples.

Example 1.2 Let G be the dihedral group D8 acting in the natural way on the square,

with vertex set X. Define the equivalence relation ∼ by x ∼ y if and only if x = y or y lies

diagonally opposite x. Clearly this is an equivalence relation, and since D8 preserves the

diagonals, it is G-equivariant.

Definition 1.3 Let G be a permutation group, on a set X. We say that G is imprimitive

if there exists a non-trivial G-equivariant equivalence relation, and primtive otherwise.
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We have seen above an example of a transitive, imprimitive, permutation group. As an

example of a primitive permutation group, we give the symmetric and alternating groups.

We now recall some easy facts about permutation groups, that are often used without

comment: this proposition’s proof is left to the reader. We write Gx for the stabilizer in G

of the point x ∈ X, or sometimes StabG(x).

Proposition 1.4 Let G be a permutation group on a set X.

(i) If x ∈ X and g ∈ G, then (Gx)
g = Gxg.

(ii) Suppose that G is transitive on X, fix x ∈ X, and write H = Gx. Construct a map

f from X to the set [G : H] of right cosets of H in G as follows: for y ∈ X let

g ∈ G be such that xg = y, and let f : y 7→ Hg. This map is well defined, and

induces an isomorphism of permutation groups from G acting on X to G acting by

right multiplication on the right cosets of H.

The proposition states that a transitive permutation group G is simply a group acting

on the cosets of some subgroup H of G, with the condition that G has no non-trivial normal

subgroups contained in H. (This condition is needed for it to be a faithful action, see Exercise

1.5.)

What is the analogous result for a primitive permutation group? Since primitive permu-

tation groups are transitive, it has to be a stronger condition than the previous one. Let

G be a transitive permutation group on X, fix x ∈ X, and suppose that we have an equiv-

alence relation ∼ (not necessarily G-equivariant) on X, writing Y for the equivalence class

containing x. Since G is transitive on X, we can identify X with the set of right cosets of

H = Gx, and hence Y is a union of right cosets of H. Taking
⋃
Y , we get a subset K of G

containing H consisting of right cosets of H.

Since any subgroup of G contaning H is a union of right cosets of H, this construction

will yield every subgroup between H and G. We will show now that K is a subgroup of G

in the above construction if and only if ∼ can be taken to be G-equivariant, and in this case

there is a unique such (G-equivariant) ∼.

Proposition 1.5 Keep the notation of the above paragraphs. The map ∼7→ K induces a bi-

jection between the set of G-equivariant equivalence relations and subgroups of G containing

H = Gx.

Proof: Firstly, suppose that ∼ is G-equivariant, and that we know Y , the equivalence class

containing x. Choosing y ∈ X, there exists g ∈ G such that xg = y, and hence Y g must
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be a subset of the equivalence class Y ′ containing y, by G-equivariance. However, Y ′g−1

contains x, so is a subset of Y , again by G-equivariance. Since (Xg)g−1 = X, this proves

that Y g = Y ′, and so the fact that ∼ is G-equivariant means that we can determine ∼ from

the knowledge of one equivalence class.

To prove one direction of the bijection, we assume that ∼ is G-equivariant and let K be

the union of the right cosets in the equivalence class Y of x. We claim that K is the setwise

stabilizer of Y , and hence is a subgroup of G. To see this, if g ∈ G\K then Hg /∈ Y , so that

g does not stabilize Y . Conversely, if g ∈ K then Hg ∈ Y , and H ∼ Hg. If Ha ∈ Y then

H ∼ Ha, so that (H)g ∼ (Ha)g by G-equivariance. However, this proves that H ∼ Hag, so

that g stabilizes setwise the set Y , as claimed.

Now assume that K is a subgroup of G, and we aim to prove that there exists a G-

equivariant equivalence relation ∼ such that Y is the equivalence class containing x. The

equivalence relation we choose is x ∼ y if and only if the corresponding right cosets of H lie

in the same right coset of K. Clearly Y is the equivalence class of ∼ containing x; if x ∼ y

then xg ∼ yg, as if x and y correspond to right cosets Ha and Hb in the same right coset

Ka = Kb, then clearly Kag = Kbg, so that Hag ∼ Hbg.

This proves that the set of G-equivariant equivalence relations is indeed in bijection with

overgroups of H, as needed.

Two corollaries can be observed from this, the first from the first paragraph of the proof,

and the second from the statement itself.

Corollary 1.6 Let G be a transitive permutation group on a set X and let ∼ be a G-

equivariant equivalence relation. Let Y1 and Y2 be equivalence classes of ∼, with represen-

tatives y1 and y2 respectively. Choosing g ∈ G such that y1g = y2, we have Y1g = Y2. In

particular, if one of the Yi is finite then they all are, and have the same cardinality.

Corollary 1.7 A transitive permutation group G is primitive if and only if a point stabilizer

is a maximal subgroup of G.

Proposition 1.8 Let G be a primitive permutation group on a set X. Any non-trivial

normal subgroup N of G is transitive on X.

Proof: The action of N on X determines an equivalence relation by x ∼ y if there exists

h ∈ N such that xh = y. We claim that ∼ is G-equivariant: let g ∈ G, and x, y ∈ X such

that x ∼ y, so that there exists h ∈ N such that xh = y. Notice that (xg)hg = (xh)g = yg,

and since H P G, hg ∈ H and hence xg ∼ yg, as needed.
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Having considered one specialization of transitivity, i.e., primitivity, we consider another,

namely n-transitivity.

Definition 1.9 Let G be a permutation group on a set X. The group G is n-transitive if,

for any two n-tuples x and y of distinct points in X there is an element g ∈ G such that

xg = y.

As examples, the symmetric group Sn is n-transitive, and the alternating group An is

(n− 2)-transitive.

Proposition 1.10 Let G be a transitive permutation group on a finite set X.

(i) G is n-transitive if and only if Gx is (n− 1)-transitive, for some x ∈ X.

(ii) If G is 2-transitive then G is primitive.

Proof: If G is n-transitive, then any n-tuple of distinct elements ending in x can be sent to

any other n-tuple of distinct elements ending in x, so that (by removing the last term from

the n-tuples) we see that Gx is (n− 1)-transitive.

To see the converse, let x = (x1, . . . , xn) and y = (y1, . . . , yn) be any two n-tuples of

distinct elements. We need to prove that there exists g ∈ G such that xg = y. Since G is

transitive, there exists h, k ∈ G such that xnh = ynk = x. As Gx is (n− 1)-transitive, there

exists l ∈ Gx such that

(x1h, x2h, . . . , xn−1h)l = (y1k, y2k, . . . , yn−1k).

The element hlk−1 maps x to y, proving (i).

Suppose that G is 2-transitive on X, and suppose that ∼ is a non-trivial G-equivariant

equivalence relation on X. Let x and y be elements of X such that x ∼ y, and suppose that

z is an element such that x 6∼ z. (These exist since ∼ is non-trivial.) Since G is 2-transitive,

we can map the pair (x, y) to (x, z) via some element g ∈ G, so that xg = x and yg = z.

However, then (by G-equivariance) x = xg ∼ yg = z, a contradiction. Hence G is primitive,

which proves (ii).
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1.2 PSLn(q)

In most undergraduate courses, it is proved that the alternating groups An (n > 5) are simple,

but these are in some sense not indicative of what an arbitrary finite simple group looks like.

The classification of the finite simple groups, completed in 1980 (although some portions

of it were only completely completed in 2004! [2]) states that every finite simple group is

either cyclic of prime order, an alternating group, one of twenty-six so-called sporadic simple

groups, or one of sixteen families of groups of Lie type, groups that look something like

GLn(q). The easiest family of these is PSLn(q) (n > 2), which in this section we will prove

is simple for all but two possible pairs (n, q). This result for q a prime, rather than a prime

power, is due to Jordan, in about 1870, but for non-prime fields it is a result of Moore in

1893, and also treated by Burnside in 1894.

The groups GLn(q) and SLn(q) act on an n-dimensional vector space. If we quotient out

by the centre, to get PGLn(q) and PSLn(q), we no longer get an action on an n-dimensional

vector space, but on (n−1)-dimensional projective space. Recall that n-dimensional projec-

tive space is the set of all lines (1-dimensional subspaces) in an (n + 1)-dimensional vector

space. If V is a vector space, the projective space associated with V is denoted P (V ).

Lemma 1.11 Let V be an n-dimensional vector space over Fq. The kernel of the action of

GL(V ) on P (V ) is Z (GL(V )), which is also the set of scalar matrices.

Proof: Clearly Z (GL(V )) is the set of all scalar matrices. Firstly, scalar matrices act

trivially on P (V ) since they fix every line setwise, so the kernel of the action contains every

scalar matrix. To see the converse, notice that if a matrix fixes every line then it must be a

scalar matrix, since the entire space is a single eigenspace with a given eigenvalue λ.

Hence PGL(V ) and PSL(V ) act faithfully on P (V ). In order to prove that PSLn(q) is

simple, we will have to find some generators for it, prove it is perfect, and then use a theorem

to prove that it is simple.

Let T be a linear transformation of rank 1. We have two cases: either imT ∩ kerT = 0,

in which case T is (up to a scalar) a projection map; or imT ⊆ kerT , in which case the

(invertible) matrix T + In (and the corresponding linear transformation) is a transvection.

Denoting the matrix with a 1 in the (i, j) position and 0 elsewhere by Ei,j, a typical example

of a transvection in SLn(q) is of the form I + aEi,j for a ∈ Fq \ {0} and i 6= j. Notice that if

a generator for imT is x, then we may choose a basis with x as the last basis element, and

extend to a basis for the kernel as the last n− 1 entries, then the matrix form of I +T has a

single non-zero entry off the diagonal, in the top-right corner. Hence the set of transvections
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form a set of conjugacy classes in GLn(q), each with a representative of the form I + aE1,n.

The centre of a transvection I + T is the image of T , a line in the vector space.

Lemma 1.12 The group SLn(q) is generated by the transvections I + aEi,j for i 6= j.

Proof: Notice that if M is a matrix, then multiplying M on the left by the transvection

1 + aEi,j is equivalent to adding a copies of the jth row to the ith row of M . We will use

Gaussian elimination to reduce M to the identity using transvections. Write Mi,j for the

(i, j)th entry of M .

Since M has non-zero determinant, the last column has a non-zero entry, so by multi-

plying by the appropriate transvection we may assume that Mn,n = 1. We can multiply

by transvections to eliminate all other entries of the last column. Since the determinant is

non-zero, all other columns have non-zero entries off the last row, and so we can multiply

by transvections to eliminate all entries on the last row except for Mn,n. Hence, apart from

Mn,n, all entries in the last row and column are zero. Repeating this procedure, we get a

matrix with Mi,i = 1 for i > 1 and Mi,j = 0 for i 6= j. If M1,1 = λ, then clearly detM = λ,

and since M ∈ SLn(q) (as multiplying by transvections does not alter this), we must have

that λ = 1, i.e., M is the identity, as claimed.

By expressing transvections as commutators, this proves that SLn(q) is perfect.

Proposition 1.13 If q is a prime power, and q > 4 and n > 2, or n > 3, then all transvec-

tions are commutators, and so SLn(q) is perfect.

Proof: We first deal with the case n = 2: let a be a non-zero element of Fq, and let x be

an element of Fq. We have the commutator equation(
1 −x
0 1

)(
a 0

0 a−1

)(
1 x

0 1

)(
a−1 0

0 a

)
=

(
1 (a2 − 1)x

0 1

)
.

Since Fq has order at least 4, we may choose a 6= 0 so that a2 − 1 6= 0; by varying x we get

all upper unitriangular matrices as commutators. Using the formula [x, y]g = [xg, yg], we get

that all transvections are commutators in SL2(q).

It remains to deal with the case where n > 3. In this case, we have the commutator

identity

[I + aE1,2, I + E2,n] = I + aE1,n,

and since all transvections are conjugate to one of these, this proves that all transvections

are commutators. Hence SLn(q) is perfect for n > 3 and all q also.
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In order to prove that a finite perfect group is actually simple, we need a criterion for

this, called Iwasawa’s lemma.

Theorem 1.14 (Iwasawa’s lemma) Let G be a finite primitive permutation group on a

set X, and let A be an abelian normal subgroup of the stabilizer of some point x ∈ X. If the

G-conjugates of A generate G, then any normal subgroup of G contains G′. In particular, if

G is perfect then G is simple.

Proof: Let K be any non-trivial normal subgroup of G, so that K is not contained in Gy

for some y ∈ X. By conjugating A, we may assume that y = x. Since G is primitive, Gx is

a maximal subgroup of G, and so G = GxK. Let g = hk be an element of G, with h ∈ Gx

and k ∈ K. We have

Ag = Ahk = Ak,

as A P Gx. As K is a normal subgroup of G, we therefore get that Ak 6 AK. However, the

conjugates of A generate G, and hence G = AK.

Since G = AK, we have G/K = AK/K ∼= A/(A∩K); as A is abelian, AK/K is abelian,

and so K contains G′. This completes the proof.

Of course, we need to prove that the action of PSLn(q) on projective space is primitive

in order to apply Iwasawa’s lemma. We also need to find a candidate for the abelian normal

subgroup of the point stabilizer.

Proposition 1.15 The group PSLn(q) (or equivalently SLn(q)) acts 2-transitively on pro-

jective (n− 1)-space.

Proof: We prove that SLn(q) is transitive and that the stabilizer of a point is transitive on

the remaining points. Let V denote an n-dimensional Fq-vector space, with basis x1, . . . , xn.

Clearly SLn(q) acts transitively on projective (n−1)-space, since GLn(q) can send any point

to any other point, so SLn(q) sends any line to any other line. Let α, β and γ be distinct

lines in P (V ); we wish to find an element that fixes α and sends β to γ. Without loss of

generality, we may assume that α is generated by x1 and β by x2.

Writing a generator for γ as a = (a1, a2, . . . , an), any matrix in GL(V ) with second row

a and first row (1, 0, . . . , 0) satisfies the requirements. (Notice that we can find such an

invertible matrix as γ 6= α.) Scaling this matrix yields a matrix in SL(V ) that performs this

task, as needed.

The image of a transvection in PSLn(q) is called an elation. The centre of an elation

is the centre of the corresponding transvection, a point in projective space. Hence every

elation fixes a specific point in projective space. The elations with a given centre α ∈ P (V )
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form a subgroup of the point stabilizer Gα isomorphic with F×q , an abelian subgroup. Also,

since conjugating an elation with centre α by g ∈ PSLn(q) gives an elation with centre αg,

the elations with centre α form an abelian normal subgroup of Gα.

Applying Iwasawa’s lemma to this abelian normal subgroup, we get the following theorem.

Theorem 1.16 If n > 3, or n = 2 and q > 4, then PSLn(q) is simple.

12



1.3 The Transfer

Most of this course will be spent understanding the concept of fusion and using it.

Definition 1.17 Let G be a group, and H a subgroup of G. Let A and B be non-empty

subsets of H. If there is g ∈ G such that Ag = B but there is no h ∈ H such that ag = ah

for all a ∈ A, then A and B are said to be fused by G (via g).

If H 6 K 6 G, and all subsets of H fused in G are fused in K, then K is said to control

fusion in H with respect to G.

We start with a simple result of Burnside, which will be used later in this section.

Proposition 1.18 (Burnside, 1900) LetG be a finite group, and P be a Sylow p-subgroup

of G. The subgroup NG(P ) controls fusion in Z (P ) with respect to G.

Proof: Suppose that X and Y are subsets of Z (P ), and that Xg = Y . Since X, Y ⊆ Z (P ),

P 6 CG(X) and P 6 CG(Y ). Also P g 6 CG(X)g = CG(Y ). Thus both P and P g lie inside

CG(Y ), and hence by Sylow’s theorem there is some h ∈ CG(Y ) such that P gh = P . Hence

gh ∈ NG(P ), and for all x ∈ X,

xgh = (xg)h = xg,

since h centralizes Y . Thus X and Y are fused by NG(P ) via gh, as required.

In the same vein, in Exercise 1.8 we see Thompson’s transfer lemma.

In this section we will define the transfer homomorphism and give some of its properties.

Let G be a group, and let H be a subgroup of G of finite index n. Choose (right) coset

representatives xi for H in G, so that

G =
n⋃
i=1

Hxi.

Since the right cosets partition the group, for any element g ∈ G, the element xig can be

written in the form hxj, for some h ∈ H. For g ∈ G, we use this to get a function φg

mapping i to j. We claim that φg is a permutation of {1, . . . , n}. To see this, suppose that

iφg = jφg; thus xig = hxk and xjg = h′xk, and so

g−1x−1
i hxk = 1 = g−1x−1

j h′xk,

which implies that xjx
−1
i = h′h−1. Hence xi and xj come from the same right coset, and

thus i = j; so φg is a permutation.

13



Let θ : H → A be any homomorphism from H to an abelian group A. We define the

transfer of θ to be

g 7→
n∏
i=1

(xigx
−1
iφg

)θ,

an element of A. (Notice that each xigx
−1
iφg

is an element of H, and so each term in the

product is an element of A; thus the order of the product is not important.)

Theorem 1.19 (The transfer, Burnside, 1900 [4]) Let G be a group, and let H be a

subgroup of G of index n. Let {x1, . . . , xn} be a right transversal to H in G. If θ : H → A is

a homomorphism from H to an abelian group A, then the transfer of θ is a homomorphism

from G to A, and does not depend on the choice of right transversal.

Proof: Let {t1, . . . , tn} be another right transversal to H in G, and order the ti so that

Hti = Hxi for all i. In addition, write ti = hixi for some hi ∈ H, and note that

hi(xigx
−1
iφg

)h−1
iφg

= tigt
−1
iφg
.

Using this relation, and the fact that the image of θ is abelian, we may reorder the terms in

the product to get

n∏
i=1

(
hi(xigx

−1
iφg

)h−1
iφg

)
θ =

n∏
i=1

(xigx
−1
iφg

)θ ·
n∏
i=1

(hih
−1
iφg

)θ.

Since φg is a permutation, this latter term is clearly 1, and so the transfer of θ does not

depend on the choice of transversal.

All that is left is to prove that the transfer of θ is a homomorphism. Let a and b be two

elements of G, and write τ for the transfer of θ.

(ab)τ =
n∏
i=1

(xi(ab)x
−1
iφab

)θ

=
n∏
i=1

(
(xiax

−1
iφa

)(xiφabx
−1
iφab

)
)
θ

=
n∏
i=1

(xiax
−1
iφa

)θ(xiφabx
−1
iφab

)θ

=
n∏
i=1

(xiax
−1
iφa

)θ ·
n∏
i=1

(xiφabx
−1
iφab

)θ.

The first product is aτ , so we need to show that the second product is bτ . This will follow

if φab = φaφb; to see this, iφab is the integer such that xi(ab) = hxiφab for some h, and

(xia)b = (hxiφa)b = hh′xiφaφb ,

so that φab = φaφb, as needed. This proves that τ is a homomorphism.

14



Notice that the transfer is into an abelian group, and so the kernel of it contains G′.

Thus if G is perfect the transfer is always trivial.

We have proved that the transfer does not depend on the choice of transversal and so it

makes sense to use specific transversals to make calculating it easier; Exercise 2.1 requires

the calculation of the transfer for S4, and here a specific choice of transversal makes the

calculation much easier. In order to make calculating the transfer simpler we will construct

a particular choice of transversal: the explicit nature of this transversal makes it possible to

apply the transfer in various situations, as we will do later.

Let g be an element of G, and let H be a subgroup of index n in G. Let {x1, . . . , xn} be

a right transversal to H in G. We order the xi so that the permutation φg is

φg = (1, 2, . . . , r1)(r1 + 1, r1 + 2, . . . , r1 + r2)(r1 + r2 + 1, . . . ) . . . .

Write d for the number of cycles in φg, and for 1 6 i 6 d − 1 let si denote the sum of the

first i of the rj (and write s0 = 0). With this ordering, we have that, for each i,

si+1∏
j=si+1

(xjgx
−1
jφg

)θ = (xsi+1g
ri+1x−1

si+1)θ.

In particular, if we set yi = xsi−1+1, we get that

gτ =
d∏
i=1

(yig
riy−1

i )θ.

Also, the sum of the ri from i = 1 to i = d is n, and yig
riy−1

i lies in H.

This yields the following proposition.

Proposition 1.20 Let G be a group and let H be a subgroup of index n, and let θ : H → A

be a homomorphism to an abelian group A. Write τ for the transfer of θ. Let {x1, . . . , xn}
be a right transversal to H in G, and let g ∈ G. Write d for the number of cycles in φg.

There is a suitable ordering of the xi, and integers r1, . . . , rd, such that for yi = xr1+···+ri−1+1,

we have:

(i) yig
riy−1

i ∈ H for 1 6 i 6 d;

(ii)
d∑
i=1

ri = |G : H|;

(iii)

(
d∏
i=1

yig
riy−1

i

)
θ = gτ .
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This result will be used in the proof of Burnside’s normal p-complement theorem, which

is the content of the next theorem. Before we state it, we define the notion of a normal p-

complement: a finite group G has a normal p-complement if there exists a normal subgroup

K of G such that p - |K| and |G/K| is a power of p, i.e., G = K o P for some Sylow

p-subgroup P of G.

Theorem 1.21 (Burnside normal p-complement theorem, 1900 [5]) Let G be a fi-

nite group, and let P be a Sylow p-subgroup of G. If P 6 Z (NG(P )), then G has a normal

p-complement.

Proof: Let P be a Sylow p-subgroup of G, and notice that since P 6 Z (NG(P )), P is

abelian. Let θ : P → P denote the identity map and let τ be the transfer of θ. We will show

that ker τ ∩ P = 1; then |G|/| ker τ | > |P |, but | im τ | 6 |P |, and we get that G/ ker τ ∼= P ,

proving that ker τ is a normal p-complement for G.

Let g be a non-trivial element of P , and consider gτ . As in Proposition 1.20, choose a

transversal x1, . . . , xn, (where n = |G : P |) a subset y1, . . . , yd of the xi, and also the integers

r1, . . . , rd. Since yig
riy−1

i = h lies in P , we see that gri and h are G-conjugate elements of P ,

whence they are NG(P )-conjugate by Proposition 1.18. Since P lies in the centre of NG(P ),

gri = h, and so (remembering that θ = idP )

gτ =
d∏
i=1

(xig
rix−1

i ) =
d∏
i=1

gri = gn 6= 1,

as n and p are coprime. Thus g /∈ ker τ , as required.

Cayley proved in 1878 that if a finite group has cyclic Sylow 2-subgroups then it has a

normal 2-complement. Burnside’s normal p-complement theorem extends this result to all

primes.

Corollary 1.22 Let G be a finite group, and p the smallest prime dividing |G|. If the Sylow

p-subgroups of G are cyclic then G has a normal p-complement.

Proof: Let P be a Sylow p-subgroup of G. By Proposition 0.12(i), we know that the order of

AutCpn is pn−1(p−1). Now recall that NG(P )/CG(P ) is isomorphic to a subgroup of AutP ,

and since P is cyclic, P 6 CG(P ). Thus |NG(P )/CG(P )| is prime to p, and since it divides

pn−1(p− 1), it must divide p− 1, which is impossible since p is the smallest prime divisor of

G; thus NG(P ) = CG(P ), so that P 6 Z (NG(P )). Hence G has a normal p-complement by

Theorem 1.21.

This corollary proves that if G is simple and p is the smallest prime dividing |G|, then

p2 | |G|; using Burnside’s normal p-complement theorem with more care we can do better.
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Corollary 1.23 (Burnside, 1895) Let G be a non-abelian simple group, and p be the

smallest prime dividing the order of G. Then p3 divides |G|, or p = 2 and 12 divides |G|.

Proof: Suppose that p3 - |G|; by Corollary 1.22, the Sylow p-subgroups cannot be cyclic,

so |P | = p2 and P ∼= Cp × Cp. By Proposition 0.12(ii) the automorphism group of this is

GL2(p), which has order (p2 − 1)(p2 − p).
As in Corollary 1.22, we have that NG(P )/CG(P ) divides (p−1)(p2−1) since P 6 CG(P )

(and so |NG(P )/CG(P )| is prime to p). Again, p− 1 < p, and since p is the smallest prime

dividing |G|, we must have |NG(P )/CG(P )| dividing p + 1. It cannot be equal to 1 by

Burnside’s p-complement theorem, and it cannot be between 1 and p + 1, since p is the

smallest prime dividing |G|. Hence we are forced to take NG(P )/CG(P ) = p+ 1, which is a

prime by choice of p. Thus p and p+ 1 are primes, giving p = 2, and p2(p+ 1) = 12 divides

the order of G.

We can use this corollary to prove another fact about the possible orders of simple groups.

