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1 Introduction

It is the purpose of these notes to provide a brief introduction to fusion in
finite groups and to study how local and global properties are connected by the
transfer map. It is not the purpose of these notes to provide an encyclopedic
or the most economical treatment. There is more emphasis on explaining some
basic ideas to the beginner. For example, we do not prove Alperin’s Fusion
Theorem but we do prove a simpler result which illustrates the ideas and which
will prepare the reader for a thorough study of Alperin’s Theorem. Also a
number of topics about which every group theorist should have some familiarity,
for example Op′(G); Op(G); commutators; and fundamental properties of p-
groups are discussed. These notes culminate in a proof of the classical normal
p-complement theorem of Frobenius.

Numerous exercises have been included. To the seasoned group theorist they
are all trivial but the beginner may find many of them impossible. There is of
course only one way to get from the first state to the second! Moreover, the
reader will benefit from thinking about the questions even if he/she cannot solve
them.

2 Transfer

Throughout this section we assume the following:

• G is a finite group.

• H is a subgroup of G.

• φ : H −→ A is a homomorphism with A an abelian group.

We want to use φ to construct a homomorphism φ∗ : G −→ A. This is remi-
niscent of the concept of induced representation in Representation Theory. We
set

Ω = G/H

and regard Ω as a G-set, with respect to the usual action

(Hx, g) 7→ Hxg.

2.1 Definition A transversal map for H is a map t : Ω −→ H with the
property

tα ∈ α

for all α ∈ Ω. Equivalently, α = Htα.

Of course there are many possibilities for t. But if t′ : Ω −→ G is another
transversal map then there exists a map h : Ω −→ H such that

t′α = hαtα

for all α ∈ Ω. Because t′α ∈ α = Htα.
Let x ∈ G and α ∈ Ω. Then

αx = Htαx and αx = Htαx.
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Thus
(tαx)(tαx)−1 ∈ H.

Roughly speaking: it would be nice if tαx = tαx. But usually it is not. There is
a discrepancy, which lies in H. Multiplying together these discrepancies enables
us to construct an element of A that depends only on x.

2.2 Definition The transfer map φ∗ : G −→ A corresponding to φ is
defined by

xφ∗ =
∏

α∈Ω

[
tαx(tαx)−1

]
φ.

The product is well defined because A is abelian.

2.3 Lemma φ∗ does not depend on the choice of transversal map Ω −→ G.

Proof Indeed, suppose t, t′ : Ω −→ G are transversal maps. Then there exists
a map h : Ω −→ H such that

t′α = hαtα

for all α ∈ Ω. Let x ∈ G. Then
∏

α∈Ω

[
t′αx(t′αx)−1

]
φ =

∏

α∈Ω

[
hαtαx(hαxtαx)−1

]
φ

=
∏

α∈Ω

[
hαtαx(tαx)−1h−1

αx

]
φ

=

{ ∏

α∈Ω

hαφ

} { ∏

α∈Ω

[
tαx(tαx)−1

]
φ

}{ ∏

α∈Ω

hαxφ

}−1

=
∏

α∈Ω

[
tαx(tαx)−1

]
φ.

The last equality because the map α 7→ αx is a permutation of Ω and because
Imφ is abelian.

2.4 Lemma φ∗ is a homomorphism.

Proof Let x, y ∈ G. Then

(xy)φ∗ =
∏

α∈Ω

[
tαxy(tαxy)−1

]
φ

=
∏

α∈Ω

[
tαx(tαx)−1tαxy(tαxy)−1

]
φ

=
∏

α∈Ω

[
tαx(tαx)−1

]
φ

∏

α∈Ω

[
tαxy(tαxy)−1

]
φ

= (xφ∗)(yφ∗).

Again, the last equality because the map α 7→ αx is a permutation of Ω.
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In many instances, φ∗ is trivial even if φ is nontrivial. For example, let G
be a nonabelian simple group, p a prime divisor of |G| and P ∈ Sylp(G). Let
φ : P −→ P/P ′ be the natural epimorphism. Then φ∗ is the trivial map because
G has no nontrivial abelian homomorphic images.

The following lemma enables us to calculate φ∗ and, in certain circumstances,
show that φ∗ is nontrivial.

2.5 Lemma Let x ∈ G and let n1, . . . , nr be the sizes of the cycles of x on Ω,
so that

∑
ni = |G : H|. Then there exist g1, . . . , gr ∈ G such that (xni)gi ∈ H

for all i, and

xφ∗ =
r∏

i=1

[(xni)gi ]φ.