Corollary 1.24 Let G be a simple group of order p2qr, where p, q, r are primes. Then

G ∼= A5.

Proof: By Corollary 1.23, p = 2 and either q or r is 3, say q = 3. Thus |G| = 12r, where r is

a prime. Firstly note that r 6 11, since the number of Sylow r-subgroups must be congruent

to 1 modulo r and divide 12, and so we easily see r = 11 or r = 5. In the case r = 5

we get |G| = 60, and by Proposition 0.14 we get G ∼= A5. In the case r = 11, Burnside’s

p-complement theorem gives us a contradiction, so we are done.

Burnside proved that p3 or 12 divided |G| at the turn of the twentieth century, and made

two conjectures: firstly, he conjectured that p = 2 for all simple groups – so the order of every

non-abelian simple group is even – and he also conjectured that 12 divided the order of every

simple group. The first of these conjectures became the ‘Feit–Thompson theorem’ or the

‘odd order theorem’, but the second of these conjectures turned out to be incorrect. Suzuki,

in [14], proved the existence of an infinite family of simple groups of order q2(q2 + 1)(q− 1),

where q = 22n+1 is an odd power of 2 not equal to 2 itself. Notice that in this case, 3 cannot

divide this order, and so the conjecture was falsified.

As a historical note, some texts (for example [3] and [12]) credit Schur [13] with the

development of the transfer in 1902. However, already in 1900 it was used by Burnside, and

indeed it was originally developed by him, with several rediscoveries over the years by others.

Schur developed lots of new mathematics himself, but this bit isn’t one of them.
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1.4 p-Groups and Nilpotent Groups

The theory of p-groups and their automorphisms is a large subject, and here we only scratch

the surface of what is known. We begin with the Frattini subgroup, which we saw in Exercise

1.4.

Lemma 1.25 Let G be a finite group. The set Φ(G) consists of all non-generators of G; i.e.,

Φ(G) consists of all elements g ∈ G such that, whenever G = 〈X, g〉, we have that G = 〈X〉.

Proof: Suppose that g is a non-generator of G, and let M be a maximal subgroup of G. If

g /∈ M then G = 〈g,M〉, so G = 〈M〉 as g is a non-generator, a contradiction. Hence g lies

in every maximal subgroup of G, so g ∈ Φ(G).

Conversely, suppose that g ∈ Φ(G), and suppose that G = 〈X, g〉 for some subset X of G.

If 〈X〉 < G, then 〈X〉 6 M for some maximal subgroup M ; however, since g ∈ Φ(G) 6 M ,

〈X, g〉 6 M as well, a contradiction. Thus Φ(G) consists of all non-generators of G, as

claimed.

Theorem 1.26 (Burnside basis theorem, 1913) Let G be a finite p-group.

(i) A subset X of G generates G if and only if the image of X in G/Φ(G) generates

G/Φ(G).

(ii) All minimal (under inclusion) generating sets of G have the same cardinality d, where

|G/Φ(G)| = pd.

Proof: If X is a generating set of G then the image of X generates any quotient group, so

one direction is easy. Conversely, suppose that the image of X in G/Φ(G) generates G/Φ(G).

We claim that G = 〈Φ(G), X〉, and then by Lemma 1.25 we have G = 〈X〉, as required. To

see that G = 〈Φ(G), X〉 notice that, since 〈X〉 must contain at least one element from each

coset of Φ(G) (since its image in G/Φ(G) generates the whole quotient), every coset of Φ(G)

lies in 〈X,Φ(G)〉, completing the proof of (i).

To see (ii), we simply note that it is easy to see that all minimal generating sets for an

elementary abelian p-group have the same size by identifying elementary abelian p-groups

with finite-dimensional vector spaces over Fp, and generating sets with bases. This, plus the

previous part of the theorem, completes the proof of (ii), and hence the theorem.

Proposition 1.27 (Burnside) Let G be a finite p-group. A p′-automorphism α ∈ Aut(G)

acts trivially on G/Φ(G) if and only if α = 1.
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Proof: Suppose firstly that α has prime order q (where q 6= p), and acts trivially on G/Φ(G),

and write pm for the order of Φ(G). Since α fixes each coset of Φ(G), each of which is a set of

order pm, α must permute the elements of this coset, and hence must fix at least one element

in this coset (since if all orbits have length more than 1, they all have length a multiple of

q). Hence α fixes an element from each coset of Φ(G). Let X denote a collection of such

fixed points. Clearly the image of X in G/Φ(G) is the whole of G/Φ(G), so by Burnside’s

basis theorem G = 〈X〉. As α fixes a set of generators for G, α = 1, as needed.

Finally, suppose that o(α) is not of prime order, and write o(α) = qn, where n > 1. Notice

that αn has order q, and acts trivially on G/Φ(G), so αn = 1 by the previous paragraph.

Thus o(α) = n, and this contradiction proves the general case.

(The Burnside basis theorem originally used the derived subgroup rather than the Frattini

subgroup, and was cast in its modern form by Philip Hall, in 1934; we will see more of him

in the next chapter.)

We move from p-groups to nilpotent groups. These are groups where by quotienting out

by the centre repeatedly, one eventually ends up at the trivial group.

Definition 1.28 Let G be a group. A central series for G is a series

1 = G0 P G1 P · · · P Gr = G

such that Gi/Gi−1 6 Z (Gi/Gi−1) for all 1 6 i 6 r. (In other words, Gi is the set of all

g ∈ G such that, for all x ∈ G, we have [g, x] ∈ Gi−1.) If G possesses a central series then

G is nilpotent. The smallest r such that there is a central series for G with Gr = G is the

nilpotence class of G, or simply the class of G.

Notice that an abelian group is nilpotent of class 1, and all nilpotent groups are soluble.

The idea of a nilpotent group is a generalization of a finite p-group, in the sense that finite

p-groups are nilpotent. This follows easily from the fact that the centre of a p-group is

non-trivial.

Lemma 1.29 Subgroups and quotients of nilpotent groups of class c are nilpotent, of class

at most c.

Proof: Let

1 = G0 P G1 P · · · P Gr = G

be a central series for G, and let H be a subgroup of G. We claim that if Hi = H ∩Gi, then

the (Hi) form a central series for H. To see this, notice that Hi 6 Gi, so that if g ∈ Hi then
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for all x ∈ H, we have [g, x] ∈ Gi−1. Also, [g, x] ∈ H, so that [g, x] ∈ Hi−1, proving that

(Hi) is a central series for H.

Let K be a normal subgroup of G, and let Ki = GiK/K. We claim that (Ki) is a central

series for G/K. The proof is similar to the above, and is skipped.

We now introduce two important central series, called the upper and lower central series.

Definition 1.30 Write Z0(G) = 1, and Zi(G) for the preimage in G of Z (G/Zi−1(G)). The

series

1 = Z0(G) 6 Z1(G) 6 Z2(G) 6 · · ·

is called the upper central series for G.

Write L1(G) = G and Li(G) = [G,Li−1(G)]. The series

G = L1(G) > L2(G) > L3(G) > · · ·

is called the lower central series for G.

We have called them the upper and lower central series, suggesting that they actually

are central series.

Proposition 1.31 Let G be a nilpotent group of class c. Both the upper and lower central

series are central series for G, and both series have length c. Furthermore, if

1 = G0 P G1 P · · · P Gr = G

is any central series for G, then Gi 6 Zi(G) and Lc+1−i(G) 6 Gi.

Proof: We proceed by induction on r, the case where r = 1 meaning the group G is abelian,

and Z (G) = G, L2(G) = 1, and the result holds.

Clearly G1 6 Z (G) by definition, and so the result is true i = 1. Assume the result is

true for i−1, so that Gi−1 6 Zi−1(G); for all g ∈ Gi and x ∈ G, we have that [g, x] ∈ Gi−1 6

Zi−1(G), so that g ∈ Zi(G) (as it lies in the centre of G/Zi−1(G)). Hence Gi 6 Zi(G).

The proof that Lc+1−i(G) 6 Gi is similar, and left as an exercise.

We are now able to prove the following result, which offers several characterizations of

finite nilpotent groups.

Theorem 1.32 Let G be a finite group. The following are equivalent:

(i) G is nilpotent;

(ii) (The normalizer condition) for all H < G, we have H < NG(H);
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(iii) G is the direct product of its Sylow p-subgroups;

Proof: We proceed in stages.

(i) implies (ii) Suppose that G is nilpotent, and let H be a proper subgroup of G. If Z (G) 66
H then clearly H < NG(H) (as Z = Z (G) 6= 1), so we may assume that Z 6 H. However, in

this case NG(H)/Z = NG/Z(H/Z), and so H < NG(H) if and only if H/Z < NG/Z(H/Z). By

induction on the nilpotence class of G, the latter strict inequality holds, and so H < NG(H),

as claimed.

(ii) implies (iii) Suppose that G has the normalizer condition, and let P be a Sylow p-

subgroup of G: the normalizer condition applies to NG(P ), and so either NG(P ) = G – i.e.,

P is normal in G – or NG(P ) < NG(NG(P )). However, this second possibility cannot occur

by Exercise 1.3, and so all Sylow p-subgroups of G are normal in G. Thus G is the direct

product of its Sylow p-subgroups.

(iii) implies (i) By Exercise 2.2, the direct product of nilpotent groups is nilpotent, and

since p-groups are nilpotent, we see that if G is the direct product of its Sylow p-subgroups

then G is nilpotent.

Notice that the first part of the proof – that nilpotent groups have the normalizer con-

dition – did not require G to be finite. However, in the infinite case, having the normalizer

condition is not equivalent to being nilpotent. Indeed, there are examples of infinite groups

with the normalizer condition but whose centre is the trivial subgroup [9].
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Chapter 2

The 1930s

2.1 The Schur–Zassenhaus Theorem

The Schur–Zassenhaus theorem is one of the fundamental results in finite group theory. It

asserts the existence of complements in certain situations, namely when the normal subgroup

and the quotient have coprime orders.

Theorem 2.1 (Schur–Zassenhaus theorem, 1937) Let G be a finite group, and let K

be a normal subgroup of G such that |K| and |G/K| are coprime. Assume that either K or

G/K is soluble. There are complements to K in G, and any two complements to K in G

are conjugate in G.

(In the case where G/K is cyclic, the theorem was proved in 1904 by Schur, but the

general case we give here was proved by Zassenhaus in 1937.)

We recall briefly some terminology. If G is a finite group and K is a normal subgroup

of G, a complement to K in G is a subgroup H such that G = HK and H ∩ K = 1. An

extension

1 K G H 1// // //
φ

//

splits if there exists a homomorphism ψ : H → G such that φψ = idH , or equivalently K

has a complement in G. We also say that G is a semidirect product of K and H.

We are going to develop the rudiments of cohomology : in the guise here, cohomology

theory attempts to understand and classify extensions of one group by another, particularly

when the kernel is abelian.

Definition 2.2 Let G be a finite group and let M be a G-module. A 2-cocycle is a function

ζ : G×G→M that satisfies the identity

ζ(x, yz) + ζ(y, z) = ζ(xy, z) + ζ(x, y) · z,
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and ζ(1, y) = ζ(x, 1) = 0, for all x, y, z ∈ G.

A 2-cocycle looks quite artificial, but it measures how far an extension differs from being

a split extension. To see this, let X be a finite group and let M be a normal subgroup. Fix a

transversal T to M in X, and write G for the quotient X/M , and φ : X → G is the natural

quotient map. A transversal can be thought of as a function ψ : G→ X such that ψφ = idG.

Notice that X splits over M if and only if we may choose ψ to be a homomorphism. In

general, however, we have

(xψ)(yψ) = (xyψ)ζ(x, y),

for some ζ(x, y) ∈ M . We claim that the function ζ(x, y) is a 2-cocycle. Firstly, write

elements in M additively for this proof. Notice that clearly ζ(1, y) = 0 = ζ(x, 1) for all

x, y ∈ G. It remains to check the more complicated condition. The associativity of G is the

only thing that we have to use, so let’s use it. We have

(xψ+yψ)+zψ = (xy)ψ+ζ(x, y)+zψ = (xy)ψ+zψ+ζ(x, y)·z = (xyz)ψ+ζ(xy, z)+ζ(x, y)·z,

and

xψ + (yψ + zψ) = xψ + (yz)ψ + ζ(y, z) = (xyz)ψ + ζ(x, yz) + ζ(y, z).

This gives ζ(x, yz) + ζ(y, z) = ζ(xy, z) + ζ(x, y) · z, the cocycle identity, as claimed. If G is

a finite group and M is a G-module, the set of all 2-cocycles will be denoted by Z2(G,M).

The next object we need to construct are the 2-coboundaries. A function ζ : G×G→M

is a 2-coboundary if there exists a function f : G→M with f(1) = 0 such that

ζ(x, y) = f(y)− f(xy) + f(x) · y.

It is easy to show, and a simple exercise, that all 2-coboundaries are 2-cocycles. The set of

2-coboundaries will be denoted by B2(G,M). In fact, we can define an addition operation

on Z2(G,M) by

(ζ + ξ)(x, y) = ζ(x, y) + ξ(x, y).

This turns Z2(G,M) into an abelian group, and B2(G,M) into a subgroup of Z2(G,M).

Define the 2-cohomology group to be

H2(G,M) = Z2(G,M)/B2(G.M).

In some sense, H2(G,M) classifies equivalence classes of extensions of M by G. The next

proposition tells us something important is going on when we have that |G| and |M | are

coprime.
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Proposition 2.3 Let G be a finite group, and let M be a finite G-module. If |G| and |M |
are coprime, then H2(G,M) = 0.

Proof: Let ζ : G × G → M be a cocycle. We must show that ζ is a coboundary, for then

H2(G,M) = 0. Define σ : G→M by

σ(g) =
∑
x∈G

ζ(x, g).

(Since M is abelian this sum makes sense.) As ζ is a cocycle, we have the identity (for

x, y, z ∈ G)

ζ(x, yz) + ζ(y, z) = ζ(xy, z) + ζ(x, y) · z.

Summing these identities for all x ∈ G, we get

σ(yz) + nζ(y, z) = σ(z) + σ(y) · z,

where n = |G|. Let m = |M |. As m and n are coprime, there are integers a and b such that

am+ bn = 1. Let τ : G→M be defined by τ(x) = bσ(x). We see that τ(1) = 0, and

τ(yz) + (1− am)ζ(y, z) = τ(z) + τ(y) · z

Since ζ(x, y) is an element of M , amζ(x, y) = 0, and so ζ(x, y) satisfies the identity of a

coboundary, namely

ζ(y, z) = τ(z)− τ(yz) + τ(y) · z.

This proves that H2(G,M) = 0, as claimed.

The theory of cohomology is extensive, and we will just develop enough to prove our

theorem. For this, we just need the following two lemmas.

Lemma 2.4 Let X1 and X2 be two extensions of M by G, and let ζ1 and ζ2 be the associated

2-cocycles to the extensions. If ζ1 and ζ2 lie in the same coset of H2(G,M), then X1
∼= X2.

Proof: Write ψi : G → Xi for the transversals yielding ζi. Since ζ2 − ζ1 is a coboundary,

there exists a function f : G→M with f(1) = 0 such that, for all x, y ∈ G,

ζ1(x, y)− ζ2(x, y) = f(y)− f(xy) + f(x) · y.

Each element of X1 can be expressed uniquely as (xψ)a with a ∈ M and x ∈ G, and the

multiplication in X1 is given by

[(xψ1)a][(yψ1)b] = [(xψ1)(yψ1)][ayψ1b] = [(xy)ψ1][ζ1(x, y)][a · y]b.
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Define γ : X1 → X2 by ((xψ1)a)γ = (xψ2)f(x)a. We need to check that this is a

homomorphism: the unenlightening computation is as follows.

((xψ1)a)γ((yψ1)b)γ = (xψ2)f(x)a(yψ2)f(y)b

= [(xψ2)(yψ2)]ayψ2f(y)b

= [(xy)ψ2][ζ2(x, y)][f(x) · y][a · y][f(y)][b].

([(xψ1)a][(yψ2)b])γ = ([(xy)ψ1][ζ1(x, y)(a · y)b])γ

= [(xy)ψ2][f(xy)][ζ1(x, y)][(a · y)][b].

For these two expressions to be equal, we may remove (xy)ψ2 and b from both of them: the

remaining terms all lie in M , an abelian group, so we may remove a · y from both, and we

are left with (written additively since this is an equation solely in M)

ζ2(x, y) + f(x) · y + f(y) = f(xy) + ζ1(x, y).

This is a rearrangement of the first equation of this proof, so it holds. Therefore γ is a

homomorphism. Finally, we need to know that γ is an injection, since |X1| = |X2|. However,

if ((xψ)a)γ = 1 then x = 1 since else the expression does not lie in M , and aγ = a by an

easy computation. Thus γ is an isomorphism, as required.

Lemma 2.5 Let X be an extension of M by G, let T be a transversal to M in X, and let

ζ be the associated 2-cocycle to the extension and transversal. If ζ is a 2-coboundary (i.e.,

the cohomology class is 0) then X = M oG.

Proof: If ζ is identically 0, then T is actually a subgroup of X, so that X = M o T . The

rest now follows from Lemma 2.4.

Since H2 determines whether an extension splits or not, we get the following corollary to

Proposition 2.3 and Lemma 2.5.

Corollary 2.6 Let G be a finite group and let K be an abelian normal subgroup of G. If

|G/K| and |K| are coprime then K has a complement in G.

Hence the existence of complements in the Schur–Zassenhaus theorem in the case of K

abelian is proved. We will prove the existence of complements in all cases now.

Proof: Let G be a minimal counterexample to the theorem, and let K be a normal subgroup

of G such that |K| and |G/K| are coprime. Write k = |K| and n = |G/K|.
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Step 1: K is a minimal normal subgroup of G. We first show that K is a minimal

normal subgroup of G, so let M be a normal subgroup of G contained in K. By induction,

the theorem holds for G/M , and so since K/M and G/K = (G/M)/(K/M) have coprime

orders, there is a complement H/M to K/M in G/M . Taking preimages gives a subgroup

H of G such that HK = G and H ∩K = M .

Notice that

H/M = H/(H ∩K) ∼= HK/K = G/K,

and so |H/M | = n. Therefore, again by induction, since |M | and |H/M | are coprime, M has

a complement L in H, which has order n. The subgroup L, having order n, is a complement

to K in G, hence M = 1 or M = K, proving that K is a minimal normal subgroup of G.

Step 2: K is an elementary abelian p-group, and conclusion. Let P be a Sylow p-

subgroup of K (which is also a Sylow p-subgroup of G), for some p | |K|. By the Frattini

argument (Exercise 1.6) G = K NG(P ). Since G/K ∼= NG(P )/(NG(P )∩K), and the index of

NK(P ) = NG(P )∩K in NG(P ) is n, we see that unless NG(P ) = G, NG(P ) has a complement

H to NK(P ), which therefore has order n, so is a complement to K in G. Hence P P G

which means, since K is a minimal normal subgroup, that K = P , a p-group. In particular,

K is soluble, so K is elementary abelian by Exercise 2.6. However, by Corollary 2.6, K

indeed has a complement in G, completing the proof of existence.

We now turn to conjugacy of the complements. Conjugacy of complements in the case

where K is abelian is governed by more cohomology, namely the 1-cohomology group. In

Exercises 4.3 and 4.4 we prove some results about 1-cohomology. In particular, we prove

that if a finite group X is a split extension of M by G, then all complements to M in G

are conjugate if H1(G,M) = 0, and we also prove that if |G| and |M | are coprime then

H1(G,M) = 0, so we prove the conjugacy of complements for the case K abelian in the

Schur–Zassenhaus theorem.

Suppose now that K is soluble, but not abelian. If H and L are complements to K in G,

then HK ′/K ′ and LK ′/K ′ are complements to K ′ in G/K ′, whence are conjugate in G/K ′.

Hence we may assume that HK ′ = LK ′, and by induction (as K ′ < K since K is soluble)

H and L are conjugate in HK ′ since they are both complements to K ′ in HK ′.

Suppose instead that G/K is soluble, and let H and L be two complements to K in

G. Let T = Oπ(G), where π is the set of primes dividing |G/K|. Clearly T 6 H,L by

consideration of orders, and H and L are conjugate if and only if H/T and L/T are. Thus

we may assume that T = 1. Let M/K be a minimal normal subgroup of G/K, and let M

denote its preimage. Since G/K is soluble, M/K is an elementary abelian p-group for some

p ∈ π. We claim that H ∩M is a Sylow p-subgroup of M : since H contains a Sylow p-

26



subgroup of G and M P G, H∩M contains a Sylow p-subgroup of M , and as H is a π-group,

and the only prime in π that divides |M | is p, we prove the claim. Similarly, L ∩M is also

a Sylow p-subgroup of M , so there exists g ∈M such that L ∩M = (H ∩M)g = Hg ∩M .

Writing U = L ∩ M , we see that U is normal in 〈Hg, L〉. If 〈Hg, L〉 < G then by

induction Hg and L are two complements to 〈Hg, L〉 ∩ M in 〈Hg, L〉, so are conjugate.

Hence 〈Hg, L〉 = G, i.e., U P G. However, we assumed that Oπ(G) = 1, so L ∩M = U = 1.

However, this is a contradiction since M/K ∼= U and M/K 6= 1. This completes the proof

of conjugacy if G/K is soluble.

In order to get the clean statement of the Schur–Zassenhaus theorem, we need to know

that either K or G/K is always soluble. This is a consequence of the deep and difficult Feit–

Thompson theorem, which states that groups of odd order are always soluble. Since one of

|K| and |G/K| is definitely odd, we get the final form of the Schur–Zassenhaus theorem,

Theorem 2.1.
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2.2 Hall’s Theorem on Soluble Groups

Definition 2.7 Let G be a finite group and π be a set of primes. A subgroup H of G is a

Hall π-subgroup of G if H is a π-group and |G : H| is a π′-number.

There is no guarantee that Hall π-subgroups always exist: they do in certain situations

and don’t in others.

Example 2.8 If π = {p}, then a Hall π-subgroup is a Sylow p-subgroup, and so Hall π-

subgroups always exist in this case. If G = A5 and π = {2, 5}, then a Hall π-subgroup of G

would have index 3; since An has no subgroups of index less than n for n > 5, there is no

Hall {2, 5}-subgroup of G. However, if π = {2, 3} then a Hall π-subgroup would have order

12, and so the A4 subgroups are Hall {2, 3}-subgroups of A5.

The example of a group without a Hall subgroup was a simple group. The reason we

chose an insoluble group for this example is the following proposition, due to Philip Hall.

Proposition 2.9 Let G be a finite soluble group, and let π be a set of primes.

(i) Hall π-subgroups of G exist,

(ii) all Hall π-subgroups of G are conjugate in G, and

(iii) any π-subgroup of G is contained in a Hall π-subgroup of G.

Proof: We proceed by induction on |G|. Let K be a minimal normal subgroup of G; by

Exercise 2.6, K is an elementary abelian p-group for some prime p. Suppose firstly that

p ∈ π. The preimage of a Hall π-subgroup of G/K is a Hall π-subgroup of G, so Hall π-

subgroups of G exist. Furthermore, by induction, all Hall π-subgroups of G/K are conjugate

in G/K, and so their preimages, which are exactly the Hall π-subgroups of G, are conjugate

in G. Finally, if H is any π-subgroup of G then HK is also a π-subgroup of G, whence

HK/K is contained in a Hall π-subgroup of G/K; the preimage of this subgroup is a Hall

π-subgroup of G containing H, completing the proof in this case.

We are left with the case where p /∈ π. In this case, the preimage of a Hall π-subgroup

of G/K is a subgroup A of G, with K P A and |K|, |A/K| coprime. Hence by the Schur–

Zassenhaus theorem, K has a complement C in A, which is a Hall π-subgroup of G, proving

the existence of Hall π-subgroups in this case as well. Letting C and D be Hall π-subgroups

of G, the subgroups CK/K and DK/K are G/K-conjugate by induction, whence there

exists g ∈ G such that (CK)g = DK. Furthermore, since K P G, Kg = K, and so Cg is

another complement to K in DK. By the Schur–Zassenhaus theorem again, Cg and D are

conjugate in DK, and hence C and D are conjugate, proving conjugacy of Hall π-subgroups.

28



Finally, let H be any π-subgroup; since HK/K is a π-subgroup of G/K, it is contained

in a Hall π-subgroup of G/K, and the preimage of this is a subgroup M of G containing H

and K, such that |K| and |M/K| are coprime. Let C be any complement to K in M . We

see that M = CK and

HK = HK ∩ CK = (HK ∩ C)K,

which shows that the order of H and HK ∩ C are equal. Since H and HK ∩ C are both

complements to K in HK, they are conjugate via some element g ∈ HK by the Schur–

Zassenhaus theorem; hence H is contained in Cg−1
, completing the proof.