Proof The cycle decomposition of x acting on Ω looks like

(α10α11 · · ·α1n1−1)(α20α21 · · ·α1n2−1) · · · (αr0αr1 · · ·αrnr−1).

For each i, choose ti ∈ αi0. For each αij define

tαij = tix
j ∈ αij .

Thus the map αij 7→ tαij is a transversal map Ω −→ G. By Lemma 2.3 we may
use it to calculate xφ∗. We have

xφ∗ =
r∏

i=1

ni−1∏

j=0

[
tαij x(tαijx)−1

]
φ.

Let 1 ≤ i ≤ r. If 0 ≤ j < ni − 1 then

tαij x = tix
jx = tix

j+1 = tαi j+1 = tαijx.

Thus
tαij x(tαijx)−1 = 1.

On the other hand, if j = ni − 1 then

tαij x(tαijx)−1 = tix
ni−1x(tαio)

−1 = tix
nit−1

i .

Note that the left hand side, and hence the right hand side, is contained in H.
We have

xφ∗ =
r∏

i=1

[
tix

nit−1
i

]
φ.

Putting gi = t−1
i completes the proof.
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3 Normal p-Complements

Throughout this section we assume the following:

• G is a finite group.

• p is a prime.

Recall that a group is a p′-group if it has order coprime to p. Similarly an
element of a group is a p′-element if it has order coprime to p.

3.1 Lemma Any two normal p′-subgroups of G generate a normal p′-subgroup.

Proof Exercise.

The above result implies that the subgroup generated by all the normal p′-
subgroups is itself a normal p′-subgroup. In other words, G possess a unique
maximal normal p′-subgroup.

3.2 Definition The largest normal p′-subgroup of G is denoted by

Op′(G).

3.3 Definition A normal p-complement in G is a normal subgroup K of G
such that, for some P ∈ Sylp(G),

G = PK and P ∩K = 1.

3.4 Remarks
(i) We have G = P1K and P1 ∩K = 1 for all P1 ∈ Sylp(G). This is because

P1 is conjugate to P and K E G.

(ii) K is a p′-group because |G| = |P ||K|.
(iii) Every element of G can be written uniquely in the form ab with a ∈ P

and b ∈ K.

3.5 Lemma The following are equivalent:

(a) G has a normal p-complement.

(b) G possesses a normal p′-subgroup whose index is a power of p.

(c) There exists P ∈ Sylp(G) and an epimorphism θ : G −→ P .

(d) The product of any two p′-elements of G is a p′-element.

(e) Every p′-element is contained in Op′(G).

Moreover, assume all of the above are satisfied. Then Op′(G) is equal to: in (a)
the normal p-complement; in (b) the normal p′-subgroup; in (c) ker θ; and in
(d) the subgroup generated by all the p′-elements of G.
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Proof (a) =⇒ (b). Let K be a normal p′-complement and P ∈ Sylp(G).
Then G = PK and P ∩K = 1 so |G| = |P ||K|. We have |G : K| = |P |. Hence
(b) holds.

(b) =⇒ (c). Let θ : G −→ G/K be the natural epimorphism. By the Second
Isomorphism Theorem we have

G/K = PK/K ∼= P/P ∩K ∼= P,

so (c) holds.

(c) =⇒ (d). Let K = ker θ. By the First Isomorphism Theorem,

G/K ∼= Im θ = P

so |G| = |P ||K|. Now P ∈ Sylp(G) so K is a p′-group. Suppose x ∈ G is a
p′-element. Then xθ is a p′-element. On the other hand, P is a p-group so xθ
is a p-element. This forces xθ = 1, so x ∈ ker θ = K. Thus K contains every
p′-element of G. Since K is a p′-group, (d) holds.

(d) =⇒ (e). Let x ∈ G be a p′-element. It follows by induction on n that if
y1, . . . , yn are conjugates of x then y1 · · · yn is a p′-element. Thus the subgroup
generated by the conjugates of x is a p′-group. This subgroup is also normal.
Hence it is contained in Op′(G). Then x ∈ Op′(G) and (e) holds.

(e) =⇒ (a). Write |G| = pαqβ1
1 · · · qβr

r with p, q1, . . . qr distinct primes. For
each i choose Qi ∈ Sylqi

(G). Then Qi ≤ Op′(G) and hence qβi

i divides |Op′(G)|.
It follows that

|Op′(G)| = qβ1
1 · · · qβr

r .

Let P ∈ Sylp(G). Then P ∩ Op′(G) = 1 and |POp′(G)| = |P ||Op′(G)| = |G| so
POp′(G) = G. Thus Op′(G) is a normal p-complement and (a) holds.