The remarkable result is that the converse holds. In fact, if a finite group possesses Hall

p′-subgroups for all primes p, then it is soluble.

Theorem 2.10 (Philip Hall, 1937) Let G be a finite group. Hall p′-subgroups of G exist

for all primes p if and only if G is soluble.

Proof: Let G be a finite group. If G is soluble then Hall p′-subgroups of G exist by the

previous proposition, so we must prove the converse.

Let G be a minimal counterexample to the statement. By Burnside’s pαqβ-theorem, at

least three distinct primes divide |G|.
Let p be a prime dividing |G| and let H be a Hall p′-subgroup of G. Let K be any Hall

q′-subgroup of G, for some q 6= p; by consideration of orders, H ∩K is a Hall q′-subgroup

of H, and so H has Hall q′-subgroups for all primes q dividing |H|, so by induction H is

soluble. If M is a minimal normal subgroup of H then M is an elementary abelian r-group

for some prime r 6= p.

Since three distinct primes divide |G|, let q be different from both p and r, and let K be

a Hall q′-subgroup of G. Clearly a Sylow r-subgroup of K is a Sylow r-subgroup of G, and

so M is contained in some conjugate of K; replace K by this conjugate, so we may assume

that M 6 K.

Consider all G-conjugates of M : as M is a normal subgroup of H, it is normalized by H.

Also, M 6 K, so any K-conjugate of M lies inside K. However, G is generated by H and

K (since K contains a Sylow p-subgroup of G and H contains all other Sylow subgroups),

so that all G-conjugates of M are subgroups of K. This implies that the normal closure N

of M in G (see Exercise 2.8) is contained in K.

Since K is soluble, N is soluble, and is a normal subgroup of G. By induction, and that

fact that if L is a Hall π-subgroup of G then LN/N is a Hall π-subgroup of G/N , we see

that G/N is soluble, so that G is soluble, as needed.
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2.3 The Fitting Subgroup

In this section we consider nilpotent subgroups of a finite group, particularly nilpotent nor-

mal subgroups. The following result of Fitting is the basis for studying normal nilpotent

subgroups.

Theorem 2.11 (Fitting’s theorem) Let G be a finite group, and let H and K be nilpo-

tent normal subgroups, of class c and d respectively. The product HK is nilpotent, of class

at most c+ d.

Proof: By Exercise 2.4, we have [xy, z] = [x, z]y[y, z] and [x, yz] = [x, z][x, y]z, and so if

X, Y and Z are normal subgroups then [XY,Z] = [X,Z][Y, Z] and [X, Y Z] = [X, Y ][X,Z].

Consider the (c+ d+ 1)-fold commutator [HK,HK, . . . , HK] = Lc+d+1(HK). By using the

commutator expansions we just described, we may write this commutator as∏
Xi∈{H,K}

[X1, X2, . . . , Xc+d+1].

Notice that in each of the expressions in the product, either (at least) c + 1 of the Xi are

H, or d + 1 of the Xi are K. Notice also that removing terms from a multiple commutator

can only make the subgroup larger, and so each term is contained in either a (c + 1)-fold

commutator Lc+1(H) or a (d+ 1)-fold commutator Ld+1(K), both of which are trivial since

H has class c and K has class d. Hence each term in the product is trivial, and so the

(c + d + 1)-fold commutator of HK is trivial. Thus HK is a normal nilpotent subgroup of

class at most c+ d, as required.

Hence the product of all normal nilpotent subgroups is normal and nilpotent, so it makes

sense to give the following definition.

Definition 2.12 Let G be a group. The Fitting subgroup of G, denoted F (G), is the product

of all normal nilpotent subgroups of G.

The Fitting subgroup is obvious a characteristic subgroup of a group, and is particularly

important for soluble groups, where we have the following result.

Theorem 2.13 (Philip Hall) Let G be a soluble group. We have CG(F (G)) 6 F (G).

Proof: Let N be a normal subgroup of G. We claim that N contains some normal abelian

subgroup of G: since G is soluble so is N , and if N has derived length n, then N (n−1) is

a characteristic abelian subgroup of N , hence a normal abelian subgroup of G. Now write
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F = F (G), C = CG(F ), and suppose that C 66 F . There exists an abelian normal subgroup

A/F of G/F contained in CF/F . Since F 6 A, by the modular law, Exercise 1.7,

A = A ∩ (CF ) = (A ∩ C)F,

and L3(A∩C) 6 [[A,A], C] = [A′, C] 6 [F,C] = 1. Hence A∩C is nilpotent, so A∩C 6 F :

therefore A 6 F by the displayed equation, and this is a contradiction. Thus CG(F (G)) 6

F (G), as needed.

The Frattini subgroup, the intersection of all maximal subgroups, is actually a nilpotent

subgroup. In fact, more is true.

Proposition 2.14 (Gäschutz) Let G be a finite group. The subgroup Φ(G) is nilpotent,

and F (G/Φ(G)) = F (G)/Φ(G).

Proof: We first show that if H is a normal subgroup of G containing Φ(G), and H/Φ(G)

is nilpotent, then H is nilpotent. Let P be a Sylow p-subgroup of H: by assumption

PΦ(G)/Φ(G) is a Sylow p-subgroup of H/Φ(G), whence is characteristic in H/Φ(G) P
G/Φ(G). In particular, PΦ(G) P G. The Frattini argument now yields thatG = (PΦ(G)) NG(P ),

and since P 6 NG(P ) and Φ(G) consists of all non-generators of G by Lemma 1.25, we see

that G = NG(P ); i.e., we see that P P G. Therefore all Sylow subgroups of H are normal

in H, so H is nilpotent.

Applying this to H = Φ(G) gives that Φ(G) is nilpotent. Applying this to the preimage H

of F (G/Φ(G)) in G yields that H is nilpotent, so F (G)/Φ(G) > F (G/Φ(G)). The converse

is clear, since images of nilpotent normal subgroups are nilpotent and normal, so we have

equality, as required.

Another interaction between the Frattini subgroup and nilpotence is the following result,

due to Wielandt.

Proposition 2.15 (Wielandt) If G is a finite group, then G′ 6 Φ(G) if and only if G is

nilpotent.

Proof: If G possesses a normal maximal subgroup M , then G/M has no proper non-trivial

subgroups, and so G/M is cyclic of prime order by Cauchy’s theorem, and G′ 6M .

On the one hand, if G is nilpotent then all maximal subgroups are normal (Exercise 2.7),

so G/Φ(G) is abelian, and G′ 6 Φ(G). On the other hand, if G′ 6 Φ(G) then, since G/G′ is

abelian, the image of any maximal subgroup in G/G′, and hence any maximal subgroup of

G, is normal, and G is nilpotent. This proves the result.
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The last theorem that we will see in this section is a theorem of Philip Hall from 1958.

We know that if K and G/K are soluble then G is soluble, but the same is not true with

nilpotent in place of soluble. However, we do have something similar. We should start with

a lemma.

Lemma 2.16 Let G be a finite group, and let K be a normal subgroup of G. Suppose

that K is the product of normal subgroups Ki of G for i = 1, . . . , n. If L is another normal

subgroup of G then

[K,L] =
n∏
i=1

[Ki, L].

Proof: This follows easily from the commutator identity [xy, z] = [x, z]y[y, z], as seen in

Exercise 2.4.

Theorem 2.17 (Philip Hall [8, Theorem 7]) Let G be a group and let K be a normal

subgroup of G. If both K and G/K ′ are nilpotent, of classes c and d respectively, then G is

nilpotent of class at most f(c) = c(c+ 1)d/2− c(c− 1)/2.

Proof: For this proof, write γXY for [X, Y ] and in general, γmX1X2 . . . Xm+1 for the (m+1)-

fold commutator

γmX1X2 . . . Xm+1 = [X1, X2, . . . , Xm+1].

Furthermore, if X is a subgroup of G, write Xn = γnXGn.

Step 1: For any two normal subgroups X, Y 6 G, (γY X)n 6
∏n

j=0(γYjXn−j) for all n > 1.

The three subgroup lemma says that

[Y,X,G] 6 [X,G, Y ][G, Y,X].

By rewriting the terms in the commutator, this gives

(γY X)1 6 (γY0X1)(γY1X0),

so the case n = 1 holds. Assume that the claim holds for n < 1: then by Lemma 2.16,

(γY X)n = [(γY X)n−1, G] 6
n−1∏
j=0

[(γYjXn−1−j), G].

Finally, by the three subgroups lemma, we have that

[(γYjXn−1−j), G] = [Yj, Xn−1−j, G] 6 [Yj+1, Xn−1−j][Yj, Xn−j].

This proves that (γY X)n is contained in the product of the γYjXn−j, as required.
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Step 2: If X is a normal subgroup of G and γmXGm 6 X ′, then (γi−1X i)im−i+1 =

γimX iGim−i+1 6 γiX i+1 for all i > 1. By induction, assume the result is true for i − 1.

In the formula of Step 1, set n = im− i+ 1 and Y = γi−2X i−1, we get

(γi−1X i)im−i+1 = (γY X)im−i+1 6
im−i+1∏
j=0

[Yj, Xim+1−i−j].

Consider the factors of the product. By induction hypothesis, Yn−m+1 6 [Y,X], and so for

j > n−m+1 we have that [Yj, Xn−j] 6 [Y,X,X]. For j 6 n−m, we have that n−j > m > 1,

and so Xn−j 6 X ′. Finally, Yj 6 Y , so [Yj, Xn−j] 6 [Y, [X,X]]. By the three subgroups

lemma, [Y, [X,X]] 6 [Y,X,X], and so

(γi−1X i)im−i+1 6 [Y,X,X] = γiX i+1,

proving the claim.

Step 3: The conclusion. Notice that, since G/K ′ is nilpotent of class d, γdKG 6 K ′.

Therefore, by Step 2,

(γi−1Ki)id−i+1 6 γiKi+1

for all i > 1. Notice that f(j)− f(j − 1) = jd− j + 1, so we have, by induction, that

γf(j)Gf(j)+1 6 γjd−j+1(γj−1Kj)Gjd−j+1 6 γjKj+1.

In particular, for j = c we get that γf(c)Gf(c)+1 = 1, as claimed.
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Chapter 3

The 1960s

3.1 Alperin’s Fusion Theorem

Alperin’s fusion theorem is one of the fundamental results on fusion in finite groups, and

in some sense gives justification to the goal of local finite group theory. One of the main

ideas in finite group theory, during the 1960s in particular, is that the structure of p-local

subgroups – normalizers of non-trivial p-subgroups of a finite group – should determine the

global structure of a finite simple group, or more generally an arbitrary finite group, in some

sense. Thompson’s normal p-complement theorem is an examplee of this, where the presence

of normal p-complements in two different local subgroups implies the presence of a normal

p-complement in the whole group.

Alperin’s fusion theorem is the ultimate justification of this approach, at least in terms

of fusion of p-elements, because it tells you that if x and y are two elements of a Sylow

p-subgroup P , then you can tell whether x and y are conjugate in G by only looking at

p-local subgroups.

Definition 3.1 Let G be a finite group, and let P and Q be Sylow p-subgroups of G. We

say that R = P ∩Q is a tame intersection if both NP (R) and NQ(R) are Sylow p-subgroups

of NG(R).

Examples of tame intersections are when the intersection is of index p in one (and hence

both) of the Sylow subgroups, and more generally if the intersection is normal in both Sylow

subgroups. Extremal subgroups were introduced in Exercise Sheet 2. In Exercise 2.10, we

proved that every subgroup A of a Sylow p-subgroup P is conjugate to an extremal subgroup

B, and in fact we can choose g ∈ G such that Ag = B so that NP (A)g 6 NP (B).

Lemma 3.2 Let G be a finite group, and let P be a Sylow p-subgroup of G. Let g ∈ G, and
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write A = P ∩ P g−1
. The intersection A is tame if and only if both A and Ag are extremal

in P with respect to G.

Proof: Since A is extremal in P with respect to G, NP (A) is a Sylow p-subgroup of NG(A).

Also, since Ag is extremal, NP (Ag) is a Sylow p-subgroup of NG(Ag), so that NP g−1 (A) is a

Sylow p-subgroup of NG(A), as needed. The converse is clear.

Exercise 2.11 introduced the ‘arrow notation’ A
g−→B, which we will use in a very similar

way to that exercise. Let P be a Sylow p-subgroup of a finite group G. a family F is a

collection of subgroups of P . If F is a family and A,B ⊆ P with Ag = B for some g ∈ G,

then we write A
g−→B with respect to F if there are subgroups R1, . . . , Rn ∈ F and elements

xi ∈ NG(Ri) and y ∈ NG(P ), such that

(i) g = x1x2 . . . xny, and

(ii) Ax1x2...xi is a subset of Ri and Ri+1 for all 0 6 i 6 n− 1.

A family F is a conjugation family if, whenever A and B are subsets of P such that A = Bg,

we have that A
g−→B with respect to F . If the family under consideration is obvious, we

will drop the ‘with respect to F ’. In Exercise 2.11 we proved that the family of all subgroups

of P is a conjugation family. Alperin’s fusion theorem is better.

Theorem 3.3 (Alperin’s fusion theorem [1]) Let G be a finite group, and let P be a

Sylow p-subgroup of G. Let A and B be two subsets of P such that A = Bg. There exist

Sylow p-subgroups S1, . . . , Sn of G, elements x1, . . . , xn of G, and an element y ∈ NG(P )

such that

(i) g = x1x2 . . . xny;

(ii) P ∩ Si is a tame intersection for all i;

(iii) xi is an element of NG(P ∩ Si) for all i;

(iv) Ax1x2...xi is a subset of P ∩ Si+1 for all 0 6 i 6 n− 1.

In other words, the collection of all tame intersections P ∩ S where S ∈ Sylp(G) is a conju-

gation family.

Proof: Let F be the family of all tame intersections. We will show that, if A and B are

two subsets of P and g ∈ G is such that Ag = B, then A
g−→B (with respect to F ). Note

that if A
g−→B and C ⊆ A, then C

g−→Cg, and if A
g−→B and B

h−→C, then A
gh−→C and

B
g−1

−→A.
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We may assume that A and B are subgroups of P , since A
g−→B if and only if 〈A〉 g−→〈B〉.

We proceed by induction on m = |P : A|. If m = 1 then A = P , whence g ∈ NG(P ), and

P
g−→P , so we may suppose that m > 1. In fact, we may assume that A = P ∩ P g−1

,

an intersection of two Sylow p-subgroups of G, since if A < P ∩ P g−1
then by induction

P ∩ P g−1 g−→P ∩ P g, whence A
g−→B since A ⊆ P ∩ P g−1

. Hence from now on we let

R = P g−1
, and note that A = R ∩ P .

Step 1: The case where R ∩ P is a tame intersection. Suppose that R ∩ P is a tame

intersection. Clearly B = (R ∩ P )g = P ∩ P g is also a tame intersection, and hence both A

and B are extremal in P with respect to G. Hence there exists h ∈ G such that Ah = B

and NP (A)h = NP (B) by Exercise 2.10, and hence by induction NP (A)
h−→NP (B) and so

A
h−→B. Clearly, h−1g ∈ NG(B), B

h−1g−→B, and so A
g−→B, as needed.

Step 2: The general case. By hypothesis A < P , and so A < NP (A). Choose C a subgroup

of P that is G-conjugate to A and extremal in P with respect to G. By Exercise 2.10,

we may choose h ∈ G such that Ah = C and NP (A)h 6 NP (C), so that by induction

NP (A)
h−→(NP (A))h and hence A

h−→C. Similarly, there exists k ∈ G such that B
k−→C.

We see therefore that x = h−1gk normalizes C. If X = P ∩ P x−1
properly contains C then

by induction X
x−→Xx so C

x−→C, whence

A
h−→C

x−→C
k−→B,

and so A
g−→B. Therefore X = C, so that C is the intersection of P and P x−1

. As C and

C = Cx are both extremal in P with respect to G, by Lemma 3.2 we see that C is a tame

intersection, whence by Step 1, C
x−→C, as needed.

In Exercise Sheet 6 we will prove more facts about conjugation families, and in fact

classify them.
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3.2 Focal Subgroup Theorem

The focal subgroup theorem proves that abelian quotients of a finite group that are p-groups

are locally determined.

Definition 3.4 Let G be a finite group, and let P be a Sylow p-subgroup of G. Denote

by Ap(G) the subgroup G′Op(G), or equivalently the smallest normal subgroup of G whose

quotient is an abelian p-group.

Lemma 3.5 Let G be a finite group, and let P be a Sylow p-subgroup of G. We have

P ∩ Ap(G) = P ∩G′ and

G/Ap(G) ∼= P/(P ∩G′).

Proof: Since Ap(G) = G′Op(G), by the second isomorphism theorem we have

G/Ap(G) = PAp(G)/Ap(G) ∼= P/(P ∩ Ap(G)).

Notice that P ∩ G′ is a Sylow p-subgroup of G′; as p - |Ap(G) : G′|, P ∩ G′ is also a Sylow

p-subgroup of Ap(G), whence P ∩G′ = P ∩ Ap(G), and we are done.

The subgroup P ∩G′ is the focal subgroup of P in G.

Theorem 3.6 (Focal subgroup theorem, D. Higman [10]) If G is a finite group with

Sylow p-subgroup P , then

P ∩G′ = 〈[x, g] : x, xg ∈ P, g ∈ G〉

= 〈x−1y : x, y ∈ P, y = xg for some g ∈ G〉

Proof: Let Q = 〈x−1y : x, y ∈ P, y = xg for some g ∈ G〉. Notice that P ′ 6 Q since Q

contains [x, g] for x, g ∈ P . In particular, Q P P and P/Q is abelian. Also, clearly Q 6 G′

so that P ′ 6 Q 6 P ∩ G′. Let θ : P → P/Q be the natural map, and let τ denote the

transfer of θ, so that τ ∈ Hom(G,P/Q).

Let x ∈ P and let {t1, . . . , tn} denote a transversal to P in G, where n = |G : P |. Choose

the first d of the ti and the integers ri with
∑d

i=1 ri so that the transfer τ becomes (using

Proposition 1.20)

xτ =
d∏
i=1

(tix
rit−1

i )θ = Q

(
d∏
i=1

(tix
rit−1

i )

)
.

Since P/Q is abelian,

xτ = Q

(
d∏
i=1

(tix
rit−1

i )

)
= Q

(
d∏
i=1

xri

)(
d∏
i=1

(x−ritix
rit−1

i )

)
.
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The second product is of commutators [xri , t−1
1 ], which lie in Q by definition, and so

xτ = Q

(
d∏
i=1

xri

)
= Qx

∑
ri = Qxn.

Since n and p are coprime, Qxn = Q if and only if x ∈ Q. Hence ker τ ∩ P = Q. Since

G/ ker τ is an abelian p-group, Ap(G) 6 ker τ , so that P ∩Ap(G) = P ∩G′ 6 P ∩ ker τ = Q.

Hence P ∩G′ = Q, as claimed.

The next result on the generation of the focal subgroup is sometimes useful.

Proposition 3.7 Let P be a Sylow p-subgroup of the finite group G. The focal subgroup

P ∩ G′ is generated by the subgroups [R,NG(R)], as R ranges over all non-trivial tame

intersections R of P with respect to G.

Proof: Let S be the subgroup generated by the subgroups of the form [R,NG(R)], where R

is a non-trivial extremal subgroup of P as in the statement. Certainly S is contained within

G′, and since [R,NG(R)] 6 R 6 P , we have that S 6 P ∩G′.
By the focal subgroup theorem, if we can show that a−1b lies in S for all a and b in P

that are G-conjugate, we are done. We will use Alperin’s fusion theorem to prove this result:

by this theorem, there are tame intersections Ri = P ∩ Si for Si ∈ Sylp(G), and elements

x1, . . . , xr, with xi ∈ NG(Ri) for all i, such that

(x1 . . . xi)
−1a(x1 . . . xi) ∈ Ri+1

for all i < r, and x1 . . . xr = g. (Here we have used the fact that P is a tame intersection,

and so may be one of the Ri.)

Let a0 = a and ai = axii−1, so that ar = b; then both ai−1 and ai lie in Ri (since ai−1 lies

in Ri by assumption and xi normalizes Ri), and axii−1 = ai, with xi ∈ NG(Ri). Therefore

a−1
i−1ai = a−1

i−1x
−1
i ai−1xi ∈ [R,NG(Ri)],

and since

a−1b = a−1
0 ar = (a−1

0 a1) . . . (a−1
r−1ar),

we have that a−1b ∈ S, as needed.

Using the focal subgroup theorem, we may prove Frobenius’s normal p-complement the-

orem, which we proved directly using the transfer in Exercise Sheet 3.

Theorem 3.8 (Frobenius’s normal p-complement theorem) Let G be a finite group

and let P be a Sylow p-subgroup of G. The following are equivalent:
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(i) G possesses a normal p-complement;

(ii) P controls fusion in P with respect to G;

(iii) for every p-subgroup Q of G, AutG(Q) is a p-group.

Proof: Exercise 3.6 proves that (ii) and (iii) are equivalent, and Exercise 3.3 proves that (i)

implies (iii), so it remains to assume (ii) and prove (i). We will show firstly that G has a

non-trivial p-factor group; we will prove that P ∩G′ = P ′, and so G has a non-trivial p-factor

group. By (ii) the G-conjugates of elements of P are simply the P -conjugates of elements of

P . The focal subgroup theorem says that

P ∩G′ = 〈x−1y : y = xg for some g ∈ G〉

= 〈x−1y : y = xg for some g ∈ P 〉

= 〈[x, g] : x, g ∈ P 〉

= P ′.

Since P ′ < P , we see that G has a non-trivial p-factor group. The rest of the proof follows

Exercise 3.7(ii), yielding that (i) is true.

Just as the maximal abelian p-factor group can be written, via the second isomorphism

theorem, as a quotient of P by some naturally defined subgroup, the same is true for the

maximal p-factor group. Indeed, since G/Op(G) is a p-group, we have that G = P Op(G),

and so

G/Op(G) ∼= P/(P ∩Op(G)).

Just as the maximal abelian p-factor group can be detected in the fusion system, the

same is true for the maximal p-factor group. This the content of Puig’s hyperfocal subgroup

theorem. Define the hyperfocal subgroup of P in G to be the subgroup P ∩Op(G).

Theorem 3.9 (Hyperfocal subgroup theorem, Puig [11]) LetG be a finite group, and

let P be a Sylow p-subgroup of G. Then

P ∩Op(G) = 〈[x, g] : x ∈ Q 6 P, g ∈ NG(Q), g has p′-order〉

= 〈x−1xg : x ∈ Q 6 P, g ∈ Op(NG(Q))〉

= 〈x−1(xφ) : x ∈ Q 6 P, φ ∈ Op(AutG(Q))〉

Proof: Firstly notice that the subgroups on the right-hand side are all the same, and so it

suffices to check the theorem for any one of them; write S for this subgroup of P . Firstly,
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S 6 P ∩ Op(G), since if Q is a subgroup of P , if x ∈ Q and y ∈ Op(NG(Q)), then [x, y] ∈
Op(G), and it also lies in Q. Therefore it remains to show that P ∩Op(G) is contained in S.

Let H = Op(G) and Q = P ∩ H; since H has no non-trivial p-quotients, Q ∩ H ′ = Q,

and by Proposition 3.7 this subgroup is generated by the subgroups [R,NH(R)], where R is

a subgroup of Q extremal in Q with respect to H.

Also, NH(R) is generated by Op(NH(R)) and a Sylow p-subgroup of NH(R), such as

NQ(R) (as R is extremal). Therefore, [R,NH(R)] is generated by [R,Op(NH(R))] and

[R,NQ(R)] 6 Q′. Hence Q is generated by subgroups of the form [R,Op(NH(R))], each

of which is contained within S, and Q′, so Q = 〈S,Q′〉; since S is a normal subgroup of Q,

this means that Q/S is perfect, a contradiction unless Q/S is trivial, as needed.

40



3.3 Nilpotence of Frobenius Kernels

In this section we will use interchangeably the notations xφ and xφ for the image of x under

φ, in order to make the formulae easier to read. (For example, we write x−1xφ but (xφ)−1.)

Definition 3.10 Let G be a group. An automorphism φ of G is fixed point free if xφ = x

implies x = 1.

As easy examples of fixed-point-free automorphisms, we have the non-trivial automor-

phism of C3, and the automorphism of V4 of order 3. Clearly, if a finite group G has a

fixed-point-free automorphism of order p, then |G| ≡ 1 mod p.