The remaining assertion is left as an exercise.

Our objective is to establish nontrivial conditions for a group to have a
normal p-complement. This will require the use of transfer as developed in the
previous section. First we require two simple lemmas.

3.6 Lemma Let P ∈ Sylp(G) and suppose that P is abelian. Then any two
elements of P that are conjugate in G are already conjugate in NG(P ).

Proof Let x, y ∈ P and suppose that x and y are conjugate in G. Then y = xg

for some g ∈ G. Now P ≤ CG(x) because x ∈ P and P is abelian. Then

P g ≤ (CG(x))g = CG(xg) = CG(y).

Also P ≤ CG(y) because y ∈ P and P is abelian. More is true: P g and P are
both Sylow p-subgroups of CG(y). By Sylow’s Theorem,

P gc = P

for some c ∈ CG(y). Then gc ∈ NG(P ) and xgc = yc = y.
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3.7 Lemma Suppose that P is a finite group and that n is a natural number
coprime to |P |. Then the map P −→ P defined by x 7→ xn is a bijection.

Proof Since P is finite, it suffices to prove that the map is surjective. By the
Euclidean Algorithm there exist α, β ∈ Z such that

1 = α|P |+ βn.

Let y ∈ P . Then
y = yα|P |yβn =

(
yβ

)n

and we are done.

3.8 Burnside’s Normal p-Complement Theorem Let P ∈ Sylp(G) and
suppose that

P ≤ Z(NG(P )).

Then G has a normal p-complement.

Proof Note that P is abelian because it is in the centre of NG(P ). Let
φ : P −→ P be the identity map and let φ∗ : G −→ P be the transfer map
corresponding to φ. We will use Lemmas 2.5, 3.6 and 3.7 to show that φ∗ is an
epimorphism. The conclusion will then follow from Lemma 3.5.

Let n = |G : P | and suppose x ∈ P . Lemma 2.5 implies there exists n1, . . . , nr ∈
N and g1, . . . , gr ∈ G such that n =

∑
ni, (xni)gi ∈ P and

xφ∗ =
r∏

i=1

(xni)gi .

For each i, x ∈ P so xni , (xni)gi ∈ P . Lemma 3.6 implies that xni and (xni)gi

are conjugate in NG(P ). Now xni ∈ Z(NG(P )) so xni = (xni)gi . Then

xφ∗ =
r∏

i=1

xni

= x
∑

ni

= xn.

Since n = |G : P | and P ∈ Sylp(G) it follows that n is coprime to |P |. Now
apply the previous lemma.

Next we will obtain some applications of Burnside’s Theorem. Recall that if
A and B are subgroups of G then G ∼= A×B if and only if A,B EG,A∩B = 1
and G = 〈A,B 〉.

3.9 Corollary Suppose that a Sylow p-subgroup P of G is contained in the
centre of G. Then

G ∼= P ×Op′(G).
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Proof Since P ≤ Z(G) we have P ≤ Z(NG(P )). Burnside’s Normal p-
Complement Theorem implies that G = POp′(G). Now Op′(G) E G by defini-
tion, and P E G because P ≤ Z(G). Also P ∩Op′(G) = 1 and we are done.

3.10 Lemma Suppose that P is a subgroup of G. Then:

(a) NG(P )/CG(P ) is isomorphic to a subgroup of Aut(P ).

(b) If P is abelian and a Sylow p-subgroup of G then NG(P )/CG(P ) is iso-
morphic to a p′-subgroup of Aut(P ).

Proof For each g ∈ NG(P ) define θg : P −→ P by

xθg = xg.

Then θg ∈ Aut(P ). The map ρ : NG(P ) −→ Aut(P ) defined by gρ = θg is a
homomorphism whose kernel is CG(P ). This proves (a).

Assume the hypotheses of (b). Then P ≤ CG(P ) and as P ∈ Sylp(G) it follows
that P ∈ Sylp(NG(P )) and then that NG(P )/CG(P ) is a p′-group.

3.11 Lemma Suppose that P is a finite cyclic group. Then Aut(P ) is abelian
with order φ(|P |).
Proof Exercise. Note that here, φ is the Euler φ-function.

3.12 Theorem Suppose that p is the smallest prime divisor of |G| and that a
Sylow p-subgroup of G is cyclic. Then G has a normal p-complement.

Proof Let |P | = pn, so that

|Aut(P )| = φ(pn)

= pn−1(p− 1).

By Lemma 3.10, NG(P )/CG(P ) is isomorphic to a p′-subgroup of Aut(P ). Thus
NG(P )/CG(P ) has order dividing p − 1. On the other hand, p is the smallest
prime divisor of |G| so p − 1 is coprime to |G| and hence to |NG(P )/CG(P )|.
We deduce that NG(P )/CG(P ) = 1, that NG(P ) = CG(P ) and then that
P ≤ Z(NG(P )). Apply Burnside’s Normal p-Complement Theorem.

3.13 Corollary Suppose that G is a nonabelian simple group and that p is the
smallest prime divisor of |G|. Then the Sylow p-subgroups of G are noncyclic.

The following result will be stated without proof.

Odd Order Theorem (W. Feit, J.G. Thompson 1962) Every finite group
of odd order is soluble.
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The Odd Order Theorem is easily seen to be equivalent to the assertion that
every nonabelian simple group has even order. The reader will benefit from
studying the proof of the Odd Order Theorem.

3.14 Corollary Every nonabelian simple group has order divisible by 4.

4 Fusion and abelian p-factor groups

Throughout this section we assume the following:

• G is a finite group.

• p is a prime.

We have used transfer to produce abelian homomorphic images of G. To do
this, we needed to know about the conjugacy of elements in a Sylow subgroup
of G. In this section, we shall explore these ideas in greater detail.

4.1 Lemma Suppose that A and B are normal subgroups of G. Then:

(a) If G/A and G/B are p-groups then so is G/A∩B. In particular, amongst
the normal subgroups of G whose quotient is a p-group, there is a unique
smallest one.

(b) If G/A and G/B are abelian then so is G/A ∩ B. In particular, amongst
the normal subgroups of G whose quotient is abelian, there is a unique
smallest one.

(c) If G/A and G/B are abelian p-groups then so is G/A ∩ B. In particular,
amongst the normal subgroups of G whose quotient is an abelian p-group,
there is a unique smallest one.

Proof Exercise.

4.2 Definition The smallest normal subgroup of G whose quotient is a p-group
is denoted by

Op(G).

The symbol Op(G) is pronounced “O upper p G”. We often think of G/Op(G)
as being the largest p-factor group of G.

4.3 Lemma The following hold:

(a) Op(G) is the subgroup of G generated by the p′-elements of G.

(b) Op(G) = 〈 Sylq(G) | q ∈ π(G)− { p } 〉.
(c) Write |G| = pαn with p - n. Then

Op(G) = 〈 gpα | g ∈ G 〉.

(d) Op(G) is a characteristic subgroup of G.
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(e) If K ≤ G then Op(K) ≤ Op(G).

(f) If P ∈ Sylp(G) then G = POp(G).

(g) Op(Op(G)) = Op(G).

Proof Exercise.

The normal subgroup in (b) of Lemma 4.1 is of course the derived group G′.
We are most interested in (c).

4.4 Lemma The smallest normal subgroup of G whose quotient is an abelian
p-group is

G′Op(G).

Proof Exercise.

We often think of G/G′Op(G) as being the largest abelian p-factor group of G.
Our aim is to study the relation between the largest abelian p-factor group of
G and that of certain subgroups of G.

4.5 Lemma Let H ≤ G and suppose that H contains a Sylow p-subgroup of
G. Then G/G′Op(G) is a homomorphic image of H/H ′Op(H).

Proof Let P be a Sylow p-subgroup of G that is contained in H. Now
G = POp(G) so G = H(Op(G)G′). Thus the map θ : H −→ G/G′Op(G)
defined by h 7→ hOp(G)G′ is an epimorphism. Since Im θ is an abelian p-group
we have H ′Op(H) ≤ ker θ. Thus θ induces an epimorphism H/H ′Op(H) −→
G/G′Op(G).

In order to obtain stronger conclusions we must consider fusion.

4.6 Definition Suppose P ≤ H ≤ G. Then

H controls fusion in P with respect to G

if whenever two elements of P are conjugate in G then they are already conjugate
in H.

This definition may be rephrased as follows: whenever x, g ∈ G satisfy x, xg ∈ P
then g = ch for some c ∈ CG(x) and h ∈ H.

4.7 Example Let P ∈ Sylp(G) and suppose that P is abelian. Lemma 3.6
implies that NG(P ) controls fusion in P with respect to G.

4.8 Lemma Let H ≤ G. Suppose that H contains a Sylow p-subgroup of P of
G and that H controls fusion in P with respect to G. Then any two p-elements
of H that are conjugate in G are already conjugate in H.

Proof Exercise.