Lemma 3.11 Let G be a finite group, and let φ be a fixed-point-free automorphism of order

n. We have that every element of G can be written in the form x−1(xφ) or (xφ)x−1, and for

all x ∈ G,

x(xφ)(xφ
2

) . . . (xφ
n−1

) = 1.

Proof: If x−1xφ = y−1yφ then yx−1 = (yφ)(xφ)−1 = (yx−1)φ, so that y = x. Hence the map

x 7→ x−1xφ is an injection, so is a bijection as |G| is finite: this proves the first part.

To see the second, write x = y−1yφ: then

x(xφ)(xφ
2

) . . . (xφ
n−1

) = (y−1yφ)(y−1yφ)φ . . . (y−1yφ)φ
n−1

= y−1yφ
n

= 1,

as the middle terms cancel each other off, and φ has order n.

The next lemma follows from Exercise 4.5, using the fact that CG(〈φ〉) = 1 if φ is fixed

point free, but here we give a self-contained proof.

Lemma 3.12 Let G be a finite group, and let φ be a fixed-point-free automorphism of G.

If p is a prime dividing |G|, then φ fixes a unique Sylow p-subgroup P of G.

Proof: If P is a Sylow p-subgroup of G, then Pφ is also a Sylow p-subgroup of G. Therefore,

Pφ = x−1Px for some x ∈ G. Thus for any y ∈ G,

(y−1Py)φ = (yφ)−1x−1Px(yφ).

However, every element of G can be expressed as xφx−1 by Lemma 3.11 and so choose y such

that yφy−1 = x−1; then P y is fixed under φ, as required.

Now suppose that P and P x are fixed by φ. Therefore, xφx−1 ∈ NG(P ). Again, since

xφx−1 is in NG(P ), we see that (as NG(P ) is φ-invariant) there is an element y ∈ NG(P )

such that

xφx−1 = yφy−1.

Since the map x 7→ xφx−1 is a bijection, x = y, and so P x = P , as needed.
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If G is a group, then the map x 7→ x−1 is an anti-automorphism; that is, it is a map φ

such that (xy)φ = yφxφ. If G is abelian, then all anti-automorphisms are automorphisms,

and so any abelian group of odd order has a fixed-point-free automorphism of order 2.

Lemma 3.13 Suppose that φ : G→ G is a bijection that is both an automorphism and an

anti-automorphism. Then G is abelian.

Proof: Let x and y be elements of G. Since φ is a bijection, there are elements x′ and y′

such that x′φ = x and y′φ = y. Since φ is both an automorphism and an anti-automorphism,

we have

xy = (x′φ)(y′φ) = (x′y′)φ = (y′φ)(x′φ) = yx,

as G is abelian.

Corollary 3.14 Suppose that G has a fixed-point-free automorphism φ of order 2. Then G

is an abelian group of odd order.

Proof: The map φ satisfies x(xφ) = 1, by Lemma 3.11. This implies that xφ = x−1, and

so this map is an automorphism. It is also an anti-automorphism, and so G possesses an

automorphism that is also an anti-automorphism; thus G is abelian.

We need a technical result to prove the main result of this section, about semidirect

products of automorphisms.

Lemma 3.15 Let G be a finite abelian group, and suppose that H is a subgroup of Aut(G)

of the form K o 〈φ〉. Suppose that, for all k ∈ K, the element kφ is fixed point free and of

prime order p, and that |K| and |G| are coprime. Then K fixes some non-trivial element of

G.

Proof: For each k ∈ K, and x ∈ G the element

x1+(kφ)+(kφ)2+···+(kφ)p−1

= 1,

by Lemma 3.11. If x ∈ G, then we can multiply these together for all k ∈ K, and have

1 =
∏
k∈K

p−1∏
i=0

x(kφ)i = x|K|
p−1∏
i=1

∏
k∈K

x(kφ)i .

Notice that clearly {kφi : k ∈ K, 1 6 i 6 p− 1} = H \K, but we claim also that

{(kφ)i : k ∈ K, 1 6 i 6 p− 1} = H \K.
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To see this, suppose that (kφ)i = (lφ)j, for some 1 6 i, j 6 p − 1 and k, l ∈ K. The image

of these maps in H/K is Kφi and Kφj, so that i = j. Since kφ has order p, by raising to a

certain power i′ such that ii′ ≡ 1 (mod p), we get (kφ)ii
′
= kφ = lφ = (lφ)ii

′
, so that clearly

k = l.

Applying this to the product above, we get that

1 = x|K|
p−1∏
i=1

∏
k∈K

x(kφ)i = x|K|
p−1∏
i=1

∏
k∈K

xkφ
i

.

Clearly,
∏

k∈K x
kφi is a fixed point of G under the action of all k ∈ K, and since x|K| is not

the identity, one of the terms in the product must also not be the identity. Hence there is a

fixed point of G under the action of K.

Corollary 3.16 Let G be a finite abelian group, and let A be a homocyclic group of auto-

morphisms of G, all of whose non-trivial elements act fixed-point-freely. Then A is cyclic.

Theorem 3.17 Let G be a finite soluble group. If G admits a fixed-point-free automorphism

of prime order, then G is nilpotent.

Proof: Let G be a minimal counterexample. If Z (G) > 1, then φ induces a fixed-point-free

automorphism on G/Z (G), which is nilpotent by choice of G, and so G is nilpotent. Hence

Z (G) = 1.

Let φ be a fixed-point-free automorphism of order p of the soluble group G, and let Q be

a minimal φ-invariant normal subgroup of G (lying in G o 〈φ〉). Then Q is an elementary

abelian q-subgroup, and clearly p 6= q.

If G is a q-group, then G is nilpotent, so let r 6= q be a prime dividing |G|, and let R be

the φ-invariant Sylow r-subgroup. Consider the subgroup QR; if QR < G, then by induction

QR is nilpotent, and so Q and R centralize each other. This is true for all r 6= q dividing

|G|, and so CG(Q) has index a power of q. In particular, Z (G) 6= 1, since if S is a Sylow

q-subgroup of G, then 1 6= Q ∩ Z (S) 6 Z (G).

Thus G = QoR. Let K be the subgroup of Aut(Q) induced by the action of R on it, and

let H be the semidirect product of K by 〈φ〉. Then it is clear that kφ acts fixed point freely

and has the same order as φ itself for any k ∈ K, and so K fixes a point of Q by Lemma

3.15. Equivalently, there is a non-identity element z ∈ Q such that R 6 CG(z); clearly,

z ∈ Z (G) as Q is abelian, and this again contradicts the choice of minimal counterexample,

completing the proof.

In order to prove the general case, we need the following definition and theorem.
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Definition 3.18 Let G be a finite group. The Thompson subgroup of G, denoted J(G), is

the subgroup generated by all elementary abelian subgroups of G of maximal order.

Thompson’s normal p-complement theorem will be proved later, as the culmination of

the course. For now we simply state it.

Theorem 3.19 (Thompson, 1963) Let G be a group, and let p be an odd prime with

p | |G|. If P is a Sylow p-subgroup of G, then G has a normal p-complement if and only if

both CG(Z (P )) and NG(J(P )) have normal p-complements.

With this theorem we can now prove the result.

Theorem 3.20 (Thompson, 1959) Suppose that a finite group G possesses a fixed-point-

free automorphism φ of prime order. Then G is nilpotent.

Proof: We assume that G is a minimal counterexample, and prove that G is soluble, whence

we are done by Theorem 3.17. If G is a 2-group then G is nilpotent, so choose q to be an

odd prime dividing |G|, and let P denote a φ-invariant Sylow q-subgroup of G. Since both

Z = Z (P ) and J = J(P ) are characteristic in P , they are φ-invariant. If either Z or J is

normal in G, then φ induces a fixed-point-free automorphism on G/Z or G/J , which are by

induction nilpotent, and thus G is soluble.

The other possibility is that NG(J) and NG(Z) are both proper in G. By choice of minimal

counterexample, both CG(Z) and NG(J) are nilpotent (as normalizers and centralizers of φ-

invariant subgroups are φ-invariant), and so have normal q-complements. Therefore, G has

a normal q-complement, say Q. Since Q is characteristic (a normal Hall q′-subgroup is

characteristic) it is φ-invariant, and so is nilpotent by induction, and G is soluble.

We finish discussing fixed-point-free automorphisms with a result on the structure of

groups of automorphisms all elements of which act fixed-point-freely.

Theorem 3.21 (Burnside) Let G be a finite group and suppose that G accepts a group

A of automorphisms, each (non-trivial) element of which acts fixed-point-freely. Then |G|
and |A| are coprime, and all Sylow p-subgroups of A are of p-rank 1.

Proof: Suppose that p divides both |G| and |A|, and let φ be an element of A of order

p. Then φ fixes a Sylow p-subgroup of G, and so acts fixed-point-freely on P . However,

counting φ-orbits yields an easy contradiction.

Now let P be a Sylow p-subgroup of A, and let S be a subgroup of P of order p2. We

will show that S is cyclic, proving our result. We claim that G possesses an S-invariant

Sylow q-subgroup Q, where q | |G| is a prime. If this is true, then let K = Z (Q), and apply
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Corollary 3.16: then S is an homocyclic group of automorphisms of an abelian group K,

whence it is cyclic, as required.

It remains to prove that if P is a p-group acting on a group G with p - |G|, then there is a

P -invariant Sylow q-subgroup Q for all primes q dividing |G|. To see this, let R be any Sylow

q-subgroup of G, and write H = Go P . Then, by the Frattini argument, H = NH(R)G. A

Sylow p-subgroup P̄ of NH(R) is a Sylow p-subgroup of H, and hence there is an element g

such that P̄ g = P . Then

P = P̄ g 6 NH(Rg),

and so Q = Rg is a P -invariant Sylow q-subgroup, finishing the proof.

Since nilpotent groups are direct products of their Sylow p-subgroups, each of which is

clearly characteristic, we see that we need to understand fixed-point-free automorphisms of

p-groups. The nilpotence class was proved to be finite by Higman, and the bound below was

given by Kreknin and Kostrikin.

Theorem 3.22 (Higman, Kreknin, Kostrikin) Let G be a nilpotent group possessing

a fixed-point-free automorphism of order p. The nilpotence class of G is bounded by the

function h(p), where

h(p) 6
(p− 1)2p−1−1 − 1

p− 2
.
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3.4 The Generalized Fitting Subgroup

If G is a finite soluble group then we saw that CG(F (G)) 6 F (G). However, if G is not

soluble, we do not get that CG(F (G)) 6 F (G) in general. As an obvious example, if G is a

simple group, F (G) = 1.

Definition 3.23 Let G be a finite group. We say that G is quasisimple if G is perfect and

G/Z (G) is simple. If H is quasisimple and subnormal in G then H is a component of G.

The set of components of G is denoted Comp(G).

Components are the obstructions to the statement CG(F (G)) 6 F (G), in the sense

that if CG(F (G)) 66 F (G) then G has a component (Lemma 3.29), and if one includes the

components into F (G) one gets a normal subgroup X such that CG(X) 6 X (Theorem

3.30). We start with a trivial lemma, before proving that components often commute with

subnormal subgroups.

Lemma 3.24 Let H be a subnormal subgroup of a finite group G. Then Comp(H) is the

set of components of G lying in H.

Lemma 3.25 Let C be a component of a finite group G. If H is a subnormal subgroup of

G, then either C is a component of H or C and H commute.

Proof: Let G be a minimal counterexample to the lemma. If C = G then H is a subnormal

subgroup of C, so that H 6 Z (C), and H commutes with C. Hence C < G, so in particular

the normal closure X of C is a proper subgroup of G. Similarly, if H = G then C is a

component of H, so that H < G, so the normal closure Y of H in G is a proper subgroup.

As X and Y are normal subgroups of G, X ∩ Y is a normal subgroup of X. Since C is a

component of X, either C is a component of X ∩ Y or C and X ∩ Y commute.

If C is a component of X ∩ Y then C is a component of Y by Lemma 3.24. Since

H 6 Y < G, the lemma holds for Y , and so either [C,H] = 1 or C ∈ Comp(H), as needed.

Thus [C,X ∩ Y ] = 1. Therefore, since [Y,C] 6 [Y,X] 6 X ∩ Y , we have

[Y,C,C] 6 [X ∩ Y,C] = 1.

Using the three subgroups lemma, we have that [Y,C,C] = [C, Y, C] = 1, and so [C, Y ] =

[C,C, Y ] = 1, as needed.

Corollary 3.26 Let G be a finite group.

(i) If H and K are two different components of G then [H,K] = 1.
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(ii) If H is a component of G then [H,F (G)] = 1.

This follows easily because F (G) is a nilpotent group, and hence has no quasisimple

subgroups at all.

Since any two components H and K of G centralize one another, they normalize one

another, and so HK is a subgroup of G. Notice that if L is any other component of G, then

L commutes with H and K, so commutes with HK, and we may form the subgroup HKL.

Continuing in this way, if C1, . . . , Cd are the components of G, we see that for I ⊆ {1, . . . , d},

〈Ci : i ∈ I〉 =
∏
i∈I

Ci,

and for j /∈ I, Cj commutes with this subgroup.

Definition 3.27 Let G be a finite group. Denote by E(G) the subgroup generated by all

components of G, called the Bender subgroup. Denote by F ∗(G) the product E(G)F (G),

the generalized Fitting subgroup of G.

Notice that conjugation by g ∈ G permutes the components of G, so normalizes the

subgroup generated by them, so E(G) P G and hence F ∗(G) P G. By the remarks above,

E(G) is the product of the components of G, and in fact E(G) is the central product of the

components of G. As E(G) commutes with F (G), F ∗(G) is the central product of E(G) and

F (G).

Corollary 3.28 E(G) is the central product of the components of G. F ∗(G) is the central

product of E(G) and F (G).

Notice that F ∗(G) > 1, since any minimal normal subgroup of G lies in F ∗(G). As

claimed, E(G) contains the obstructions to a group G satisfying CG(F (G)) 6 F (G).

Lemma 3.29 Let G be a finite group. If CG(F (G)) 66 F (G) then E(G) 6= 1.

Proof: Write C = CG(F (G)) and Z = Z (F (G)) = F (G) ∩ C. Let C̄ = C/Z, and let S̄ be

the socle of C̄, that is, the product of all minimal normal subgroups of C/Z. Notice that

F (C̄) is trivial, as the preimage X of F (C̄) in G is a nilpotent normal subgroup of G, hence

X 6 F (G), but X 6 C so that X 6 F (G)∩C = Z. Thus, as any minimal normal subgroup

is either abelian (hence nilpotent) or a product of non-abelian simple groups, S̄ is a direct

product of non-abelian simple groups

S̄1 × · · · × S̄r.
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Let S1, . . . , Sr be the full preimages in C of S̄1, . . . , S̄r. Thus, each Si is subnormal in G, and

Si/Z is simple. Hence S ′i is quasisimple and S ′i is subnormal in G, so are components of G,

as needed.

Using this result, we can extend our statement that for soluble groups CG(F (G)) 6 F (G)

to all finite groups, replacing F (G) by F ∗(G).

Theorem 3.30 (Bender) Let G be a finite group. We have CG(F ∗(G)) = Z (F ∗(G)) 6

F ∗(G).

Proof: By Lemma 3.29, we may assume that E(G) 6= 1. Write C = CG(E(G)), so that

E(C) 6 E(G) by Lemma 3.24. Also, as C ∩ E(G) 6 Z (E(G)), we have E(C) = 1; hence

F (G) = F (C). Since E(C) = 1, we have CC(F (C)) 6 F (C) by Lemma 3.29. Thus

CG(F ∗(G)) = CG(F (G)) ∩ CG(E(G))

= CG(F (G)) ∩ C = CG(F (C)) ∩ C

= CC(F (C)) 6 F (C) = F (G) 6 F ∗(G),

as needed.

As F ∗(G) is a normal subgroup of G, we see that F ∗(G)/CG(F ∗(G)) = F ∗(G)/Z (F ∗(G))

is a subgroup of Aut(F ∗(G)). If we simplify things, say by assuming that F (G) = 1, then

F ∗(G) is a direct product of simple groups. Hence we want to understand Aut(S) for S a

finite simple group, and then Aut(S1 × · · · × Sn), where the Si are simple groups.

If G is a finite group then Inn(G) = G/Z (G) is a subgroup of Aut(G), called the inner

automorphism group, and Aut(G)/ Inn(G) = Out(G) is called the outer automorphism group.

Note that elements of Out(G) are not automorphisms, but cosets of Inn(G), so an element

of Out(G) is only determined up to conjugation by some element of G. If G is a group such

that Z (G) = 1 (e.g., G is simple) then G embeds naturally in Aut(G), so for any subgroup

A of Out(G) there is a group X, containing G as a normal subgroup, such that X induces

A on G by conjugation.

Theorem 3.31 (Schreier conjecture) If G is a finite simple group, then Out(G) is a

soluble group.

This theorem requires the classification of the finite simple groups. Using the classifica-

tion, it simply becomes a matter of determining Out(S) for S a finite simple group. Although

determining this for all finite simple groups is well beyond the scope of this course, we will

do this for alternating groups.
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Let G = An for n > 5. The symmetric group Sn is a finite group such that An is a normal

subgroup of Sn, and conjugation by (for example) (1, 2) induces an outer automorphism of

An. Hence Sn 6 Aut(An). If Sn < Aut(An), then the elements of Aut(An) also induce outer

automorphisms on Sn.

Lemma 3.32 Let ρ ∈ Aut(Sn) be an automorphism that sends transpositions to transpo-

sitions. Then ρ is inner.

Proof: A generating set for Sn are the transpositions xi = (i, i+ 1). Notice that (a, b)(c, d)

has order 1 if {a, b} = {c, d}, 3 if {a, b} ∩ {c, d} has size 1, and order 2 if {a, b} and {c, d}
are disjoint. This will be used to get information on xiρ, given that we have determined xjρ

for j < i.

The transposition x1 = (1, 2) may be sent to any of the n(n− 1)/2 transpositions, which

we may label so that x1ρ = (1, 2). The image of x2 = (2, 3) is either (1, a) or (2, a), where

3 6 a 6 n, yielding 2(n − 2) choices for x2ρ. Again, we may label a = 3 without loss of

generality.

From then on, since xi and xj commute for j < i− 1, this means that xiρ = (i, ai) (as it

does not commute with xi−1ρ = (i− 1, i), but does commute with xi−2ρ = (i− 2, i− 1), so

that i is moved by xiρ). This yields n− i choices for xiρ, and so the total number of choices

is (
n(n− 1)

2

)(
2(n− 2)

) n−1∏
i=3

(n− i) = n!.

This proves that the total number of such automorphism is n!, the size of Inn(Sn).

Theorem 3.33 If n 6= 2, 6 then Aut(Sn) = Sn.

Proof: If the size of the conjugacy class of transpositions, n(n − 1)/2, is different from all

other sizes of conjugacy classes of elements of order 2 (i.e., products of transpositions), then

any automorphism of Sn sends transpositions to transpositions, and so is inner by Lemma

3.32. For n = 3, 4, 5, this is clear by an easy calculation, whereas for n = 6 the conjugacy

classes of (1, 2) and (1, 2)(3, 4)(5, 6) have the same size.

Hence we assume that n > 7, and let t be the product of k transpositions of Sn, with m

conjugates. We prove that m > n(n− 1)/2, and is equal to that for t a transposition. There

are (
n(n− 1)

2

)
·
(

(n− 2)(n− 3)

2

)
. . .

(
(n− 2k − 2)(n− 2k − 1)

2

)
k-tuples of disjoint transpositions, and since disjoint transpositions commute, we have

m = n(n− 1)(n− 2) . . . (n− 2k − 1)/k!2k.
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Since we ask whether m = n(n− 1)/2, we seek n and k > 1 such that

(n− 2) . . . (n− 2k − 1) = k!2k−1.

Since n > 2k, the left-hand side is minimized when n = 2k, in which case it becomes

(2k − 2) . . . 1 = k!2k−1,

and this becomes (2k − 2)! = k!2k−1. It is easy to show that for k > 4 the left-hand side is

strictly greater than 1, and so we may assume that t is the product of either two or three

transpositions. There are n(n− 1)(n− 2)(n− 3)/8 double transpositions, and this is greater

than n(n − 1)/2 for n > 7, as is the number of triple transpositions for n > 7. Hence the

result is proved.

The cases n = 2, 6 are genuine exceptions. If n = 2 then Sn = C2, so Aut(S2) = 1. When

n = 6 there is an exceptional outer automorphism of Sn, which is a freak of nature. It comes

from the fact that there are six Sylow 5-subgroups of S5.

The fact that there are six Sylow 5-subgroups of S5 means that there is a transitive action

of S5 on six points, and hence an embedding H of S5 into G = S6, which is not the stabilizer

of a point. Consider the permutation representation of G on the cosets of H, which is an

isomorphism ρ : G→ G. To see that this is not an inner isomorphism, notice that the image

of (1, 2) is the product of three transpositions, so this must be an outer automorphism.

Finally, to see that Out(S6) = C2, we see that any automorphism must either send

transpositions to themselves, so is inner, or to triple transpositions, whence the product of

this automorphism with ρ is inner, so that Inn(S6)ρ is the only other coset of Inn(S6) in

Aut(S6).

If G is a sporadic simple group then Out(G) has order either 1 or 2, and if G is a group

of Lie type (e.g., PSLn(q)) then there are three types of outer automorphism – diagonal,

graph and field – and the structure of Out(G) is known.
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Chapter 4

The 1990s

4.1 Saturated Fusion Systems

By the 1990s Puig had finished formulating the notion of a fusion system, which encodes in

an abstract sense the conjugation and fusion properties inherent in the Sylow p-subgroup of

a finite group.

We need a quick reminder about categories, which aren’t anything complicated, but are

a useful definition for things in an abstract setting. We give an approximate definition of a

category (without bothering with set-theoretic nonsense).

Definition 4.1 A category C consists of a set of objects, and for every two objects x and y

in C a set HomC (x, y) of morphisms. The morphisms should have a composition

HomC (x, y)× HomC (y, z)→ HomC (x, z)

that is associative, and there should be an element idx : x → x that acts like the identity

morphism.

In our case, the objects of our category will be all subgroups of a finite p-group, and the

morphisms will be injective homomorphisms between them, so that composition between

them is obvious.

Definition 4.2 Let G be a finite group and let P be a Sylow p-subgroup of G. the fusion

system of G on P , denoted FP (G), is a category, whose objects are all subgroups of P , and

whose morphisms are given by

HomFP (G)(Q,R) = { cg : Q→ R | Qg 6 R }.

The fusion system of a group is a convenient language for talking about all of the notions

of fusion that we have seen before in this course, such as Alperin’s fusion theorem, the
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focal subgroup theorem, Burnside’s normal p-complement theorem, Frobenius’s normal p-

complement theorem, and so on. We start understanding this with a lemma. For this, we

need the notion of an isomorphism of a fusion system. If θ : P → Q is an isomorphism, and

A,B 6 P with an injective homomorphism φ : A → B, then θ induces a map φθ = θ−1φθ :

Aφ→ Bφ given by

φθ : aθ 7→ (aφ)θ.

An isomorphism FP (G)→ FQ(H) is an isomorphism θ : P → Q such that, for all A,B 6 P ,

the map HomFP (G)(A,B)→ HomFQ(H)(Aθ,Bθ) given by φ 7→ φθ is a bijection.

Lemma 4.3 Let G be a finite group, and let P be a Sylow p-subgroup of G. Let H =

Op′(G), and write Q for the image of P in G/H. The homomorphism φ : G → G/H

induces an isomorphism θ : P → Q, and this induces an isomorphism of fusion systems

FP (G)→ FQ(G/H).

Proof: See Exercise 7.1.

The fusion system FP (G) allows us to express control of fusion statements easily. Notice

that if H is a subgroup of G and P ∩ H is a Sylow p-subgroup of H (e.g., if P 6 H or if

H P G) then FP∩H(H) is naturally a ‘subsystem’ of FP (G). We give two earlier results from

the course, Theorem 3.8 and Proposition 1.18, dressed in the language of fusion systems.

Proposition 4.4 (Frobenius’s normal p-complement theorem) FP (G) = FP (P ) if and

only if G has a normal p-complement.

Proposition 4.5 (Burnside) If P is abelian then FP (G) = FP (NG(P )).

(Later on we will construct a normalizer subsystem NF(Q) of a subgroup Q, and NF(Q)

will be the subsystem corresponding to NG(Q).)

A fusion system of a finite group is a nice way of expressing control of fusion and normal

p-complement theorems, but fusion systems have become a powerful tool because there is an

abstract theory of them. To develop this theory we need an abstract definition of a fusion

system, which we give now.

Definition 4.6 Let P be a finite p-group. A fusion system F on P is a category, whose

objects are all subgroups of P and whose morphisms HomF(Q,R) are a subset of all injective

homomorphisms Q → R, with composition the usual composition of homomorphisms. The

category F should satisfy the following three axioms:

(i) if x ∈ P is such that Qx 6 R then cx : Q→ R lies in HomF(Q,R) (i.e., FP (P ) ⊆ F);
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(ii) if φ ∈ HomF(Q,R) then the associated isomorphism φ′ : Q→ Qφ lies in HomF(Q,Qφ);

(iii) if φ ∈ HomF(Q,R) is an isomorphism then φ−1 lies in HomF(R,Q).

For Q 6 P , write AutF(Q) = HomF(Q,Q).

This definition looks quite abstract, and as it stands isn’t all that useful, because the

conditions we have applied haven’t really restricted things: what this means is that if we

have any collection of injective homomorphisms between subgroups of P then there is a

fusion system containing them.

Example 4.7 If G is a finite group with Sylow p-subgroup P , then FP (G) is a fusion system

on P . Note that AutFP (G)(Q) = AutG(Q).

Example 4.8 If P is a finite p-group, define U(P ) to be the fusion system on P , where

HomU(P )(A,B) consists of all injective homomorphisms A→ B. This is called the universal

fusion system on P , and obviously contains all other fusion systems on P .

To get the rigid structure that we need, we will have to define a saturated fusion system.

This definition looks technical, but it captures enough of the structure of a finite group to be

useful. It embodies two concepts: firstly, that p-automorphisms of subgroups Q of a Sylow

p-subgroup P should be inherited from P itself (as P is a maximal p-subgroup of G), and

we should be able to use induction on the index of a subgroup of P , so we need a way of

extending (some) isomorphisms A→ B to overgroups of A.

Let F be a fusion system on a finite p-group P . The first concept suggested above is

easy to codify: a subgroup Q of P is fully F-automized if AutP (Q) is a Sylow p-subgroup of

AutF(Q).

In the fusion system FP (G), examples of fully automized subgroups have been seen before.

Example 4.9 Let G be a finite p-group, and let P be a Sylow p-subgroup of G. If Q is

extremal in P with respect to G then Q is fully FP (G)-automized. This is true because by

definition NP (Q) is a Sylow p-subgroup of NG(Q), and so the image of NP (Q) in AutG(Q),

namely AutP (Q), is a Sylow p-subgroup of AutG(Q) = AutFP (G)(Q).

The next concept that we will need is that of a receptive subgroup. If φ : A → B is an

isomorphism, then φ induces a map φ∗ : Aut(A)→ Aut(B), given by φ∗ : θ 7→ θφ = φ−1θφ.

Notice that, if F is a fusion system on a finite p-group P , and φ : A→ B is an isomorphism

in F , then φ induces an isomorphism φ∗ : AutF(A)→ AutF(B).

In Exercise 6.8 we proved that if φ : A → B is an isomorphism in F , and A P N 6 P ,

then a necessary condition for φ to extend to a map φ̄ : N → NP (B) is that the image of
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AutN(A), under φ∗, is contained in AutP (B). A receptive subgroup of P is one where this

map will always extend.

Definition 4.10 Let F be a fusion system on a finite p-group P . A subgroup Q is receptive

if, for all R 6 P and isomorphisms φ : R→ Q in F , whenever R 6 N 6 NP (R) is such that

AutN(R)φ∗ 6 AutP (Q), there is a morphism φ̄ : N → NP (Q) extending φ.

In other words, a receptive subgroup is one where any isomorphism to it, that has the

possibility to extend to a subgroup of its normalizer, does so. Let φ : A → B be an

isomorphism in F . We write Nφ for the preimage in NP (A) of AutP (A) ∩ AutP (B)φ
−1

; this

is the largest subgroup of NP (A) to which φ might extend. Notice that we always have

ACP (A) 6 Nφ.

Extremal subgroups also yield examples of receptive subgroups. (Note that not all re-

ceptive subgroups are extremal.)

Example 4.11 Let G be a finite group, and let P be a Sylow p-subgroup of G. If Q is

extremal in P with respect to G then Q is receptive in FP (G). To see this, let cg = φ : R→ Q

be an isomorphism in FP (G), so that Rg = Q. Let R 6 N 6 NP (R), and suppose that

AutN(R)φ∗ 6 AutP (Q). By taking preimages we have that (N CP (R))g 6 NP (Q) CG(Q).

We first note that, since Q is extremal in P with respect to G, NP (Q) is a Sylow p-

subgroup of NP (Q) CG(Q). As (N CP (R))g is a p-subgroup of CG(Q), there exists h ∈
NP (Q) CG(Q) such that (N CP (R))gh 6 NP (Q); however, h = xy for x ∈ CG(Q) and

y ∈ NP (Q), as NP (Q) CG(Q) = CG(Q) NP (Q). Hence (N CP (R))gx 6 NP (Q) as well, and

since x ∈ CG(Q), cgx = cg on R. Thus φ extends to ψ = cgx : N → NP (Q); hence Q is

receptive in FP (G).

We may now state our definition of a saturated fusion system. Two subgroups of P are

F-conjugate if there is an isomorphism in F between them. Hence for FP (G), two subgroups

of P are FP (G)-conjugate if and only if they are G-conjugate.

Definition 4.12 Let F be a fusion system on a finite p-group P . We say that F is saturated

if every subgroup of P is F -conjugate to a fully F -automized subgroup that is also receptive

in F .

Example 4.13 Fusion systems of groups are saturated because every subgroup of P is G-

conjugate to an extremal subgroup by Exercise 2.9(i), and extremal subgroups are fully

FP (G)-automized and receptive in FP (G), by the above two examples.

54



4.2 Normalizers and Quotients

In order to do finite group theory we need homomorphisms, and in order to do local finite

group theory we need normalizers and centralizers. Building analogues of these for saturated

fusion systems is the objective of this section.

We begin with trying to understand morphisms of fusion systems. In order to do this,

we will introduce strongly closed subgroups.

Definition 4.14 Let F be a fusion system on a finite p-group P . A subgroup T of P is

strongly F-closed if, whenever A 6 T and φ : A→ P is a morphism in F , then Aφ 6 T . In

other words, T is strongly F -closed if all F -conjugates of subgroups of T are also subgroups

of T .

As an easy consequence, a strongly F -closed subgroup is only F -conjugate to itself, and

so all strongly F -closed subgroups are normal in P . If T is a strongly F -closed subgroup of P ,

then one may construct a quotient fusion system, which we denote by F/T . If θ : P → P/T

is the natural quotient map, and φ : A → B is a morphism with A,B > T , then φ induces

a map (since T is normal) φθ : A/T → B/T given by (Ta)φθ = T (aφ). This induced

homomorphism will be used in the next definition.

Definition 4.15 Let F be a fusion system on a finite p-group P , and let T be a strongly

F -closed subgroup of P . Write θ for the natural map P → P/T . The factor system, F/T ,

of F , is the fusion system on P/T , where for T 6 A,B 6 P , we have

HomF/T (A,B) = {φθ : A/T → B/T | φ ∈ HomF(A,B) }.

It is easy to see that F/T is a fusion system on P/T . The proof of the next theorem is

much harder however, and is omitted from this course.

Theorem 4.16 Let F be a fusion system on a finite p-group P , and let T be a strongly

F -closed subgroup of P . If F is saturated then F/T is saturated.

Having dealt with quotients, we move on to morphisms. A morphism should be a ho-

momorphism P → Q that induces a map on fusion systems. Notice that if θ : P → Q is a

homomorphism, with kernel K, and φ : A→ B is a morphism of F on P , then θ induces a

homomorphism φθ : Aθ → Bθ; however, the map φθ need not be an injection. (As Aθ can

be identified with AK/K, φθ can be thought of as a map AK/K → BK/K.)

Definition 4.17 Let F be a fusion system on a finite p-group P , and let E be a fusion

system on a finite p-group Q. A homomorphism θ : P → Q induces a morphism of fusion

systems θ : F → E if φθ is a morphism in E , for all morphisms φ in F .
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We will often conflate the group homomorphism and the morphism of fusion systems,

since each determines the other, and write the same symbol for both.

Not all group homomorphisms yield morphisms of fusion systems; indeed, if θ : P → Q is

a homomorphism inducing a morphism of fusion systems, then we can say a lot about ker θ.

Proposition 4.18 Let F be a fusion system on a finite p-group P , and let θ : P → Q be a

homomorphism. The kernel T of θ is strongly F -closed if and only if, whenever φ is a map

in F , the image φθ is an injection.

Proof: Suppose that T is strongly F -closed, and let φ : A → B be a morphism in F ,

so that in particular it is injective. Let a ∈ A, and suppose that (aθ)φθ = 1. We have

(aθ)φθ = (aφ)θ, so that aφ ∈ ker θ = T : since T is strongly F -closed, and aφ ∈ T , we must

have that a ∈ T , so that aθ = 1. Hence φθ is an injection.

Conversely, suppose that φθ is an injection for all φ in F , and let B be a subgroup of

T . Let φ : A → B be an isomorphism in F . Since B 6 T , the image of φθ is trivial, so its

domain must be trivial as well; hence A 6 T , and so T is strongly F -closed.

This proposition has the following immediate corollary.

Corollary 4.19 Let F be a fusion system on a finite p-group P , and let θ : P → Q be a

homomorphism. We have that ker θ is strongly F -closed if and only if θ induces a morphism

of fusion systems F → U(Q), and in particular the kernel of any morphism of fusion systems

is strongly F -closed.

The next result ties in morphisms and factor systems.

Theorem 4.20 (Puig) Let F be a saturated fusion system on a finite p-group P , and let

T be a strongly F -closed subgroup. Let θ : P → P/T denote the natural quotient map. The

map θ induces a morphism of fusion systems F → F/T , and this morphism is surjective, in

the sense that every morphism in F/T is of the form φθ, for some morphism φ of F .

The proof of this, while not particularly difficult, is too long for our course, and so will be

omitted again. This theorem can be restated as the following corollary, the first isomorphism

theorem for fusion systems.

Corollary 4.21 (First isomorphism theorem, Puig) Let F and E be saturated fusion

systems on finite p-groups P and Q respectively, and let θ : F → E be a morphism of fusion

systems. Then

F/ ker θ ∼= im θ.
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Analogues of the second and third isomorphism theorems do hold by work of the author

[6].

Theorem 4.22 (Second isomorphism theorem, Craven [6]) Let F be a saturated fu-

sion system on a finite p-group P , and let E be a saturated subsystem of F , defined on the

subgroup Q of P . Let T be a strongly F -closed subgroup of P . Denoting by ET/T the

image of E under the morphism F → F/T , we have

ET/T ∼= E/(Q ∩ T ).

Theorem 4.23 (Third isomorphism theorem, Craven [6]) Let F be a saturated fu-

sion system on a finite p-group P , and let T and U be strongly F -closed subgroups of P ,

with T 6 U . We have

(F/T )/(U/T ) ∼= F/U.

The other objects that we introduce in this section are normalizers and centralizers.

Definition 4.24 Let F be a fusion system on a finite p-group P .

(i) A subgroup Q of P is fully F-normalized if, whenever R is F -conjugate to Q,

|NP (Q)| > |NP (R)|.

(ii) A subgroup Q of P is fully F-centralized if, whenever R is F -conjugate to Q,

|CP (Q)| > |CP (R)|.

In Exercise 7.2 we prove that a receptive subgroup is fully centralized, and a receptive

fully automized subgroup is fully normalized. In saturated fusion systems the converse is

true, as we see in Exercise 7.4.

Definition 4.25 Let F be a fusion system on a finite p-group P , and let Q be a subgroup

of P .

(i) The normalizer subsystem NF(Q) is the fusion system on NP (Q), where HomNF (Q)(A,B)

is the set of all φ ∈ HomF(A,B) such that φ extends to ψ : QA→ QB with Qφ = Q.

(ii) The centralizer subsystem CF(Q) is the fusion system on CP (Q), where HomCF (Q)(A,B)

is the set of all φ ∈ HomF(A,B) such that φ extends to ψ : QA→ QB with φ|Q = 1.

(iii) IfQ P P , then the subsystem P CF(Q) is the fusion system on P , where HomP CF (Q)(A,B)

is the set of all φ ∈ HomF(A,B) such that φ extends to ψ : QA → QB with

φ|Q ∈ AutP (Q).
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Theorem 4.26 (Puig) Let F be a saturated fusion system on a finite p-group P , and let

Q be a subgroup of P . If Q is fully F -centralized then CF(Q) is saturated, and if Q is fully

F -normalized then NF(Q) is saturated. If Q P P then P CF(Q) is saturated.

If F = NF(Q) for some subgroup Q, then this should correspond to a normal p-subgroup.

We say that Q is normal in F , and write Q P F , if F = NF(Q).

Lemma 4.27 Let F be a fusion system on a finite p-group P . If Q and R are normal

subgroups of F then QR is a normal subgroup of F .

Proof: Let φ : A → B be any morphism in F . Since Q P F , φ extends to ψ : QA → QB

such that Qψ = Q, and since R P F , ψ extends to θ : QRA → QRB such that Rθ = R.

Hence φ extends to θ : (QR)A → (QR)B such that (QR)θ = QR, and so QR P F , as

needed.

The largest normal subgroup of a fusion system will be denoted by Op(F), just as for

groups.

Back in the 1930s, we saw that for soluble groups, CG(F (G)) 6 F (G): in a fusion system,

we may assume that Op′(G) = 1, so that the analogue of F (G) is simply Op(G). Hence we

might well be interested in the statement of whether CP (Op(F)) 6 Op(F). If this holds,

we say that F is constrained. The fundamental theorem on constrained fusion systems was

proved by Broto, Castellana, Grodal, Levi and Oliver, in 2005.

Theorem 4.28 Let F be a saturated fusion system on a finite p-group P . If F is con-

strained then there exists a unique finite group G such that Op′(G) = 1, F = FP (G), and

CG(Op(G)) 6 Op(G).
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4.3 Alperin’s Fusion Theorem

Alperin’s fusion theorem for finite groups has an analogue for fusion systems, but the two

statements are not equivalent: the theorem for groups cannot imply the theorem for fusion

systems, since there are fusion systems that do not come from finite groups! The theorem for

fusion systems does not imply the theorem for groups because tame intersections cannot be

detected by the fusion system, and the fusion system ‘ignores’ elements of G that centralize

p-subgroups, so we can never hope to express g as a product of elements of normalizers, and

simply express cg as a product of automorphisms of subgroups of P .

Definition 4.29 Let F be a fusion system on a finite p-group P . A subgroup Q of P is

F-radical if Op(AutF(Q)) = Inn(Q).

With this definition, together with the definition of a centric subgroup on Exercise Sheet

7 (Q is F -centric if CP (R) 6 R whenever R is F -conjugate to Q), we can state a version of

Alperin’s fusion theorem for fusion systems.

Let C be a family of subgroups of P . For an isomorphism φ ∈ HomF(A,B), write

A
φ−→B with respect to C if there exist subgroups Q1, . . . , Qn ∈ C and automorphisms

ψi ∈ AutF(Qi) such that A 6 Q1 and, writing Ai = Ai−1ψi, we have that B = An+1 and

φ = ψ1|A1 ◦ ψ2|A2 ◦ · · · ◦ ψn|An .

This is very similar to the definition of a conjugation family for a finite group, but if F =

FP (G) then the conjugation family for F only yields that conjugation by g ∈ G is the same

as conjugation by some product of elements from the conjugation family for F .

A conjugation family for F is a family such that A
φ−→B for all A and B, and all

isomorphisms φ ∈ HomF(A,B).

As with the proof of the original Alperin’s fusion theorem in the previous chapter, if

A
φ−→B and B

ψ−→C then A
φψ−→C and B

φ−1

−→A, and if D ⊆ A then D
φ−→Dφ.

Theorem 4.30 (Alperin’s fusion theorem) Let F be a saturated fusion system on a

finite p-group P . Let C be the set of all fully F -normalized, F -centric, F -radical subgroups

of P . We have that F is generated by AutF(Q), for Q ∈ C ; in other words, C is a conjugation

family for F .

Proof: Let φ ∈ HomF(A,B) be an isomorphism. We proceed by induction on m = |P : A|,
noting that if A ∈ C then A

φ−→A for any φ ∈ AutF(A). This implies the case m = 1, so

that A < P . Let C be a fully F -normalized subgroup of P that is F -conjugate to A (and

hence to B). By Exercise 7.3 there exist maps ψ : A→ C and θ : B → C with Nψ = NP (A)
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and Nθ = NP (B). Since F is saturated, ψ and θ extend to these overgroups, and so by

induction A
ψ−→C and B

θ−→C. Thus, writing χ = ψ−1φθ ∈ AutF(C), if C
χ−→C then

A
ψ−→C

χ−→C
θ−→B,

so that A
φ−→B, as needed.

As C is fully normalized, χ extends to Nχ, so if C < Nχ then C
χ−→C by induction;

hence we may assume that Nχ = C. As CP (C) 6 Nχ, this implies that CP (C) = Z (C).

However, as C is fully normalized it is fully centralized, so that all F -conjugates D of C

have |CP (D)| 6 |CP (C)| = |Z (C) | = |Z (D) |. Hence CP (D) = Z (D), and C is F -centric.

Finally, as Nφ = C, this means that AutP (C) ∩ AutP (C)χ
−1

= Inn(C): as the two terms in

the intersection are Sylow p-subgroups of AutF(C), we see that Op(AutF(C)) = Inn(C), so

that C is also radical. Hence C ∈ C , and C
χ−→C, as needed.

As we saw on Exercise Sheet 6, there is a characterization of all conjugation families for

groups: a collection F of subgroups of P is a conjugation family if it contains a represen-

tative of every G-conjugacy class of subgroups Q such that NG(Q)/Q contains a strongly

p-embedded subgroup.

For fusion systems, there is a similar classification. A subgroup Q of P is F-essential if

Q is F -centric, and OutF(Q) = AutF(Q)/ Inn(Q) contains a strongly p-embedded subgroup.

Notice that being F -essential is invariant under F -conjugacy.

Theorem 4.31 (Puig) Let F be a saturated fusion system on a finite p-group P . A family

C of subgroups of P is a conjugation family if and only if it contains a representative from

each F -conjugacy class of F -essential subgroups.

The proof of this theorem follows a similar strategy to the proof of the theorem for groups,

which we did in Exercise Sheet 6, and we leave the details to the reader.

Using Alperin’s fusion theorem, we can give a characterization of subgroups of P that

are normal in a fusion system.

Corollary 4.32 Let F be a saturated fusion system on a finite p-group P . A strongly F -

closed subgroup Q of P is normal in F if and only if it is contained in every fully normalized,

centric, radical subgroup of F .

Proof: Suppose that Q is contained in every fully normalized, centric, radical subgroup of

P and let φ ∈ HomF(A,B) be a morphism. By Alperin’s fusion theorem, φ can be written

as the restriction of the composition of ψi ∈ AutF(Ri), with the Ri fully normalized, centric,

radical subgroups. As Q 6 Ri and Q is strongly closed, Qψi = Q, so that φ can be extended

to include Q in its domain.
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Conversely, suppose that Q is normal in F , and let R be a centric, radical subgroup of

P . We claim that AutQR(R) is a normal subgroup of AutF(R): if this is true, then since R is

F -radical, AutQR(R) 6 Inn(R), so that NQR(R) 6 RCP (R) = R. If Q 66 R then QR > R,

so NQR(R) > R, which is a contradiction, so that Q 6 R, as needed.

We now prove the claim. Let g ∈ NQR(R), let φ ∈ AutF(R), and let ψ ∈ AutF(QR)

be an extension of φ. Since both Q and R are ψ-invariant, NQR(R) is ψ-invariant. Thus

gψ ∈ NQR(R), and (regarded as elements of AutF(R)), (cg)
ψ = cgψ. Thus AutQR(R)ψ =

AutQR(R), and so AutQR(R) P AutF(R), as claimed.

We end with a useful result of Stancu.

Lemma 4.33 (Stancu) Let F be a saturated fusion system on a finite p-group P , and

write Q = Op(F). We have

F = 〈NF(QCP (Q)), P CF(Q)〉,

where the fusion system generated by a collection of morphisms is the smallest fusion system

containing them.

Proof: Let R be a fully normalized, centric, radical subgroup of P , and let φ be an F -

automorphism of R. We see that Q is contained in R by Corollary 4.32. Since F = NF(Q),

Q is strongly F -closed, and so ψ = φ|Q is an F -automorphism of Q. Certainly R 6 Nψ, and it

is always true that QCP (Q) 6 Nψ. Thus there is a homomorphism θ ∈ HomF(RQCP (Q), P )

such that θ|Q = ψ; hence

φ = θ|R ◦
(
(θ|R)−1 ◦ φ

)
.

The morphism θ|R is a morphism in NF(QCP (Q)) (since θ acts as an automorphism on

QCP (Q)), and θ|−1
R ◦φ lies in P CF(Q). Thus φ ∈ 〈P CF(Q),NF(QCP (Q))〉, and by Alperin’s

fusion theorem we get the result.

61



4.4 Thompson’s Normal p-Complement Theorem

Our aim is to prove Thompson’s p-nilpotence theorem for fusion systems directly, hopefully

improving on the proof for groups. We need a lemma.

Lemma 4.34 Let F be a constrained, saturated fusion system on a finite p-group P , and

let Q = Op(F). If H is a subgroup of OutF(Q) such that H∩OutP (Q) is a Sylow p-subgroup

of H, then there exists a saturated subsystem E of F , on a subgroup of P containing Q,

such that OutE(Q) = H.

Proof: This follows easily from Theorem 4.28. For a full proof, see [7, Lemma 4.2].

A saturated fusion system is sparse if the only saturated subsystems of F on P itself are

F and FP (P ).

Theorem 4.35 (Thompson’s normal p-complement theorem) Let F be a saturated

fusion system on a finite p-group P . Suppose that CF(Z (P )) and NF(J(P )) are trivial. If p

is odd then F is trivial.

Proof: Let F be a minimal counterexample firstly in terms of |P |, then in terms of the

number of morphisms in F .

Step 1: F is sparse, NF(P ) = FP (P ), and if Z (P ) 6 X 6 P and E 6 F is defined on an

overgroup of X, then CE(X) is trivial. The first part is true, since any proper subsystem of

F on P satisfies the conditions of the result, so is FP (P ); the second part is true since else

P P F and so J(P ) P F , a contradiction; the third part is clear.

Step 2: If Q = Op(F) then F/Q is trivial. By Alperin’s fusion theorem, since F is not

trivial, there is some subgroup Q of P such that NF(Q) is non-trivial. Choose Q so that

|NP (Q)| is maximal such that NF(Q) is non-trivial. We claim that NP (Q) = P . To see this,

write N = NP (Q) and N = NF(Q), and we show that NN (J(N)) and CN (Z (N)) are trivial,

and so since N is non-trivial, we must have by induction that N = F .

Since Z (P ) 6 Z (N), CN (Z (N)) is trivial by Step 1. If N = P then NN (J(N)) = NN (P )

is trivial by Step 1, so assume that N < P . Since J(N) charN P NP (N), we see that

NP (J(N)) > N , and so by choice of Q, we must have that NF(J(N)) is trivial. Hence

NN (J(N)) is trivial. This completes the proof, and so NF(Q) = F . Hence Op(F) > 1, so

let Q = Op(F).

If Q < W P P , then NF(W ) < F , so NF(W ) is trivial. Write ·̄ for quotienting by Q.

Since P cannot be normal in F , P̄ 6= 1. Notice that if W is the preimage of J(P̄ ) or Z
(
P̄
)

in

P , then Q < W P P , and so NF(W ) is trivial. Thus NF̄(W̄ ) = NF(W )/Q is also trivial, and
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therefore so is CF̄(W̄ ). In particular, NF̄(J(P̄ )) and CF̄(Z
(
P̄
)
) are trivial, so by induction

F̄ is trivial, as needed.

Step 3: F is constrained. Lemma 4.33 states that F = 〈P CF(Q),NF(QCP (Q)〉. By Step

1, both of these are either FP (P ) or F . If both are FP (P ) then F = FP (P ), so at least one

of them is F .

Suppose that F = P CF(Q), and let φ be a p′-automorphism of a fully normalized, centric,

radical subgroup R of P . By Corollary 4.32, Q 6 R. Consider φ|Q: since F = P CF(Q),

φ|Q = cg, but φ is a p′-automorphism, so g = 1, and φ|Q is trivial. Also, if θ : F → F/Q is

the natural morphism of fusion systems, then φθ is trivial, since it is a p′-automorphism of a

subgroup in FP/Q(P/Q). this means that φ acts trivially on R/Q, so that φ = 1 by Exercise

2.3. Thus by Alperin’s fusion theorem, F = FP (P ).

Thus F = NF(QCP (Q)), and so F is constrained.