We recall the following:
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4.9 Lemma Suppose φ : A −→ B is an epimorphism and that P ∈ Sylp(A).
Then:

(a) Pφ ∈ Sylp(B) and P ∩ kerφ ∈ Sylp(kerφ).

(b) If B is a p-group then Pφ = Im φ.

Proof Exercise.

Finally we are able to prove the main result of this section.

4.10 Theorem Let H ≤ G. Suppose that H contains a Sylow p-subgroup P
of G and that H controls fusion in P with respect to G. Then

G/G′Op(G) ∼= H/H ′Op(H).

Proof Let φ : H −→ H/H ′Op(H) be the natural epimorphism, let φ∗ : G −→
H/H ′Op(H) be the transfer map corresponding to φ and let n = |G : H|.
Let x ∈ P . Lemma 2.5 implies there exist g1, . . . , gr ∈ G and n1, . . . , nr ∈ N
such that n =

∑
ni, (xni)gi ∈ H and

xφ∗ =
r∏

i=1

[(xni)gi ]φ.

For each i, xni is a p-element of H and (xni)gi ∈ H. By Lemma 4.8 we may
suppose that gi ∈ H. Then

[(xni)gi ] φ = (xni)φ(giφ) = (xni)φ

because Im φ is abelian. Hence

xφ∗ =
r∏

i=1

(xφ)ni = (xφ)
∑

ni = (xφ)n.

Now H contains a Sylow p-subgroup of G so n is coprime to p. Lemma 3.7
implies that the map y 7→ yn is a bijection Pφ −→ Pφ. We deduce that

Pφ∗ = Pφ.

Lemma 4.9 implies that Pφ = H/H ′Op(H). Thus φ∗ is an epimorphism. Now
Imφ∗ is an abelian p-group so G′Op(G) ≤ kerφ∗. Lemma 4.5 implies that
|G : G′Op(G)| ≤ |H : H ′Op(H)|. It follows that kerφ∗ = G′Op(G) and then
that G/G′Op(G) ∼= H/H ′Op(H).
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5 Frobenius’ Normal p-Complement Theorem

• G is a finite group.

• p is a prime.

We have studied the following ideas:

• Normal p-complements.

• Fusion.

• Abelian p-factor groups.

We have a good understanding of how these ideas are related when the Sylow
p-subgroups of G are abelian. The following theorem summarizes what we know
in this case.

5.1 Theorem Let P ∈ Sylp(G) and suppose that P is abelian. Set N =
NG(P ). Then the following hold:

(a) N controls fusion in P with respect to G.

(b) G/G′Op(G) ∼= N/N ′Op(N), that is, N controls abelian p-factor groups.

(c) G has a normal p-complement if and only if N has a normal p-complement.
That is, N controls normal p-complements in G.

Proof (a). This is Lemma 3.6.

(b). Apply (a) and Theorem 4.10.

(c). It is an exercise for the reader to show that if G has a normal p-complement
then so does every subgroup of G. This proves one implication.

Now suppose that N has a normal p-complement. We have

[P, Op′(N)] ≤ P ∩Op′(N) because P and Op′(N)
are normal in N

≤ 1 because P and Op′(N)
have coprime orders

Thus Op′(N) centralizes P . Since P is abelian and N = POp′(N) we see that
P ≤ Z(N). Apply Burnside’s Normal p-Complement Theorem.

The above result is not valid without the hypothesis that P is abelian. In this
section we will begin to explore what can be said in general.

5.2 Definition • A p-local subgroup of G is the normalizer or centralizer
of a nonidentity p-subgroup of G.

• A local property of G is a statement about certain local subgroups of
G.

• A global property of G is a statement asserting the existence of a normal
subgroup or quotient of G with a specific property.
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5.3 Examples
(i) If p ∈ π(G) and P ∈ Sylp(G) then NG(P ) is a p-local subgroup. If z is an

involution of G then CG(z) is a 2-local subgroup.

(ii) The statement “every 2-local subgroup of G is a 3′-group” is a local prop-
erty of G.

(iii) The statements “G has a nontrivial abelian p-factor group” and “G has a
normal p-complement” are examples of global properties of G.

Theorem 5.1 asserts that if P ∈ Sylp(G) is abelian then the single p-local
subgroup NG(P ) controls various global properties of G. The link between
global and local properties being provided by the transfer map. It turns out
that provided we consider the collection of all p-local subgroups of G then it is
possible to obtain analogues of Theorem 5.1 which hold without the restriction
that P is abelian.

We begin by considering how local subgroups influence fusion. A definitive
result is Alperin’s Fusion Theorem. This asserts that, in a well defined sense,
fusion is determined by fusion in local subgroups. We will not prove Alperin’s
Theorem. However we will prove a simpler result which illustrates the ideas.