Step 4: OutF(Q) = HoOutP (Q), where H is an elementary abelian q-group for some q 6= p.

Furthermore, OutP (Q) is maximal in OutF(Q), and every non-trivial normal subgroup of

OutF(Q) contains H. Write G = OutF(Q): by Step 2, G = H o OutP (Q) for some p′-

group H, and since F is sparse, OutP (Q) is maximal in OutF(Q). Let q 6= p be a prime

dividing |H|, let R be a Sylow q-subgroup of H and R0 = Ω1(Z (R)). By the Frattini

argument, G = NG(R)H, so NG(R) contains a Sylow p-subgroup of G, namely a conjugate

X of OutP (Q), which is maximal in G. Since R0 charR, R0 P NG(R), so that R0X is a

subgroup of G. By maximality of X, R0X = G, so that R0 = H, as claimed. Finally, if

K is normal in OutF(Q), as H char OutF(Q) we have H ∩ K charK P OutF(Q), so that

H ∩K = H or H ∩K = 1. If H ∩K = 1 then K is a normal p-subgroup, contradicting the

fact that Q = Op(F), and so H 6 K, as claimed.

Since NF(J(P )) is trivial, we cannot have that J(P ) 6 Q, since else J(P ) = J(Q) charQ,

and so J(Q) P F . Hence there exists some elementary abelian p-subgroup A of maximal

order in P such that A 66 Q. We may choose A to be fully F -normalized.

Step 5: P = QA and P/Q ∼= A/(A∩Q) has order p. Write B for the image of A in OutP (Q).

Since H P OutP (Q), [H,B] is a subgroup of H normalized by B, so is normal in HB (as H

is abelian, so normalizes [H,B]). Let H1 be a minimal normal subgroup of HB contained in

[H,B]. Let E be the saturated subsystem of F such that OutE(Q) = H1B. Clearly E is non-

trivial, and E is defined on QA. By Step 1, CE(Z (QA)) is trivial. Let φ ∈ NE(J(QA)); let ψ

be an extension of φ to an E-automorphism of J(QA)Q (as E = NE(Q)). Since A 6 J(QA),

if ψ normalizes QA then Aψ 6 QA. Since Qψ 6 QA, we see that (QA)ψ = QA. If ψ

is not a p-automorphism, by raising to an appropriate power, we may assume that ψ is a

p′-automorphism of QA in E .
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As ψ is a p′-automorphism, if ψ|Q is trivial, then since CP (Q) 6 Q, ψ is trivial; thus ψ|Q
is non-trivial. We consider the image of ψ in OutP (Q). Since ψ normalizes QA, [B,ψ] 6 B,

and since ψ ∈ H we have that [B,ψ] 6 H, so that [B,ψ] = 1. Hence ψ ∈ CH(B); as

ψ ∈ [H,B] we get that ψ ∈ [H,B] ∩ CH(B) = 1 (by Exercise 6.2). Thus NE(QA) is trivial,

and so by choice of minimal counterexample, E = F . In particular, P = QA.

Notice that H is a simple, faithful, Fq(P/Q)-module, and since P/Q is abelian we must

have that P/Q is cyclic. Thus A/(A ∩Q) has order p.

Write Z = Z (Q). Since Z (P ) 6 Z (as CP (Q) 6 Q) we see by Step 1 that CF(Z)

is a trivial fusion system on CP (Z). By Exercise 6.2, Z = CZ(H) × [Z,H], and so if

[Z,H] = 1 then H centralizes Z, impossible since CF(Z) = FP (P ). Hence [H,Z] 6= 1. Let

V = Ω1([H,Z]), an elementary abelian p-group. Also, as Q P F , Z P F , and so [H,Z] P F ,

and Ω1([H,Z]) P F .

Step 6: |V | 6 p3. Let A0 = A∩Q; as AQ/Q has order p, A/A0 has order p. As V 6 Z (Q),

A0V is elementary abelian, and so |A0V | 6 |A|, so that |V/(V ∩ A0)| = |A0V : A0| 6 p. If

φ ∈ AutF(Q), then V φ = V , and so V/(V ∩ A0)φ has order at most p. If |V | > p3 then

X = V ∩ A0 ∩ A0φ 6= 1. As A is abelian, AutA(Q) acts trivially on X, as does Inn(Q)

since X 6 Z (Q). As AutA(Q) centralizes A0, AutA(Q)φ centralizes A0φ > X, and so X

is centralized by 〈AutA(Q),AutA(Q)φ, Inn(Q)〉 = AutF(Q). Hence X 6 CH(Z), which as

X 6 [H,Z] gives X 6 CH(Z) ∩ [H,Z] = 1, a contradiction. Thus |V | 6 p2.

Step 7: AutF(Q) ∼= SL2(p) and contradiction. If we can show that C = CAutF (Q)(V ) =

Inn(Q) then OutF(Q) may be embedded in Aut(V ) = GL2(p). By Step 4, OutF(Q) has

at least two Sylow p-subgroups, so OutF(Q) > SL2(p) by Exercise 5.2. However, Sylow p-

subgroups are not maximal in an overgroup of SL2(p), contradicting the fact that OutP (Q)

is maximal in OutF(Q).

Since V is normalized by AutF(Q), C P AutF(Q), whence C/ Inn(Q) is a normal

subgroup of OutF(Q). By Step 2, if C > Inn(Q) then it contains H, so that V 6

CZ(H) ∩ [H,Z] = 1; hence C = Inn(Q), as claimed.

The case where p = 2 requires us to not consider all fusion systems. As the fusion system

of S4 satisfies NF(J(P )) = CF(Z (P ))) = FP (P ) but O2′(S4) = 1, we do need to exclude

some finite groups for the prime 2.

It turns out that if G is a finite group, then G is S4-free (i.e., there is no subgroup H of

G, and normal subgroup K of H, such that H/K ∼= S4) if and only if FP (G) is S3-free (i.e.,

AutF(Q) is S3-free for all Q 6 P ). The only time we needed p odd in the theorem is in Step

7, and if F is S3-free then this step holds in this case as well.

Specializing to the case where F = FP (G), we get the following theorem.
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Theorem 4.36 Let G be a finite group, and let p be an odd prime, or p = 2 and let G

be S4-free. Let P be a Sylow p-subgroup of G. If NG(J(P )) and CG(Z (P ))) have normal

p-complements then G has a normal p-complement.
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Chapter 5

Exercise Sheets

1 Sheet 1

In all questions, G is a finite group.

1.1. A subgroup H of G is characteristic in G (denoted H charG) if, whenever φ is an

automorphism of G, Hφ = H. Let H and K be subgroups of G, with H 6 K. Prove

that if H charK P G then H P G, and if H charK charG then H charG.

1.2. Let π be a set of primes. Denote by Oπ(G) the largest normal π-subgroup of G, and

by Oπ(G) the smallest normal subgroup of G such that G/Oπ(G) is a π-group. If

π = {p}, we denote them by Op(G) and Op(G) respectively. If π is a set of primes, π′

denotes all primes not in π. A π-element is an element of G whose order is a product

of primes from π.

(i) Given the definitions above, prove that Oπ(G) and Oπ(G) are well-defined sub-

groups of G (i.e., there exist unique largest and smallest such normal subgroups

respectively).

(ii) Prove that Oπ(G) and Oπ(G) are characteristic subgroups of G.

(iii) Prove that Oπ(G) is generated by all π′-elements of G.

(iv) Prove that Op(G) is the intersection of all Sylow p-subgroups of G.

1.3. Let P be a Sylow p-subgroup of G. Prove that NG(NG(P )) = NG(P ).

1.4. The Frattini subgroup, Φ(G), is the intersection of all maximal subgroups of G.

(i) Prove that Φ(G) is characteristic in G.
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(ii) Prove (by induction or otherwise) that a maximal subgroup of a finite p-group G

is of index p and normal in G. (Hint: consider a central subgroup of order p.)

(iii) Suppose that G is a finite p-group. Prove that G/Φ(G) is elementary abelian.

(iv) Suppose that H is a normal subgroup of the finite p-group G, and G/H is ele-

mentary abelian. Prove that Φ(G) 6 H.

1.5. Suppose that G acts transitively on a set X, and let H be the stabilizer of a point

x ∈ X. Show that the kernel of the map G→ Sym(X) is the normal subgroup

HG =
⋂
g∈G

Hg,

the core of H in G, and prove that this is the largest normal subgroup of G contained

in H.

Deduce that every transitive permutation group that is abelian is regular.

1.6. Let H be a normal subgroup of G. Let P denote a Sylow p-subgroup of H. Prove that

every element g ∈ G may be expressed as g = hk, where h ∈ H and k ∈ NG(P ). This

is called the Frattini argument, and is (of course) due to Frattini.

1.7. This result is normally called the modular law, or Dedekind’s lemma. Let A, B and C

be subgroups of G, and suppose that A 6 C. Prove that (as sets)

A(B ∩ C) = AB ∩ C.

1.8. (Thompson’s transfer lemma, MFoCS) Suppose that |G| is even, and let P be a Sylow

2-subgroup of G. Assume that G contains no (normal) subgroup of index 2, i.e., that

G = O2(G). Prove that, if M is a maximal subgroup of P , then every involution of G

is conjugate to one in M . (An involution in a group G is an element of order 2.)

2 Sheet 2

2.1. Let G be the group S4 and let P = 〈(1, 2), (1, 3, 2, 4)〉 denote a Sylow 2-subgroup of G.

Let θ denote the standard quotient map P → P/P ′, and let τ denote the transfer of

θ with respect to G. Calculate the image of (1, 2, 3) and (1, 2). What can you deduce

about O2(G)?

2.2. Prove that the direct product of two nilpotent groups is nilpotent. Give an example

to show that the semidirect product of nilpotent groups need not be nilpotent.
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2.3. Let G be a finite p-group, let α be a p′-automorphism of G, and let H be an α-invariant

normal subgroup of G. If α acts trivially on H and G/H prove that α = 1.

2.4. Let G be a group, and let x, y and z be elements of G. Prove the following equalities.

(i) [x, y] = [y, x]−1.

(ii) [xy, z] = [x, z]y[y, z] = [x, z][x, z, y][y, z].

(iii) [x, yz] = [x, z][x, y]z = [x, z][x, y][x, y, z].

(iv) (Hall–Witt identity) [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1.

(Hint: for the final calculation, let u = xzx−1yx, v = yxy−1zy and w = zyz−1xz.)

Deduce the three subgroups lemma: Let X, Y and Z be three subgroups of a group G,

and let N be a normal subgroup of G. If [X, Y, Z] and [Y, Z,X] are both contained

within N , then so is [Z,X, Y ].

2.5. Let G be a group, and let H and K be subgroups of G. Let

H = H0 > H1 > · · · > Hn > · · ·

be a chain of normal subgroups of H with [Hr, K] 6 Hr+1 for each r. Prove that

[Hr, Ln(K)] 6 Hr+n for all r > 1 and n > 1.

Deduce the following inequalities, for all r, s and all groups G:

(i) [Lr(G), Ls(G)] 6 Lr+s(G);

(ii) [Lr(G),Zs(G)] 6 Zs−r(G) for s > r;

(iii) [Lr(G),Zr(G)] = 1; and

(iv) L2n(G) > G(n) for all n.

2.6. Let G be a finite group, and let M be a minimal normal subgroup of G (i.e., a non-

trivial normal subgroup of G minimal with respect to inclusion). Prove that M is

a direct product of isomorphic simple groups, and hence if G is soluble then M is

elementary abelian.

2.7. Let G be a finite group. Prove that G is nilpotent if and only if every maximal subgroup

of G is normal in G.

2.8. Let G be a group and let H be a subgroup of G. Prove that the intersection of

all normal subgroups of G containing H is equal to the subgroup generated by all

conjugates Hg of H for g ∈ G. This subgroup is often denoted HG and is called the

normal closure of H in G.
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2.9. Let N be a normal subgroup of G and let H be a subgroup of G with N 6 H 6 G.

Prove that NG(H)/N = NG/N(H/N).

2.10. (MFoCS) Let G and let P be a Sylow p-subgroup of G. A subgroup is extremal if

NP (A) is a Sylow p-subgroup of NG(A).

(i) Prove that every subgroup of P is conjugate in G to an extremal subgroup.

(ii) Let B be an extremal subgroup of P that is G-conjugate to A. Prove that there

exists g ∈ G such that NP (A)g 6 NP (B) and Ag = B.

2.11. (MFoCS) Let G be a finite group, and let P be a Sylow p-subgroup of G. Let A and

B be any subgroups of P , and let g ∈ G be such that Ag = B. Write A
g−→B if there

exist, for 1 6 i 6 n, extremal subgroups Ri of P and elements xi ∈ NG(Ri) such that

g = x1x2 . . . xn, and Ax1...xi 6 Ri, Ri+1 (and A 6 R1).

(i) Prove that, if A
g−→B and D ⊆ A, then D

g−→Dg, and that, if A
g−→B and

B
h−→C, then A

gh−→C and B
g−1

−→A.

(ii) Prove that if B is extremal then A
g−→B. (Proceed by induction on |P : A|)

(iii) Prove that A
g−→B in all cases.

3 Sheet 3

In all questions, G is a finite group, and P is a Sylow p-subgroup of G.

3.1. Let A be a normal subgroup of G such that A is cyclic and G/A is non-abelian simple.

Prove that A = Z (G).

3.2. Let H and K be normal subgroups of G such that [H,K] = 1 and G = HK. Prove

that there exists a central subgroup Z of X = H × K, such that X/Z ∼= G, with Z

having trivial intersection with both direct factors, and with the images of HZ/Z and

KZ/Z in X/Z being H and K (as subgroups of G) respectively.

Such a group G is said to be a central product of H and K.

3.3. Suppose that G has a normal p-complement. Prove that AutG(Q) = NG(Q)/CG(Q) is

a p-group for all subgroups Q of P .

3.4. Let p be the smallest prime dividing |G|. If H is a subgroup of index p, prove that

H P G.
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3.5. Let H and K be subgroups of G. Let AutK(H) denote the set of all automorphisms

of H induced by conjugation by elements of K. Let Inn(H) = AutH(H) (the inner

automorphisms of H).

(i) Prove that Inn(H) P Aut(H).

(ii) Prove that AutK(H) is naturally isomorphic to NK(H)/CK(H).

(iii) Prove that Inn(H) ∼= H/Z (H).

(iv) Define Out(H) to be Aut(H)/ Inn(H), and OutK(H) to be the image of AutK(H)

in Out(H). Prove that OutK(H) is naturally isomorphic to NK(H)/(H∩K) CK(H).

(v) Prove that if G is a simple group then G naturally embeds in Aut(G).

(vi) Prove that Aut(A4) ∼= S4 and Aut(A5) ∼= S5.

3.6. (MFoCS) Prove that the following are equivalent:

(i) AutG(Q) = NG(Q)/CG(Q) is a p-group for all subgroups Q of P .

(ii) P controls fusion in P with respect to G.

Deduce that, if H is a normal subgroup of G, and P controls fusion in P with respect

to G, then H ∩ P controls fusion in H ∩ P with respect to H.

3.7. (MFoCS) Suppose that P controls fusion in P with respect to G. Let θ : P → P/P ′

be the natural quotient map, and let τ be the transfer of θ.

(i) Prove that ker τ < G.

(ii) Deduce that G has a normal p-complement.

The statement that G has a normal p-complement if and only if P controls fusion in

P with respect to G is known as Frobenius’s normal p-complement theorem.

4 Sheet 4

4.1. Let G be a finite group and let M be a G-module. A 1-cocycle is a map γ : G → M

that satisfies the identity

γ(xy) = γ(x) · y + γ(y).

Let X be a split extension of M by G, and turn M into a G-module via conjugation.

Identify M and G with their images in X.
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(i) If γ is a 1-cocycle, prove that the set {xγ(x) : x ∈ G} is a complement to M in

X.

(ii) If H is a complement to M in X, prove that there exists a 1-cocycle γ such that

H = {xγ(x) : x ∈ G}.

(iii) Prove that if H and K are two complements to M in X, and H = Kg for some

g ∈ X, then there exists v ∈M such that H = Kv.

The set of all 1-cocycles is denoted Z1(G,M).

4.2. Let G and M be as in Exercise 4.1. A 1-coboundary is a function γ : G→M such that

there exists v ∈M with γ(x) = v−v ·x. Denote by B1(G,M) the set of 1-coboundaries.

Define an addition on Z1(G,M) by (γ + δ)(x) = γ(x) + δ(x).

(i) Prove that Z1(G,M) forms an abelian group.

(ii) Prove that B1(G,M) forms a subgroup of Z1(G,M).

The quotient Z1(G,M)/B1(G,M) is denoted H1(G,M) and called the 1-cohomology

of G and M .

4.3. Let G and M be as in Exercise 4.1, and suppose that |G| and |M | are coprime. Prove

that H1(G,M) = 0.

4.4. Let G, M and X be as in Exercise 4.1. Let H and K be two complements to M in X.

Prove that H and K are X-conjugate if and only if the corresponding 1-cocycles lie in

the same 1-cohomology class. Deduce that all complements to M in X are conjugate

if and only if H1(G,M) = 0.

4.5. Let G be a finite group, and let A be a group of automorphisms of G, with |A| and

|G| coprime. Let p | |G| be a prime.

(i) Prove that there exists an A-invariant Sylow p-subgroup of G.

(ii) Prove that every A-invariant p-subgroup of G is contained in an A-invariant Sylow

p-subgroup of G.

(iii) (MFoCS) Prove that CG(A) acts transitively by conjugation on the set of A-

invariant Sylow p-subgroups of G.
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5 Sheet 5

5.1. Let M be the group C4 (written additively), and G = C2; turn M into a non-trivial

G-module in the unique way, by m · g = −m for 1 6= g ∈ G and m ∈ M . Prove that

H1(G,M) and H2(G,M) are non-zero.

5.2. Let p > 5. Prove that the set of upper unitriangular matrices in GL2(p) forms a Sylow

p-subgroup of GL2(p). Prove that, if G is a subgroup of GL2(p) with at least two Sylow

p-subgroups, then G contains SL2(p). (Optional. For p = 2, 3 the result still holds:

prove it.)

5.3. A Frobenius group is a permutation group G on X in which the intersection of any

two point stabilizers is trivial, i.e., only the identity fixes more than one element of X.

Prove the following characterization of a Frobenius group: an abstract group G (i.e.,

not given as a permutation group) is a Frobenius group with respect to some action if

and only there is a proper subgroup H of G such that H ∩Hg = 1 for g ∈ G \H. The

subgroup H is called a Frobenius complement.

Frobenius proved that any Frobenius complement is actually a complement to a normal

subgroup K of G, called the Frobenius kernel. Prove that K is the set of permutations

of X in G that act fixed point freely.

Deduce that all elements of H act fixed point freely on K \ {1}.

5.4. Let g ∈ G. An intersection A = P ∩ P g−1
is domestic if it is tame, and whenever

x ∈ CG(A) we have P ∩ P (xg)−1
= A. Let A be a domestic intersection.

(i) Prove that CP (A) = Z (A), and indeed CG(A) = Z (A)× Op′(CG(A)). (Hint: for

the second part, use a normal p-complement theorem.)

(ii) Prove that Op(AutG(A)) = Inn(A).

5.5. A strongly p-embedded subgroup of G is a subgroup M , containing P (or a conjugate)

such that M ∩M g is a p′-group for all g ∈ G\M . Let Ap(G) be the graph with vertices

all non-trivial p-subgroups of G, and a line connecting two vertices if and only if the

corresponding subgroups Q and R satisfy Q 6 R (or R 6 Q). Prove that G has a

strongly p-embedded subgroup if and only if Ap(G) is disconnected.

5.6. (MFoCS) Let A be an extremal subgroup of P with respect to G, with CG(A) =

Z (A) × Op′(CG(A)). Suppose that OutG(A) has a strongly p-embedded subgroup.

Prove that A is a domestic intersection.
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In all questions, let G be a finite group and let P be a Sylow p-subgroup of G.

6.1. The exponent of a group G is the smallest integer n such that, for all g ∈ G, gn = 1.

(It need not be finite.)

Let G be a not-necessarily-finite group.

(i) Let Xi = Li(G)/Li+1(G). Prove that the map (not homomorphism) φ : G×G→
G given by (x, y) 7→ [x, y] induces a bilinear map φ̄i : Xi ×X1 → Xi+1. (Bilinear

here means that (ab, x)φ̄i = (a, x)φ̄i · (b, x)φ̄i and (a, xy)φ̄i = (a, x)φ̄i · (a, y)φ̄i.)

(ii) Prove that if G/G′ is finitely generated then Xi is finitely generated for all i > 1.

(iii) Suppose that G/G′ has exponent n. Prove that Li(G)/Li+1(G) has exponent at

most n for all i.

(iv) Prove that every finitely generated nilpotent group is either finite or has a surjec-

tive homomorphism to Z.

6.2. Let G be a finite group with an abelian Sylow p-subgroup P , and write N = NG(P ).

(i) Prove that P ∩G′ = [P,N ].

(ii) Prove that P = CP (N)× [P,N ].

This clearly implies that, if H is a p′-group of automorphisms of P , then P = CP (H)×
[P,H].

6.3. Let Q be an extremal subgroup of P .

(i) Prove that every element of AutG(Q) may be expressible as a product of p-

automorphisms of Q and the restriction of an automorphism of a subgroup R

of P with Q < R.

(ii) Deduce that, for any conjugation family F , the elements xi ∈ Si (for Si ∈ F )

may be chosen to be p-elements, unless Si = P .

6.4. In this and the next question we relax slightly the definition of a conjugation family, and

allow multiple occurrences of elements of NG(P ) in the decomposition; alternatively,

we delete the element y ∈ NG(P ) at the end of the decomposition, and let P ∈ F .

Let F be a conjugation family. Prove that, if F ′ is a subset of F containing a rep-

resentative from every G-conjugacy class of subgroups of P that have a representative

in F , then F ′ is also a conjugation family.
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6.5. We make the same relaxation of the definition of a conjugation family as in the previous

question.

Let F be a conjugation family. Let Q be an extremal subgroup of P . Let X be the

subgroup of NG(Q) generated by those g ∈ NG(Q) that normalize some Q < R 6

NP (Q).

(i) Prove that NG(Q)/Q contains a strongly p-embedded subgroup, namely X/Q, if

and only if X < NG(Q).

(ii) If X < NG(Q), prove that Q is a tame intersection.

(iii) Suppose that X = NG(Q). If F contains Q, prove that F \ {Q} is also a

conjugation family.

(iv) Deduce that a family F of subgroups of P is a conjugation family if and only if it

contains a representative from every G-conjugacy class of subgroups R 6 P such

that NG(R)/R has a strongly p-embedded subgroup, together with P .

6.6. Suppose that P is a dihedral 2-group.

(i) Use Alperin’s fusion theorem to determine the three possibilities for fusion in P .

(ii) Use the focal subgroup theorem to calculate the maximal abelian 2-quotient

G/Ap(G) of G in each ease.

(iii) Deduce that, if O2(G) = G, then all involutions in G are conjugate.

6.7. Let φ be an automorphism of G. Let H be a subgroup of G and let H 6 K 6 NG(H).

(i) Prove that φ induces a natural isomorphism φ∗ : Aut(H)→ Aut(Hφ).

(ii) Let g ∈ NG(H). Prove that, gφ ∈ NG(Hφ), and as an element of Aut(H),

cgφ
∗ = cgφ.

(iii) Deduce that

AutK(H)φ∗ = AutKφ(Hφ).

6.8. Let A and B be subgroups of P , and suppose that there is an isomorphism φ : A→ B.

Let N be a subgroup of NP (A) containing A. If there exists an injective homomorphism

ψ : N → NP (B), such that ψ|A = φ, prove that AutN(A)φ∗ 6 AutP (B). (Use the

previous question!)
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In all questions, P is a finite p-group, G is a finite group with Sylow p-subgroup P , and F
is a fusion system on P .

7.1. Prove Lemma 4.3.

7.2. A subgroupQ of P is fully F-normalized if, wheneverR is F -conjugate toQ, |NP (Q)| >
|NP (R)|. Similarly, Q is fully F-centralized if, whenever R is F -conjugate to Q,

|CP (Q)| > |CP (R)|.

LetQ be a subgroup of P . Prove that ifQ is receptive in F thenQ is fully F -centralized.

Prove that if Q is in addition fully F -automized, then Q is fully F -normalized.

7.3. Suppose that F is saturated, let Q be a fully F -normalized subgroup of P , and let R be

a subgroup of P that is F -conjugate to Q. Prove that there is a morphism φ : R→ Q

that extends to an F -morphism φ̄ : NP (R)→ NP (Q).

7.4. Suppose that F is saturated. Prove that every fully F -centralized subgroup is receptive,

and that every fully F -normalized subgroup is both fully F -automized and receptive.

7.5. A subgroup Q of F is F-centric if, whenever R is F -conjugate to Q, we have that

CP (R) 6 R (in particular R = Q). Prove that, if F = FP (G), then Q is F -centric if

and only if

CG(Q) = Z (Q)×Op′(CG(Q)).

7.6. Prove that if Q is fully F -centralized then QCP (Q) is F -centric, and that if Q is

F -centric and R > Q then R is F -centric.

7.7. A subgroup Q is weakly F-closed if {Q} is the F -conjugacy class containing Q. Prove

that the product of two weakly closed subgroups is weakly closed.
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Chapter 6

Solutions to Exercises

1 Sheet 1

1.1. Let g ∈ G. Since K P G, conjugation by g induces an automorphism of K, namely

φ : x 7→ xg. As H charK, Hφ = H, and so Hg = H. If φ is any automorphism of G

and K charG, then Kφ = K, and so as above φ induces an automorphism of K. As

above, since H charK we see that Hφ = H, so that H charG.

1.2. (a) If H and K are normal π-subgroup of G then HK is, using the order formula

|H| · |K| = |HK| · |H ∩K|. Hence the product of all normal π-subgroups is a normal

π-subgroup, so Oπ(G) is well defined. Similarly, if H and K are normal subgroups such

that G/H and G/K are π-groups, then the intersection H ∩K is a normal subgroup,

and the order formula says that

|G|/|H ∩K| = |G| · |HK|
|H| · |K|

=
|G|
|H|
· |HK|
|K|

.

The first term is a π-element, and since HK/K 6 G/K, it is also a π-group. Hence the

intersection of all normal subgroups whose quotient is a π-group is a normal subgroup

whose quotient is a π-group. Thus Oπ(G) is well defined.

(b) Let φ be an automorphism of G. Notice that Oπ(G)φ is a normal π-subgroup of G,

so that Oπ(G)φ 6 Oπ(G) (so they are equal), proving that Oπ(G) charG. Similarly,

Oπ(G)φ is a normal subgroup such that G/(Oπ(G)φ) is a π-group, so that Oπ(G) 6

Oπ(G)φ, proving again that Oπ(G) charG.

(c) Notice that every π′-element of G must lie in Oπ(G), since the image of it in

G/Oπ(G) is a π′-element in a π-group. Let H be the subgroup generated by all π′-

elements, so that H 6 Oπ(G). If g ∈ G then conjugation by g permutes the π′-elements
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of G, so that conjugation by g fixes the subgroup generated by all π′-elements. Thus

H P G.

If G/H is not a π-group, then there exists an element x ∈ G, such that the order

of Hx in G/H is a π′-element. Write o(x) = ab, where a is a π-element and b is a

π′-element. The element Hxa in G/H must be a π′-element, since it is a power of Hx,

and is non-trivial since a is a π-number; thus xa /∈ H. However, xa is a π′-element,

so lies in H, a contradiction. Thus G/H is a π-group, so Oπ(G) 6 H, completing the

proof.

1.3. (a) Let x be a generator for P ∈ Syl2(G), and consider the regular representation ρ of

G. Since x has order 2n for some n, each cycle of xρ has length 2m. As |G| = n = 2ma

for odd a, there are a cycles of length 2n. Each of these cycles is odd, and so xρ is odd.

Hence im ρ ∩ An has index 2 in im ρ, so that G possesses a subgroup H of index 2.

(b) The subgroup H has cyclic Sylow 2-subgroups, and so O2(H) = O2(H) = K is an

odd-order subgroup. By the previous exercise, all elements of odd order in G lie in H,

and all elements of odd order in H lie in K, so that all odd-order elements of G lie in

K. Hence O2(G) 6 K. However, |K| = a, whereas |O2(G)| = 2ia for some i > 0, so

that O2(G) = K; this proves that G has a normal 2-complement, as claimed.

1.4. Let g ∈ G. Since P g 6 H, it is a Sylow p-subgroup of H, and so there exists h ∈ H such

that P g = P h. Therefore P h−1g = P , and hence ?? lies in NG(P ). Thus g = h(h−1g)

1.5. (a) Let φ be an automorphism of G. If M is a maximal subgroup of G then so is

Mφ, so that φ permutes the maximal subgroups of G; thus φ fixes their intersection,

proving that Φ(G) = Φ(G)φ. Hence Φ(G) charG.

(b) Proceed by induction on n, where |G| = pn. We know that Z (G) 6= 1, so let Z be

a central subgroup of order p, which is normal in G. Let M be a maximal subgroup

of G. If Z 6 M then M/Z is a maximal subgroup of G/Z, hence normal in G/Z and

of index p, proving the result in this case. Otherwise M < MZ 6 G, so since M is

maximal, G = MZ, so again M has index p as M ∩ Z = 1. Also, since Z 6 NG(M),

G = NG(M), so in this case M P G.

(c) Let M be a maximal subgroup of G. Since G/M ∼= Cp it is abelian, so that

G′ 6 M . Hence G′ is contained in every maximal subgroup, so in Φ(G). Hence

G/Φ(G) is abelian. In addition, if x ∈ G then (Mx)p = Mxp = M (as G/M has order

p). Thus for all x ∈ G, xp ∈ Φ(G), so that all elements of G/Φ(G) have order 1 or p.
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By the classification of finite abelian groups, this means that G/Φ(G) is elementary

abelian.

(d) As G/H is elementary abelian, there is a collection of maximal subgroups of G/H

whose intersection is trivial, and taking preimages in G there is a collection of maximal

subgroups of G (containing H) whose intersection is H. In particular, H contains the

intersection of all maximal subgroups of G, so that Φ(G) 6 H.

1.6. Notice that P P NG(P ), and so by Sylow’s theorem NG(P ) has a unique Sylow p-

subgroup, so that P char NG(P ). Hence

P char NG(P ) P NG(NG(P )),

so that P P NG(NG(P )) by Exercise 1.1. By the definition of NG(P ), we have the

result.

1.7. Suppose that x ∈ NG(H); then Nx normalizes Hx, so that Nx ∈ NG/N(H/N). Hence

NG(H)/N ⊆ NG/N(H/N). Conversely, suppose that x ∈ G and Nx normalizes Hx;

then, as N 6 H,

Hx = HxNx = (Nx)−1(Hx)(Nx) = x−1NHxNx = x−1(Hx)x,

since N P G and therefore xN = Nx, and NHN = H. Hence Hx = x−1(Hx)x, so

that H = x−1Hx; i.e., x normalizes H, so that x ∈ NG(H).

1.8. Let x be an element of A(B∩C). We see that x = ab where a ∈ A 6 C and b ∈ B∩C.

Hence a, b ∈ C so that x ∈ C and ab ∈ AB, proving that A(B ∩ C) ⊆ AB ∩ C.

Convesely, if x = ab with a ∈ A 6 C, b ∈ B and x ∈ C. Since a and x lie in C, b ∈ C,

so that b ∈ B ∩ C. This proves that ab ∈ A(B ∩ C), proving the opposite conclusion.

1.9. Let |G| = 2nm, where m is odd. Then |G : M | = 2m. Consider the action of G on

the cosets of M . This is a homomorphism from G to S2m. The set of all elements of

the image that are even permutations is a subgroup of index at most 2 in this image,

and since G contains no subgroup of index 2, the image of G consists solely of even

permutations.

Suppose that g is any involution in G. The image of g in A2m is a product of disjoint

transpositions, and since g is an even permutation and there are 2m points with m odd,

this permutation must fix a point, Mx say. Hence Mxg = Mx, and so x−1gx ∈M , as

required.
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2 Sheet 2

2.1. This is a simple calculation: choose the transversal {1, (1, 2, 3), (1, 3, 2)}, and write ti

for the ith element of the set. Firstly let g = (1, 2, 3). We have

ti · (1, 2, 3) = 1 · ti+1,

with the index of ti taken modulo 3. The transfer is therefore 1 · 11̇ = 1. Now let

g = (1, 2), and we have

1 · (1, 2) = (1, 2) · 1, (1, 2, 3)(1, 2) = (1, 2)(1, 3, 2), (1, 3, 2)(1, 2) = (1, 2)(1, 2, 3).

Hence the transfer is therefore (1, 2) · (1, 2) · (1, 2) = (1, 2).

Since the image of the transfer is non-trivial, we have that ker τ < G, so that O2(G) <

G.

2.2. Let G and H be nilpotent groups. Notice that Z (G×H) = Z (G)×Z (H), and clearly

(G×H)/(Z (G)× Z (H)) = G/Z (G)×H/Z (H) .

By induction, G/Z (G)×H/Z (H) is a nilpotent group, and so G×H is, completing

the proof.

An example of a semidirect product of two nilpotent groups that is not nilpotent is

S3 = C3 o C2, which is not nilpotent since it has no centre.

2.3. Suppose firstly that α has prime order q (where q 6= p), and acts trivially on H and

G/H, and write pm for the order of H. Since α fixes each coset of H, each of which

is a set of order pm, α must permute the elements of this coset, and hence must fix

at least one element in this coset (since if all orbits have length more than 1, they all

have length a multiple of q). Hence α fixes an element from each coset of H. Let X

denote a collection of such fixed points. Since α fixes every element of H and X, it

acts trivially on 〈X,H〉 = G, as needed.

Finally, suppose that o(α) is not of prime order, and write o(α) = qn, where n > 1.

Notice that αn has order q, and acts trivially on H and G/H, so αn = 1 by the previous

paragraph. Thus o(α) = n, and this contradiction proves the general case.

2.4. (a) [x, y] = x−1y−1xy = (y−1x−1yx)
−1

= [y, x]−1. (b) [xy, z] = y−1x−1z−1xyz =

y−1x−1z−1x (zyy−1z−1) yz = [x, z]y[y, z]. For the second equality, notice that

[x, z][x, z, y] = [x, z][x, z]−1y−1[x, z]y = [x, z]y.
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(c) [x, yz] = [yz, x]−1 = ([y, x]z[z, x])−1 = [z, x]−1([y, x]z)−1 = [x, z][x, y]z, proving the

first inequality. The second inequality follows the same as the previous part.

(d) Notice that

[x, y−1, z]y = y−1[x, y−1]−1z−1[x, y−1]zy

= y−1
(
x−1yxy−1

)−1
z−1x−1yx−1y−1zy

=
(
y−1y

) (
x−1y−1xz−1x−1

) (
yx−1y−1zy

)
= u−1v.

Cycling x, y, and z, we get [y, z−1, x]z = v−1w and [z, x−1, y]x = w−1u, so that

[x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = u−1vv−1ww−1u = 1.

The three subgroups lemma is now clear, since if X, Y and Z are all normal subgroups

of G then [X, Y, Z] is a normal subgroup of G, and the Hall–Witt identity.

2.5. The case n = 1 is fine, so we proceed by induction. Assume true for n− 1 (and all r).

We have Hr+n P H,

[Hr+n, K] 6 Hr+n+1 6 Hr+n,

so K 6 NG(Hr+n), and Hr+n P 〈H,K〉. We apply the three subgroups lemma with

L = 〈H,K〉 and N = Hr+n. We want [Ln(K), Hr] 6 N .

Now, [K,Hr, Ln−1(K)] 6 [Hr+1, Ln−1(K)] 6 Hr+n by induction hypothesis. Also

[Hr, Ln−1(K), K] 6 [Hr+n−1, K] 6 Hr+n

by induction. Thus by the three subgroups lemma, N contains

[Ln−1(K), K,Hr] = [Ln(K), Hr],

as required.

2.6. Let M be a minimal normal subgroup of G. If M is simple then we are finished, so we

may assume that M is not simple, and let N be a minimal normal subgroup of M . By

induction, N is a direct product of isomorphic simple groups S. As M is normal in G,

N g P M for all g ∈ G. Let N1, . . . , Nr denote all of these conjugates, each isomorphic

to N . We claim that M is the direct product of the Ni, proving that M is the direct

product of copies of S. To see this, since all elements of G permute the Ni they must

normalize the subgroup generated by then, so that X = 〈N1, . . . , Nr〉 P G. Since M

is a minimal normal subgroup of G, X = N . To see that N is the direct product of

some of the Ni, we see that, if N̂i is the product of all of the Nj for j 6= i, then Ni ∩ N̂i
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is a normal subgroup of M , hence either Ni ∩ N̂i = 1 or Ni 6 N̂i. If the latter is true,

remove Ni from the collection of the Ni and try again. Eventually, we see that X is

the product of some of the Ni, concluding the proof.

If G is soluble then these simple groups S must be Cp for some prime p, and so M is

the direct product of copies of Cp, so elementary abelian.

2.7. By Theorem 1.32, if G is nilpotent then all maximal subgroups are normal, since G

satisfies the normalizer condition. Conversely, suppose that every maximal subgroup

of G is normal in G. Let P be a Sylow p-subgroup of G. If P is not normal in G then

NG(P ) < G, so that NG(P ) 6 M for some maximal subgroup M . However, M P G,

so a Frattini argument shows that G = M NG(P ) = M , a contradiction. Hence all

Sylow p-subgroups of G are normal in G, and G is nilpotent by Theorem 1.32 again.

2.8. (a) Let X be the intersection of all conjugates Hg, and let Y be the product of all

normal subgroups of G contained in H. Since X 6 H and is a normal subgroup of G,

X 6 Y . Conversely, notice that X 6 H and so X = Xg 6 Hg, so that X 6 Y .

(b) Let X denote the intersection of all normal subgroups of G containing H, and let

Y denote the subgroup generated by all conjugates Hg. Since Y is a normal subgroup

containing H, X 6 Y . Conversely, as H 6 X, Hg 6 Xg = X, so that Y 6 X.

2.9. Let A be a subgroup of P . Let Q be a Sylow p-subgroup of NG(A), and let g ∈ G be

such that Qg 6 P , and write B = Ag. Notice that NG(Ag) = NG(A)g, so the order of a

Sylow p-subgroup of NG(B) is the same as |Q|. Hence, since Q 6 NP (B), we see that

Q = NP (B), proving that B is extremal.

If B is extremal and G-conjugate to A, let g ∈ G be such that Ag = B. We have that

NP (A)g 6 NG(B), so that NP (A)g is a p-subgroup of NG(B). Since NP (B) is a Sylow

p-subgroup of NG(B), there exists h ∈ NG(B) such that (NP (A)g)h 6 NP (B), proving

the second part.

2.10. (a) That D
g−→Dg is clear, since the same subgroups and elements proving that

A
g−→B will work. For B

g−1

−→A we reverse the sequence of subgroups of elements,

and for A
gh−→C we concatenate the two sequences.

(b) Proceed by induction on n = |P : A|, the case where n = 1 being obvious since

then g ∈ NG(P ) (and P is extremal). If B is extremal, then there exists x ∈ G such

that Ax = B and NP (A)x 6 NP (B) by Exercise 2.10. By induction NP (A)
x−→NP (A)g,

so A
x−→B. In addition, x−1g normalizes B, so trivially B

x−1g−→B, which proves that

A
g−→B, as needed.
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(c) Suppose that Ag = B. Choose C an extremal subgroup that is G-conjugate to

A, and let Ah = C. By the previous part, A
h−→C and B

g−1h−→C, so by the first part

A
g−→B, as needed.

3 Sheet 3

3.1. Consider CG(A), which contains A. As A P G, G/CG(A) is a quotient of G/A, a

non-abelian simple group, so that A = CG(A) or G = CG(A). If A = CG(A) then

G/A embeds in Aut(A), an abelian group as A is cyclic; this contradiction proves that

CG(A) = G, i.e., that A 6 Z (G). To see that A = Z (G), notice that Z (G) is a normal

subgroup of G containing A, so is either A or G. As G is non-abelian, Z (G) = A, as

needed.

3.2. Let H andK be as in the question, and let H̄ and K̄ denote groups isomorphic to H and

K respectively. (We make these definitions to avoid ambiguity.) Let φ : H̄ × K̄ → G

be given by (h, k)φ = hk. Since [H,K] = 1, this is a homomorphism, as

((h1, k1)(h2, k2))φ = h1h2k1k2 = h1k1h2k2 = ((h1, k1)φ) ((h2, k2))φ.

The homomorphism is clearly also surjective, and H̄φ = H and K̄φ = K, so it remains

to show that Z = kerφ is a central subgroup of G. Also, since φ is an isomorphism on

both factors, Z ∩ H̄ = Z ∩ K̄ = 1.

If z = (h, k) lies in Z, then zφ = (hφ)(kφ) = 1, so that hφ, kφ ∈ H ∩K. In particular,

[hφ,H] = 1, so that since H̄φ = H is an isomorphism, [h, H̄] = 1. Thus h ∈ Z
(
H̄ × K̄

)
,

and similarly k is also central in Ḡ× K̄, so that z is, as claimed.

3.3. (a) Let h ∈ H, and let {t1, . . . , tn} be a right transversal to H in G. Notice that the

set {t1h, . . . , tnh} is also a right transversal to H in G, since Htih = Ht2h implies that

Ht1 = Ht2. Hence

χG(x) =
n∑
i=1

χ(h−1t−1
i xtih).

By running over all h ∈ H, we get

|H|χG(x) =
∑
h∈H

n∑
i=1

χ(h−1t−1
i xtih) =

∑
g∈G

χ(g−1xg),

since as h ∈ H and 1 6 i 6 n, tih runs over all elements of G. This completes the

proof.
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(b) Using the previous part, we have

〈χG, ψ〉 =
1

|G|
∑
x∈G

χG(x)ψ(x)

=
1

|G|
1

|H|
∑
x∈G

∑
g∈G

χ(g−1xg)ψ(x)

=
1

|G|
1

|H|
∑
y∈G

∑
g∈G

χ(y)ψ(yg−1).

Since ψ is a character of G, ψ(yg
−1

) = ψ(y), and so the sum is independent of g. Thus

=
1

|G|
1

|H|
∑
y∈G

|G|χ(y)ψ(y)

=
1

|H|
∑
y∈G

χ(y)ψ(y).

As χ(y) = 0 for y ∈ G \H, we can restrict the sum to y ∈ H, to get

=
1

|H|
∑
y∈H

χ(y)ψ(y) = 〈χ, ψH〉.

This completes the proof.

3.4. Let Q be a normal p-subgroup of G, contained in some Sylow p-subgroup P of G. If

g ∈ G then Q = Qg 6 P g, and since G acts transitively on the Sylow p-subgroups, Q

lies in every one. Conversely, letting R denote the intersection of all Sylow p-subgroups

P , Rg is also the intersection of all Sylow p-subgroups P g, so R = Rg and R P G.

Thus Op(G) is the intersection of all Sylow p-subgroups of G, as claimed.

3.5. Let K be a normal p-complement for G, and notice that L = K ∩ NG(Q) is a normal

p-complement for NG(Q) (as L is a p′-group and NG(Q)/L is a p-group by the second

isomorphism theorem). As Q,L P NG(Q), [Q,L] 6 Q ∩ L = 1, and so L 6 CG(Q).

Thus NG(Q)/CG(Q) is a p-group, as it is a quotient of NG(Q)/L.

3.6. Suppose that AutG(Q) is a p-group for all Q 6 P , so that if Q is extremal then

AutG(Q) = AutP (Q). By Exercise 2.11, if A,B ⊆ P and g ∈ G is such that Ag = B,

then A
g−→B, so that g = x1x2 . . . xn, where xi ∈ NG(Ri) for Ri an extremal subgroup

of P , and Ax1...xi 6 Ri, Ri+1. Since AutG(Ri) = AutP (Ri), we may write xi = ciri,

where ci ∈ CG(Ri) and ri ∈ NP (Ri). Finally,

Acg = Acx1...xn = Acc1r1...cnrn = Acr1...rn = Acr,
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where r ∈ P , and we may remove the ci since the centralize Ri. Thus P control fusion

in P with respect to G.

Conversely, suppose that P controls fusion in P with respect to G, and let Q be a

subgroup of P of smallest index such that AutG(Q) is not a p-group. By Exercise

2.10, and the fact that AutG(Q)g = AutG(Qg), we may assume that NP (Q) is a Sylow

p-subgroup of NG(Q), and hence AutP (Q) is a Sylow p-subgroup of AutG(Q). If g ∈
NG(Q) has p′-order, then there exists x ∈ P such that g and x induce the same

conjugation action on Q. Since g is a p′-element the induced automorphism cg ∈
AutG(Q) has order prime to p, but cg = cx so that it has order a power of p. Hence

cg = 1 and g ∈ CG(Q). By Exercise 1.1, as CG(Q) contains all p′-elements of NG(Q),

Op(NG(Q)) 6 CG(Q), and the result is proved.

To see the consequence, notice that for Q 6 H, we have NH(Q) = NG(Q) ∩ H and

CH(Q) = CG(Q) ∩H, so that

|NH(Q)|
|CH(Q)|

=
|NG(Q) ∩H|
|CG(Q) ∩H|

=
|NG(Q) ∩H|/|H|
|CG(Q) ∩H|/|H|

=
|NG(Q)|/|H NG(Q)|
|CG(Q)|/|H CG(Q)|

=
|CG(Q)H|
|NG(Q)H|

|NG(Q)|
|CG(Q)|

.

The second term is a p-group by assumption and the first part, and NG(Q)H/CG(Q)H

is a p-group because it is the image of NG(Q)/CG(Q) in G/H. Hence NH(Q)/CH(Q)

is a p-group, so that P ∩ H controls fusion in P ∩ H with respect to G, by the first

part again.

3.7. (a) Let {x1, . . . , xn} be a transversal for P in G. Choose d, y1 . . . , yd, and r−1, . . . , r−d
as in Proposition 1.20. For x ∈ P , we have

xτ =
∏

P ′yix
riy−1

i .

As P controls fusion in P with respect to G, there exists g ∈ P such that ai =

yix
riy−1

i = gxrig−1, whence ai(x
ri)−1 = [g−1, (xri)−1] lies in P ′. In particular, P ′yix

riy−1
i =

P ′xri , so that

xτ =
d∏
i=1

P ′yix
riy−1

i =
d∏
i=1

P ′xri = P ′xn.

Since n is prime to p, P ′xn = P ′ if and only if P ′x = P ′, i.e., x ∈ P ′, so that if

x ∈ P \ P ′ then x /∈ ker τ . In particular, ker τ < P , so that Op(G) < G.

(b) By the previous part, Op(G) < G, and by the previous exercise, P ∩ Op(G) con-

trols fusion in P ∩ Op(G) with respect to G, so by induction Op(G) has a normal

p-complement K. Obviously K is a normal p-complement for G, completing the proof.
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4 Sheet 4

4.1. (a) Let γ be a 1-cocycle, and let S = {xγ(x) : x ∈ G}. If xγ(x) and yγ(y) are elements

of S, then

(xγ(x))(yγ(y)) = xyγ(x)yγ(y) = xyγ(xy) ∈ S.

Hence S is closed under products, so since S is finite, it is a subgroup of X. If g ∈ S∩M ,

then g = xγ(x), and as γ(x) ∈ M , x ∈ M , so is 1. Thus S ∩M = 1. To prove that

S is a complement to M , we must show that the map x 7→ xγ(x) is an injection. If

xγ(x) = yγ(y), then since x, y ∈ G and γ(x), γ(y) ∈ M , and X = GM , we must have

that x = y, so that x 7→ xγ(x) is an injection.

(b) Let H be a complement to M in X. Since G is a complement to M in X, every

element h of H may be written as h = xv, for x ∈ G and v ∈ M . Set v = γ(x). We

claim this is a 1-cocycle: clearly H = {xγ(x) : x ∈ G}, so this will complete the proof.

Let x, y ∈ G, and let h = xγ(x) and k = yγ(y), so that h, k ∈ H. We have hk =

xγ(x)yγ(y), and so

hk = xγ(x)yγ(y) = xyγ(x)yγ(y).

However, since hk ∈ H, we have that hk = (xy)γ(xy), and so

γ(xy) = γ(x)yγ(y)

in X, and written additively in M this is the 1-cocycle identity.

(c) Let g ∈ X be such that H = Kg, and write g = hv, for v ∈ M and k ∈ K. (We

can do this since X = KV .) As Kk = K, Kg = Kv, and this completes the proof.

4.2. (a) The sum of two 1-cocycles is a 1-cocycle because

(γ+δ)(xy) = γ(xy)+δ(xy) = γ(x) ·y+δ(x) ·y+γ(y)+δ(y) = (γ+δ)(x) ·y+(γ+δ)(y).