The following definition is nonstandard and is made only for the purposes
of exposition.

5.4 Definition Let H be a group. Then p-fusion in H is simply controlled
if for some, and hence any, P ∈ Sylp(H) it is the case that NH(P ) controls fusion
in P with respect to H.

There is a simple interpretation of this definition in terms of group actions. First
note that if x ∈ G and x ∈ S ∈ Sylp(G) then x ∈ Sc for all c ∈ CG(x). Thus
CG(x) acts by conjugation on the set of Sylow p-subgroups of G that contain x.

5.5 Lemma Let P ∈ Sylp(G). The following are equivalent.

(a) p-fusion in G is simply controlled.

(b) For all x ∈ P , CG(x) acts transitively on the set of Sylow p-subgroups of
G that contain x.

Proof Exercise.

The following is a well known an fundamental property of p-groups. Note
that we use Q < P to mean Q is a proper subgroup of P .

5.6 Lemma Suppose that Q < P where P is a p-group. Then

Q < NP (Q).
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5.7 Theorem Suppose that p-fusion in every p-local subgroup of G is simply
controlled. Then p-fusion in G is simply controlled.

Proof Let P ∈ Sylp(G), let x ∈ P# and let Ω be the set of Sylow p-subgroups
of G that contain x. We prove by induction on |P |/|Q ∩ R| that if Q,R ∈ Ω
then Q and R are in the same CG(x)-orbit. Note that |P |/|Q∩R| is an integer
because |P | = |Q| = |R|.
If |P |/|Q ∩ R| = 1 then Q = R and there is nothing to prove. Hence we may
suppose that |Q ∩ R| < |P | and that whenever Q0, R0 ∈ Ω satisfy |Q ∩ R| <
|Q0 ∩R0| then Q0 and R0 are in the same CG(x)-orbit. Set

N = NG(Q ∩R).

Since |Q| = |R| we have Q ∩R < Q so Lemma 5.6 implies

Q ∩R < NQ(Q ∩R).

Choose Q1 ∈ Sylp(N) with NQ(Q ∩ R) ≤ Q1 and choose Q∗
1 ∈ Sylp(G) with

Q1 ≤ Q∗1. Then
x ∈ Q ∩R < NQ(Q ∩R) ≤ Q ∩Q∗1.

The inductive assumption implies that Q and Q∗1 are in the same CG(x)-orbit.

Similarly choose R1 ∈ Sylp(N) and R∗1 ∈ Sylp(G) with NR(Q ∩R) ≤ R1 ≤ R∗1.
Again, R and R∗1 are in the same CG(x)-orbit.

By hypothesis, p-fusion in N is simply controlled so Lemma 5.5 implies that
Qc

1 = R1 for some c ∈ CN (x). We have

x ∈ Q ∩R < R1 = Qc
1 ≤ R∗1 ∩Q∗c1

so it follows that R∗1 and Q∗c
1 are in the same CG(x)-orbit.

We have shown that consecutive members of the sequence

Q, Q∗
1, Q

∗c
1 , R∗1, R

are in the same CG(x)-orbit. It follows that Q and R are in the same CG(x)-orbit
and then by induction that CG(x) is transitive on Ω. Now apply Lemma 5.5.

5.8 Remark The idea used in the proof, reverse induction on the cardinality
of an intersection, is used frequently in Group Theory.

We will need another fundamental property of p-groups. Recall first that of
A and B are subgroups of G then by definition,

[A,B] = 〈 [a, b] | a ∈ A, b ∈ B 〉

and that [A,B] E 〈A, B 〉.
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5.9 Lemma Suppose that P is a p-group and that 1 6= Q E P . Then

[Q,P ] < Q.

Proof Choose T maximal subject to

T < Q and T E P.

Note that T exists because 1 < Q and 1 E P . Set P = P/T and use the bar
convention for homomorphic images. Then 1 6= Q E P and the maximal choice
of T implies that 1 and Q are the only normal subgroups of P that are contained
in Q.

Since P is a p-group we have Z(P ) ∩ Q 6= 1. Now Z(P ) ∩ Q E P whence
Q ≤ Z(P ). Then 1 = [Q, P ] = [Q, P ] and so

[Q, P ] ≤ T < Q.

The following theorem of Frobenius does two things. Firstly it shows that:

The global property of having a normal p-complement is determined
locally.

Secondly it answers the following natural question:

What can be said if a Sylow p-subgroup of G controls fusion in itself
with respect to G?