It is clearly commutative, and associativity is induced from the associativity of M .

The identity is the zero 1-cocycle γ(x) = 0, and inverses are γ(x) = −x.

(b) Firstly we must show that every 1-coboundary is a 1-cocycle: let γ(x) = v − v · x
for some v ∈M . We have

γ(xy) = v−v ·(xy) = v−(v ·x) ·y+v ·y−v ·y = (v−v ·x) ·y+v−v ·y = γ(x) ·y+γ(y).

Secondly, we must show that the sum of two 1-coboundaries is a 1-coboundary: if

γ(x) = v − v · x and δ(x) = w − w · x are two 1-coboundaries then

(γ + δ)(x) = γ(x) + δ(x) = v − v · x+ w − w · x = (v + w)− (v + w) · x.
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This completes the proof.

4.3. Define σ ∈ M by σ =
∑

x∈G γ(x). Let |G| = n and |M | = m. Summing the 1-cocycle

identity for all g ∈ G we get

σ = σ · y + nγ(y).

Hence we see that σ − σ · y = nγ(y). Since n and m are coprime, there exist integers

a and b such that am+ bn = 1. Let v = bσ ∈M . We have

v − v · y = bnγ(y) = γ(y)

(since bn = 1−am = 1 modulo m = |M |). Hence γ is a 1-coboundary, and H1(G,M) =

0.

4.4. Let γ and δ be associated to the complements H and K respectively.

If γ(x)− δ(x) = v − v · x for some v ∈ M , we claim that H = Kv. To see this, notice

that, in X, v − v · x = vx−1v−1x, and so

γ(x) = vx−1v−1xδ(x).

From this we get that vxv−1γ(x) = xδ(x). However, γ(x) ∈ M , so that γ(x) = γ(x)v,

and so we see that

xv
−1

γ(x)v
−1

= xδ(x),

which implies xγ(x) = (xδ(x))v. As H is the set of all xγ(x) and K is the set of all

xδ(x), we get the result.

Conversely, if H = Kv for some v ∈M (by Exercise 4.1(c) we may assume this), then

xγ(x) = h = kv = (xδ(x))v,

for each x ∈ G, and reversing the argument above we get γ(x)δ(x)−1 = vx−1v−1x;

written additively in M ,

γ(x)− δ(x) = v − v · x,

as claimed.

4.5. (a) Let X = GoA. Let p | |G| and let P be a Sylow p-subgroup of G (hence of X). By

the Frattini argument, X = GNX(P ). Also, NG(P ) = G∩NX(P ) is a normal subgroup

of NX(P ), and |NX(P ) : NG(P )| | |X : G| is prime to |G|, so by the Schur–Zassenhaus

theorem there exists a complement L to NG(P ) in NX(P ). Hence

X = GNX(P ) = GNG(P )L = GL,
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so that L is a complement to G in X. By the Schur–Zassenhaus theorem again, Lx = A

for some x ∈ X, and so A normalizes P x, since L normalizes P . This proves the claim.

(b) Let Q be a maximal A-invariant p-subgroup. If Q is not a Sylow p-subgroup

of G, then Q is contained in a (not A-invariant) Sylow p-subgroup P of G, hence

NP (Q) > Q. In particular, this proves that Q is not a Sylow p-subgroup of NG(Q),

which is A-invariant since Q is. However, by the previous part there is an A-invariant

Sylow p-subgroup R of NG(Q), which contains Q since Q P NG(Q). Hence Q is not

a maximal A-invariant p-subgroup, and this contradiction proves that Q is a Sylow

p-subgroup of G, as needed.

(c) Let P and Q be A-invariant Sylow p-subgroups. There exists g ∈ G such that

P g = Q. Since A,Ag 6 CX(Q), we see that both A and Ag are complements to

CX(Q)∩G = CG(Q) in CX(Q). Hence, by the Schur–Zassenhaus theorem, there exists

x ∈ CX(A) such that Agx = A. In fact, by Exercise 4.1(c), we may choose x ∈ CG(A),

so that gx ∈ G. As G P X, [gx,A] 6 G, but since gx normalizes A, [gx,A] 6 A, so

that [gx,A] 6 A ∩ G = 1. Hence gx centralizes A. Also, since x ∈ CG(Q), P xg = Q,

so that CG(A) acts transitively on the A-invariant Sylow p-subgroups of G.

5 Sheet 5

5.1. The group Q8 is a non-split extension of C4 by C2, with the correct conjugation action;

hence H2(G,M) 6= 0. In D8, there are two non-central conjugacy classes of elements

of order 2, and so H1(G,M) 6= 0.

5.2. Clearly the element ( 1 1
0 1 ) has order p, and hence forms a Sylow p-subgroup of GL2(p),

since the order of GL2(p) is p(p+ 1)(p− 1)2.

Since |GL2(p) : SL2(p)| = p − 1, any Sylow p-subgroup P of SL2(p) is a Sylow p-

subgroup of GL2(p). Since SL2(p) is normal in GL2(p), all Sylow p-subgroups of GL2(p)

are contained in SL2(p). Let P denote the upper unitriangular matrices. Notice that

every upper triangular matrix normalizes P , and hence NSL2(p)(P ) has order at least

p(p − 1). There are at least p + 1 Sylow p-subgroups of SL2(p), and so by the fact

that | SL2(p)| = p(p+ 1)(p− 1), we see that the normalizer has order exactly p(p− 1)

and there are exactly p+ 1 Sylow p-subgroups. In particular, all Sylow p-subgroups of

SL2(p) are Sylow p-subgroups of G.

We aim to show that SL2(p) 6 G, so we may intersect G with SL2(p), and assume that

G is a subgroup of SL2(p). Hence the above argument proves that |G| > p(p+ 1), and
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so G has index at most p − 1 in SL2(p). Let φ be the homomorphism from SL2(p) to

Sp−1 given by acting on the cosets of G. Since p - |Sp−1|, we see that all p + 1 Sylow

p-subgroups of SL2(p) lie inside kerφ. Hence | kerφ| > p(p+ 1).

Since p > 5, PSL2(p) is simple, and so the composition factors of SL2(p) are PSL2(p)

and C2. As kerφ P G and has order at least p(p + 1), either kerφ = G or kerφ has

index 2 (as PSL2(p) is a composition factor of kerφ). Since SL2(p) is perfect, it has no

subgroups of index 2: as SL2(p) = kerφ 6 G, we get the result.

5.3. Consider the map ρ : G → Sym(p), given by acting on the cosets of H. Since

|Sym(p)| = p · (p − 1)!, and |G| = p · n, where all prime divisors of n are at least

p, we see that im ρ has order p. Hence the core of H in G, the kernel of ρ, must have

index p, so equals H. Thus H P G.

5.4. i) In general, if cx denotes conjugation by x ∈ H and φ ∈ Aut(H), then φ−1cxφ = cxφ.

To see this, simply calculate for h ∈ H:

h(φ−1cxφ) = (x−1(hφ−1)x)φ = (x−1φ)(hφ−1φ)(xφ) = (xφ)−1h(xφ).

Since Hφ = H, we see that Inn(H)φ = Inn(H), as required.

ii) The map θNK(H)→ Aut(H) given by θ : k 7→ ck is a homomorphism, with kernel

CK(H) and image AutK(H), which proves the result.

iii) Apply the previous part to H = K, noting that CH(H) = Z (H).

iv) The image of (H ∩ K) CK(H) under θ is the set Inn(H) ∩ AutK(H), and so

NK(H)/(H ∩K) CK(H) is naturally isomorphic to AutK(H)/(Inn(H) ∩ AutK(H)) ∼=
AutK(H) Inn(H)/ Inn(H) = OutK(H).

v) As Z (G) = 1, G ∼= Inn(G), and so G may be embedded naturally in Aut(G).

vi) Let G = A4. This group is generated by (1, 2, 3) and (1, 2)(3, 4). The first

element has eight possible images under an automorphism, and the second has three,

so that |Aut(A4)| 6 24. However, |S4| = 24, so this proves that Aut(A4) = S4, since

S4 6 Aut(A4) clearly.

Now let G = A5. A subgroup of index 5 has order 12, so cannot be a transitive

subgroup of A4; hence all subgroups of order 12 in A5 are isomorphic with A4 and are

point stabilizers. There are five of these, so |Aut(A5)| = 5 · |Aut(A4)| = 5 · |S4| = |S5|.
As clearly Aut(A5) contains S5, we are done.
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5.5. i) Since A 6 P and A 6 P g−1
, Ag = A, and so CG(A)g = CG(A). As A is extremal

in P with respect to G, NP (A) is a Sylow p-subgroup of NG(A), so that (as CG(A) P
NG(A)) CP (A) = CG(A) ∩ NP (A) is a Sylow p-subgroup of CG(A).

Since CP (A) is a Sylow p-subgroup of CG(A), CP (A)g
−1

and CP (A) are CG(A)-conjugate.

Thus there exists x ∈ CG(A) such that CP (A)x = CP (A)g
−1

. Therefore

(ACP (A))xg = Axg CP (A)xg = ACP (A).

However, by the definition of a domestic intersection, we must have ACP (A) = A, so

that CP (A) 6 A; hence CP (A) = Z (A).

Finally, using Burnside’s normal p-complement theorem, since Z (A) is a Sylow p-

subgroup of CG(A), and is clearly in the centre of CG(A), we have that CG(A) has

a normal p-complement K = Op′(CG(A)). As Z (A) is central, it is also a normal

subgroupp, so we have a direct product.

ii) Since A is a tame intersection, R = NP (A) and S = NP g−1 (A) are Sylow p-

subgroups of NG(A), so that A is the intersection of two Sylow p-subgroups of NG(A).

Hence Op(NG(A)) = A. Taking images under the natural surjective map NG(A) →
AutG(A), we see that Op(AutG(A)) = Inn(A), as needed.

5.6. Suppose that G has a strongly p-embedded subgroup, M , containing a Sylow p-

subgroup P . Let g be an element of G \ M , and consider P g. We claim that P g

and P lie in different components of Ap(G). Since M ∩M g is a p′-group, we see that

P ∩ P g = 1. Suppose that Q = Q0, Q1, . . . , Qn = Qg is a path of minimal length

linking Q 6 P and Qg 6 P g, as we range over all subgroups of P and all paths. Since

Q 6 P and Q ∩ Q1 6= 1, we must have that Q1 is contained within P , contradicting

the minimal length claim. Thus P and P g lie in different components, as claimed.

Now suppose that Ap(G) is disconnected, and let P be a Sylow p-subgroup of G. Since

Ap(G) is disconnected, this splits Sylp(G) into (at least two) components (else all p-

subgroups, which are contained in Sylow p-subgroups, would be connected to each

other), and let S denote the subset of Sylp(G) lying in the same component as P . Let

M denote the set of all g ∈ G such that P g ∈ S. The claim is that M is a strongly

p-embedded subgroup of G. Firstly, M is clearly a subgroup, and contains a Sylow

p-subgroup of G. Furthermore, if g /∈ M , then for any (non-trivial) p-subgroup Q of

M , we have that Q and Qg are not connected in Ap(G), so certainly Q∩Qg = 1. Hence

M ∩M g is a p′-group, as required.
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5.7. Since CG(A) = Z (A)×Op′(CG(A)), CP (A) 6 A. Hence, as A is extremal, NP (A)/A ∼=
OutP (A) is a Sylow subgroup of OutG(A). Since OutG(A) has a strongly p-embedded

subgroup, there are two Sylow p-subgroups of it, which we may take to be OutP (A)

and another S, which lie in different connected components of Ap(OutG(A)). Taking

preimages in NG(A), we see that there exists g ∈ NG(A) such that NP (A)∩NP (A)g
−1

=

A. This proves that A is a tame intersection.

Now assume that x ∈ CG(A), and write x = ab, where a ∈ Z (A) and b ∈ Op′(CG(A)).

Write X = P ∩ P (xg)−1
> A, and suppose that X > A. Set Y = NX(A), and notice

that A < Y . As A P Y , we have that Y 6 NP (A), and since Y 6 P (xg)−1
we see

that Y 6 NP (xg)−1 (A). However, taking images in AutG(A), we see that OutY (A) 6

OutP (A) ∩ S = 1. Thus AutY (A) 6 Inn(A) and Y is a p-subgroup of ACG(A), so

contained in A, a contradiction.

6 Sheet 6

6.1. (i) Exercise 2.4 yields the identity [xy, z] = [x, z][x, z, y][y, z]. If x, y ∈ Li(G) and

z ∈ G then [xy, z], [y, z] and [x, z] lie in Li+1(G) and [x, z, y] ∈ Li+2(G). Hence,

Li+2(G)[xy, z] = Li+2(G)[x, z][y, z], which is the requirement for being linear in the

first variable. Being linear in the second variable follows similarly, using the identity

[x, yz] = [x, z][x, y][x, y, z] and the fact that the Xi are abelian groups.

(ii) Suppose that, for 1 6 j 6 i, the subgroup Lj(G) is generated by the finite set

Sj modulo Lj+1(G). The group Li+1(G) is generated by elements of the form [a, x],

where x ∈ G and a ∈ Li(G). By (i), modulo Li+2(G), we may write this as aproduct

of commutators [b, y], where b ∈ Sj and y ∈ S1, so that Xi+1 is generated by at most

|Sj| · |S1| elements, a finite number.

(iii) Since Xi is an abelian group, it suffices to show that a generating set for Xi

consists of elements of order dividing n. By (ii), these have the form (the images in

Xi of) [a, x], where x lies in S1 and a lies in Si−1, each of which has order dividing

n modulo lower terms in the central series. Since (a, x) 7→ [a, x] is bilinear, [a, x]n =

[an, x] = [1, x] = 1 modulo Li+1(G), and so Xi has exponent dividing n.

(iv) A finitely generated abelian group of finite exponent is finite. Hence, if the

exponent of G/G′ is finite, and G is finitely generated, then each Xi is finite, so G is

finite. Otherwise, G/G′ is infinite and finitely generated, so has a quotient isomorphic

to Z, as required.
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6.2. (i) By the focal subgroup theorem, P ∩ G′ is generated by all elements of the form

x−1xg, where x ∈ P and g ∈ G are such that xg ∈ P . By Burnside’s theorem, since P

is abelian, we may assume that g ∈ NG(P ), and so P ∩G′ is generated by all elements

of the form [x, g] for x ∈ P and g ∈ NG(P ). Hence P ∩G′ = [P,N ], as claimed.

(ii) Let θ : P → P be the identity, and let τ : G → P be the transfer. By the

focal subgroup theorem, ker τ ∩ P contains P ∩ G′ = [P,N ]. If x ∈ CP (N) then x

is centralized by all elements of the normalizer NG(P ), which controls fusion in P by

Burnside’s theorem. Hence {x} = P ∩ xG; i.e., x is the only G-conjugate of itself that

lies in P .

In the modified version of the transfer, in Proposition 1.20, xτ is a product of n

conjugates of x, each of which lies in P , where n = |G : P |. Hence xτ = x|G:P | 6= 1 as

|G : P | is prime to p. Thus CP (N)∩ker τ = 1, so that CP (N)∩ [P,N ] = 1. Since both

are clearly normal subgroups of P , it remains to show that every element of P may be

expressed as a product of an element from CP (N) and an element from [P,N ].

Let x be a non-trivial element of P , with n conjugates in NG(P ). Since P is abelian,

|CN(x)| has p′-index, so p - n. If g1, . . . , gn are elements of NG(P ) such that the xgi

are the various conjugates of x, then for each i,

x = xgi (xgi)−1 x = xgi [gi, x].

Write m for an integer such that mn ≡ 1 mod p, and taking the product over all i we

get

x = xnm =

(
n∏
i=1

xgi

)m

·

(
n∏
i=1

[gi, x]

)m

.

The first term, since it is the product of all N -conjugates of x, lies in CP (N), and the

second term clearly lies in [N,P ], completing the proof.

6.3. (i) Let X = NG(Q) and S = NP (Q), a Sylow p-subgroup of X. Let Y = Op′(X),

which is generated by p-elements; hence S ∈ Sylp(Y ). By the Frattini argument,

X = Y NX(S). If g ∈ NG(Q) lies in NX(S) then it normalizes S = NP (Q), so that

NP (Q)g = NP (Q). This proves that every element of NG(Q) is expressible as a product

of p-elements of NG(Q), and an element that normalizes a subgroup of P of strictly

larger order.

(ii) Let Si be an element of F . If Si is extremal then (i) proves the statement.

If Si is not extremal then there is an extremal subgroup T such that T g = Si and

NP (T )g = NP (Si) by Exercise 2.10. As NG(T )g = NG(Si), and the result holds for
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NG(T ), we may pass the decomposition in (i) for any element of NG(T ) through the

conjugation by g.

6.4. It suffices to show this when F ′ is obtained from F by altering a single G-conjugacy

class. Let Q be the G-conjugacy class so altered, and let Q be a subgroup in Q lying

in F ′. If we show that R
g−→R with respect to F ′ for all R ∈ Q and g ∈ NG(R), then

F ′ is a conjugation family: we have only removed elements of Q from F , so in any

expression of g ∈ G as a product of xi ∈ NG(Si), if Si ∈ F then we may replace them

with the sequence obtained above proving that Si
xi−→Si with respect to F ′.

It suffices therefore to prove that R
g−→R with respect to F ′ for all R ∈ Q and

g ∈ NG(R). Since F and F ′ coincide on subgroups of P of smaller index than |P : Q|,
and there exists h ∈ G such that Rh = Q, we must have by assumption R

h−→Q with

respect to F , and hence R
h−→Q with respect to F ′, for some choice of h ∈ G with

Rh = Q. Notice that x = h−1gh ∈ NG(Q), so Q
x−→Q with respect to F ′ as Q ∈ F ′.

Hence

R
h−→Q

h−1gh−→ Q
h−1

−→R,

and so R
g−→R, as neeed.

6.5. (i) Notice that if either NormG(Q)/Q contains a strongly p-embedded subgroup, or

X < NG(Q), then Op(NG(Q)) = Q, so we may assume this.

Consider X ∩Xg−1
for some g ∈ NG(Q) \X. If S is a p-subgroup of this intersection

containing Q and contained in NP (Q) (a Sylow p-subgroup of X), then S 6 X and

S 6 Xg−1
, so that S and Sg are p-subgroups of NP (Q) strictly containing Q. Hence

by Alperin’s fusion theorem, applied to NG(Q)/Q and NP (Q)/Q, we may write Qg,

and hence g, as a product of elements that normalize subgroups of NP (Q) strictly

containing Q. However, each of these lies in X, so that g ∈ X.

Consider X ∩ Xg−1
for some g ∈ NG(Q). Let S be a Sylow p-subgroup of this inter-

section, and choose S to be contained in NP (Q); note that Q 6 S 6 NP (Q). Since

S 6 X and S 6 Xg−1
, we have that S and Sg are p-subgroups of NP (Q) containing Q.

Hence by Alperin’s fusion theorem, applied to NG(Q) and NP (Q), we may write g as

a product of elements that normalize subgroups of NP (Q) containing S.

If S > Q then the elements g each lie in X, so that g ∈ X. Hence g ∈ NG(Q)\X if and

only if X ∩ Xg−1
has Q as a Sylow p-subgroup, i.e., X ∩ Xg−1

/Q is a p′-group. This

is equivalent to saying that X < NG(Q) if and only if X/Q is a strongly p-embedded

subgroup of NG(Q)/Q, as claimed.
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(ii) Let g ∈ NG(Q) be an element such that X∩Xg−1
/Q is a p′-group. Since NP (Q) 6

X, this implies that NP (Q)∩NP (Q)g
−1

= Q. If P ∩P g−1
> Q, then there is a subgroup

of P ∩P g−1
strictly containing Q in which Q is normal, which contradicts the fact that

NP (Q) ∩ NP (Q)g
−1

= Q. Hence Q = P ∩ P g−1
. By assumption Q = Qg is extremal in

P with respect to G, and so P ∩ P g−1
is a tame intersection, by Lemma 3.2.

(iii) As in the previous question, we must show that, for g ∈ NG(Q), Q
g−→Q with

respect to F ′. However, as g ∈ X, we may write g as a product x1x2 . . . xn of elements

of G that normalize subgroups R1, . . . , Rn of P of strictly smaller index in P than

|P : Q|. Since F is a conjugation family, Ri
xi−→Ri with respect to F for all i, and

since F ′ differs from F only in the exclusion of Q, we have that Ri
xi−→Ri with respect

to F ′ for all i; hence Q
g−→Q with respect to F ′, as needed.

(iv) The set of all subgroups of P is a conjugation family, by Alperin’s fusion theorem,

and we may remove all those subgroups Q of P for which NG(Q)/Q does not have a

strongly p-embedded subgroup, by (iii). Finally, by the previous question, we may take

any representatives of the remaining G-conjugacy classes, completing the proof of one

direction.

Conversely, let Q be a subgroup of P such that NG(Q)/Q has a strongly p-embedded

subgroup, and let F consist of all subgroups of P that are not G-conjugate to Q.

We will show that F is not a conjugation family, which will complete the proof. Let

g ∈ NG(Q) \ X, and suppose that Q
g−→Q with respect to F . In this case, we have

that g = x1x2 . . . xn, with xi ∈ NG(Ri), and since no G-conjugate of Q lies in F ,

|P : Ri| < |P : Q|. Write Qi = Qx1...xi , and write Qi = Qhi for 1 6 i 6 n − 1. Let

h0 = hn = 1, so that Qi = Qhi in all cases.

Notice that Qxi
i−1 = Qi, so that yi = hi−1xih

−1
i maps Q to Qi−1 to Qi to Q; hence

yi ∈ NG(Q). Also,

g = x1x2 . . . xn = (h0x1h
−1
1 )(h1x2h

−1
2 ) . . . (hn−1xnh

−1
n ) = y1 . . . yn.

Hence if each yi lies in X, g lies in X, a contradiction.

Writing Si = R
h−1
i
i , we see that as Ri normalizes Qi and strictly contains it, Si nor-

malizes Q and strictly contains it. Hence Q < Si 6 NG(Q); finally, Syii−1 = Si, so

by Alperin’s fusion theorem yi can be expressed as a product of elements of NG(Q)

normalizing strictly larger subgroups of NP (Q) than Q, so lie in X. Hence yi ∈ X, and

g ∈ X, a contradiction.
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6.6. (i) Let P be generated by two elements a and b of order 2. The subgroups of D2n are

cyclic 2-groups, dihedral 2-groups of order at least 8, and Klein four subgroups. There

are two conjugacy classes of subgroups of P isomorphic with V4, with representatives Q

and R. By Alperin’s fusion theorem, the possibilities for the fusion in P are determined

by whether one of Q and R, both, or neither, have automorphisms of odd order.

(ii) If neither has an automorphism of odd order then ∅ is a conjugation family for G,

so that G has a normal p-complement by Frobenius’s normal p-complement theorem.

Hence G/Ap(G) is Klein four. Suppose that Q has an automorphism of odd order,

but not R. By the focal subgroup theorem, P ∩ G′ is generated by [x, g], for g ∈ G
and x ∈ P , with xg ∈ P . If g ∈ G induces an automorphism of order 3 on Q, then

[x, g] ranges over the elements of Q as x ranges over the elements of Q. Hence the

focal subgroup is generated by P ′ and Q, which is a subgroup of index 2 in P , so that

G/Ap(G) has order 2.

The final case is where Q and R both have an automorphism of order 3, in which case

the focal subgroup is generated by P ′, Q and R, which is P itself. This implies that

P ∩G′ = P , so that G = O2(G) by the focal subgroup theorem.

(iii) In this case, all involutions in Q are G-conjugate, as are all involutions in R, and

so all involutions in P are G-conjugate. As all Sylow 2-subgroups of G are conjugate,

and every involution lies in some Sylow 2-subgroup, this implies that all involutions of

G are conjugate.

6.7. (i) The isomorphism is, if ψ ∈ Aut(H), φ∗ : ψ 7→ φ−1ψφ. This is clearly a bijection,

and it is a homomorphism because

(ψ1φ
∗)(ψ2φ

∗) = φ−1ψ1φφ
−1ψ2φ = φ−1ψ1ψ2φ = (ψ1ψ2)φ∗.

(ii) As g−1Hg = H, applying φ we get (gφ)−1(Hφ)(gφ) = (Hφ), so that gφ normalizes

Hφ. Also,

h(cgφ
∗) = (hg)φ = (hφ)gφ = (hφ)cgφ,

as needed.

(iii) Apply (ii) to all g ∈ NK(H).

6.8. As above, for g ∈ N , we have that cgψ
∗ = cgψ ∈ AutP (B), and cgψ

∗ = cgφ
∗, so that in

order for ψ to exist, it must map AutN(A) into AutP (B).
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