5.10 Frobenius’ Normal p-Complement Theorem Let P ∈ Sylp(G). The
following are equivalent.

(a) G has a normal p-complement.

(b) Every p-local subgroup of G has a normal p-complement.

(c) P controls fusion in P with respect to G. In other words, any two elements
of P that are conjugate in G are already conjugate in P .

Proof (a) =⇒ (b). As previously noted, the property of having a normal
p-complement is inherited by subgroups.

(b) =⇒ (c). Let H be a p-local subgroup of G and choose S ∈ Sylp(H). We
claim that any two elements of S that are conjugate in H are already conjugate
in S. Indeed, suppose x, h ∈ H satisfy x, xh ∈ S. Now H has a normal p-
complement so

H = SOp′(H).

Hence h = st for some s ∈ S and t ∈ Op′(H). Note that x, s ∈ S so xs ∈ S.
Then

[xs, t] = (xs)−1(xs)t

= (xs)−1xh

∈ S ∩Op′(H) = 1.

14



Thus xh = xst = xs and the claim is proven.

We have shown that p-fusion in every p-local subgroup is simply controlled.
Theorem 5.7 implies that p-fusion in G is simply controlled. Thus any two
elements of P that are conjugate in G are already conjugate in NG(P ). Then
the claim implies that they are conjugate in P so (c) holds.

(c) =⇒ (a). We may suppose that P 6= 1. The obvious approach is to apply
Theorem 4.10 with H = P . Since P/P ′ 6= 1 it follows that G has a proper
normal subgroup K with G/K an abelian p-group. Then we would attempt
to argue by induction that K has a normal p-complement. A simple argument
would then imply that G has a normal p-complement. Unfortunately there are
difficulties in the inductive step. A more subtle approach is required.

Assume, for a contradiction, that G does not have a normal p-complement. Set

K = Op(G) and Q = P ∩K ∈ Sylp(K).

Since G = PK it follows that K is not a p′-group. Thus Q 6= 1.

Lemma 5.9 implies that [Q, P ] is a proper normal subgroup of Q. Since Q′ ≤
[Q, P ], the quotient Q/[Q,P ] is abelian. Let φ : Q −→ Q/[Q, P ] be the natural
epimorphism and let

φ∗ : K −→ Q/[Q,P ]

be the transfer map corresponding to φ. Note that we have defined φ∗ on K
and not on G.

Next we calculate φ∗, following closely the argument on the proof of Theo-
rem 4.10. Set n = |K : Q| and let x ∈ Q. Lemma 2.5 implies there exist
k1, . . . , kr ∈ K and n1, . . . , nr ∈ N such that n =

∑
ni, (xni)ki ∈ Q and

xφ∗ =
r∏

i=1

[
(xni)ki

]
φ.

Let 1 ≤ i ≤ r. Set y = xni . Now y, yki ∈ Q ≤ P so by hypothesis there exists
l ∈ P such that yki = yl. Then

yl = yy−1yl = y[y, l].

Since [y, l] ∈ [Q,P ] = ker φ we have (yki)φ = (yl)φ = yφ. Then
[
(xni)ki

]
φ =

(xni)φ and
xφ∗ = (xφ)

∑
ni = (xφ)n.

Now Q ∈ Sylp(K) so n is prime to p. Lemma 3.7 implies that the map z 7→ zn

is a bijection Q/[Q,P ] −→ Q/[Q,P ]. Thus if we choose x ∈ Q with x 6∈ [Q,P ]
then xφ∗ 6= 1. In particular, K has a nontrivial homomorphic image that is a
p-group. Then K 6= Op(K). But Op(K) = Op(Op(G)) = Op(G) = K. This
contradiction completes the proof.
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6 Exercises

As usual, we assume that G is a finite group and that p is a prime.

1 Prove Lemma 3.1.

2 (a) Show that Op′(G/Op′(G)) = 1.

(b) Show that Op′(G) is a characteristic subgroup of G.

(c) Show that if K E G then Op′(K) ≤ Op′(G).

(d) Suppose that θ : G −→ H is an epimorphism. Prove that Op′(G)θ ≤
Op′(H). Prove also that if ker θ is a p′-group then Op′(G)θ = Op′(H).

(e) Show that the conclusions of (d) do not hold without the assumption
that ker θ is a p′-group.

3 Complete the proof of Lemma 3.5.

4 Suppose that G has a normal p-complement. Show that every subgroup
and every quotient of G has a normal p-complement.

5 Show that any of the following imply that G has a normal p-complement.

(a) G = H ×K where H and K have normal p-complements.

(b) G possesses a normal p′-subgroup K such that G/K has a normal
p-complement.

(c) For some subgroup Z ≤ Z(G), G/Z has a normal p-complement.

Show that the hypothesis that K is a p′-group is needed in (b).

6 Let P ∈ Sylp(G). Suppose that X and Y are normal subgroups of P and
that X and Y are conjugate in G. Prove that X and Y are conjugate in
NG(P ).

7 Find at least three examples of the following: A group G, a prime p,
P ∈ Sylp(G) and x, y ∈ P such that x and y are conjugate in G but not
in NG(P ). At least two of the examples should be simple.

8 Prove Lemma 3.11.

9 Suppose that V is an elementary abelian group of order pn. So every
nonidentity element has order p. Show that V may be regarded as a
GF (p)-vectorspace and that

Aut(V ) ∼= GL(V ) ∼= GLn(p).

10 (a) Suppose that G is a nonabelian simple group of even order. Prove
that |G| has order divisible by 12 or 8.

(b) Suppose that G is a minimal counterexample to the Odd Order The-
orem. Let p be the smallest prime factor of |G|. Prove that |G| is
divisible by p3.

11 Prove Lemma 4.1.
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12 Prove Lemma 4.3.

13 Prove Lemma 4.4

14 A subgroup P of G is a trivial intersection subgroup, abbreviated to
TI-subgroup, if

for all g ∈ G, P ∩ P g 6= 1 =⇒ P = P g.

Let P ∈ Sylp(G) and suppose that P is a TI-subgroup. Prove that NG(P )
controls fusion in P with respect to G.

15 Prove Lemma 4.8.

16 Prove Lemma 4.9.

17 Prove Lemma 5.5.

18 Let n ∈ N, q = pn and G = SL2(q). Thus G is the group of all 2 × 2
matrices with entries from GF (q) and determinant 1. Let

P =
{(

1 λ
0 1

)
| λ ∈ GF (q)

}
.

(a) Show that P ∈ Sylp(G), that P ∼=
(
GF (q), +

)
and that P is a TI-

subgroup in G.

(b) Write down another Sylow p-subgroup of G.

(c) How many Sylow p-subgroups does G possess?

(d) Let
V = { (α, β) | α, β ∈ GF (q) } ,

so V is a 2-dimensional GF (q)-vectorspace on which G acts as a
group of linear transformations. What is the stabilizer of a vector?
What is the stabilizer of a 1-dimensional subspace?

Hint: (d) may help with the previous parts.

19 Let P ∈ Sylp(G) and W ≤ P . Then W is weakly closed in P with
respect to G if the only conjugate of W contained in P is W itself.

(a) Suppose that K EG and W = P ∩K. Prove that W is weakly closed
in P with respect to G.

(b) Suppose that G = GL3(2), the simple group of order 168, and that
P ∈ Syl2(G). Then P ∼= D8. Exhibit a proper subgroup of P that is
weakly closed in P with respect to G.

(c) Suppose that W ≤ Z(P ) and that W is weakly closed in P with
respect to G. Prove that NG(W ) controls fusion in P with respect
to G.
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20 (a) Let P ∈ Sylp(G),W ≤ P and G = G/Op′(G). Prove that W is
weakly closed in P with respect to G if and only if W is weakly
closed in P with respect to G.

(b) Suppose that G is soluble, p ∈ π(G) and P ∈ Sylp(G). Show that P
possesses an abelian normal subgroup W 6= 1 that is weakly closed
in P with respect to G. Deduce that NG(W ) controls fusion on P
with respect to G.
Hint: show that a minimal normal subgroup of G/Op′(G) is an
abelian p-group and apply (a).

21 Let n ∈ N, q = pn and set G = SL3(q).

(a) Write down a Sylow p-subgroup of G and calculate its centre.

(b) Show that Z(P ) is not weakly closed in P with respect to G.

(c) Show that G does not possess a p-local subgroup H that controls
fusion in P with respect to G.

22 (a) Suppose that a, b and c are elements of G. Recall that the commu-
tator [a, b] is defined by [a, b] = a−1b−1ab. Prove that the following
identities:

[a, bc] = [a, c][a, b]c

[ab, c] = [a, c]b[b, c].

(b) If A and B are subgroups of G then [A,B] is defined by

[A,B] = 〈 [a, b] | a ∈ A, b ∈ B 〉.

Prove that [A, B] E 〈A,B 〉.
Hint: use (a).

23 Prove that G has a normal p-complement if and only if NG(Q)/CG(Q) is
a p-group for every nontrivial p-subgroup Q of G.
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