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These notes are intended to supply an introduction to the local theory of saturated
fusion systems. By the “local theory of fusion systems” I mean an extension of some part
of the local theory of finite groups to the setting of saturated fusion systems on finite
p-groups.

One can ask: Why deal with saturated fusion systems rather than p-local finite groups?
There are two reasons for this choice. First, as far as I know, it is not yet known whether
to each saturated fusion system there is associated a unique p-local finite group. Thus
it remains possible that the class of saturated fusion systems is larger than the class
of p-local finite groups. But more important, to date there is no accepted notion of a
morphism of p-local finite groups, and hence no category of p-local groups. The local
theory of finite groups is inextricably tied to the notion of group homomorphism and
factor group, so to extend the local theory of finite groups to a different category, we
must at the least be dealing with an actual category.

The first four sections of these notes record various basic definitions, notation, and
notions from the theory of saturated fusion systems. Most of this material is taken from
[BLO], and some of it was first written down by Puig. In addition in section 4 we record
the deeper result of [BCGLO1] that if F is saturated and constrained on S, then the set
G(F) of models of F is nonempty. Here G ∈ G(F) if G is a finite group with S ∈ Sylp(G),
CG(Op(G)) ≤ Op(G), and F = FS(G). This fact is the basis for much of the local theory
of fusion systems, and allows us to translate suitable statements from the local theory of
groups into the setting of fusion systems.

In Exercise 2.4, we see that if α : F → F̃ is a morphism of fusion systems, then
the kernel ker(α) of the group homomorphism α : S → S̃ is strongly closed in S with
respect to F . In section 5, we see how to construct a factor system F/T of F over a
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strongly closed subgroup T of F . Moreover when F is saturated, we see that there is
a surjective homomorphism Θ : F → F/T , and a bijection T 7→ F/T between strongly
closed subgroups T of S and the set of isomorphism classes of homomorphic images of
F .

Proceeding by analogy with the situation for groups, we would like to show there
exists a “normal subsystem” E of F on T which is saturated, and hence realize F as an
“extension” of E by F/E = F/T . Unfortunately such a subsystem need not exist, but it
is still possible to develop a theory of “normal subsystems” of saturated fusion systems
which is fairly satisfactory. This theory is discussed in sections 6 and 7, where a few
examples are also introduced to indicate some of the places the theory diverges from the
corresponding theory for groups.

In order to work with the notion of “normal subsystem”, we need effective conditions
to verify when a subsystem of F on T is normal, and to produce normal subsystems.
Moreover in most situations, these conditions should be local; that is we should be able
to check them in local subsystems, and indeed even in constrained local subsystems.
In section 8 we record some such conditions from [A1]. Then in section 9 we record
some of the theorems about normal subsystems from [A2] which can be proved using
the conditions. In particular we define the generalized Fitting subsystem F ∗(F) of F ,
and the notion of a simple system. Of course F is simple if it has no nontrivial normal
subsystems.

In section 9 we define the notion of a composition series for saturated fusion systems,
and state a Jordon-Holder Theorem for such systems, which is proved in a preliminary
manuscript. For example this makes possible the definition of a solvable system F : All
composition factors are of the form FR(R) for R a group of order p.

The last few sections begin the investigation of the composition factors of systems
FS(G), where G is a finite simple group and S ∈ Sylp(G). Often such systems are
simple, but not always. Occasionally FS(G) may even have an exotic composition factor
which is not obtainable from a finite group.

The last section records some open problems which may be of interest.

Section 1. Notation and terminology on groups

My convention will be to write many functions (particularly functions which may be
composed, like group homomorphisms) on the right.

I adopt the notation and terminology in [FGT] when discussing groups. For example
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let G be a group and x, y ∈ G. Then xy = y−1xy is the conjugate of x under y, and

cy : G→ G

x 7→ xy

is conjugation by y. Of course cy ∈ Aut(G) is an automorphism of G. For X ⊆ G, write
Xy for the conjugate Xcy of X under y, and set XG = {Xy : y ∈ G}, the conjugacy
class of X in G.

For H,K ≤ G, CK(H), NK(H) denote the centralizer, normalizer in K or H, respec-
tively, and these notions are defined in section 1 of [FGT]. Set AutG(H) = {cg : H →
H : g ∈ NG(H)}, and call AutG(H) the automizer of H in G. Thus AutG(H) ≤ Aut(H)
is the group of automorphisms of H induced in G via conjugation.

Let K ≤ H ≤ G. We say K is strongly closed in H with respect to G if for all k ∈ K,
kG ∩H ⊆ K.

Recall Z(G) is the center of G, and for p a prime and G finite, Sylp(G) is the set of
Sylow p-subgroups of G and Op(G) is the largest normal p-subgroup of G.

See section 8 of [FGT] for the definition of the commutator notation, [x, y], [X,Y ], for
x, y ∈ G, X,Y ⊆ G, and discussion of these notions.

See section 31 in [FGT] for the definition of quasisimple groups and the generalized
Fitting subgroup F ∗(G) of a finite group G, and discussion of these notions.

Our notation for the finite simple groups is defined in section 47 of [FGT], and there
is a much deeper discussion of the simple groups in [GLS3].

Notation 1.1. Suppose C is a category and α : A → B is an isomorphism in C.
Set AutC(A) = homC(A,A) the group of automorphisms of A in C. Write α∗ for the
isomorphism α : AutC(A) → AutC(B) defined by α∗ : β 7→ α−1βα.

Section 2. Fusion systems

Definition 2.1. Let S be a group. A fusion category on S is a category F whose objects
are some set of subgroups of S, and such that for objects P,Q in F , the set homF (P,Q)
of F-morphisms from P to Q is a set of injective group homomorphisms from P into Q.
A fusion system on S is a fusion category F on S such that:

(0) The objects of F are all subgroups of S, and
(1) for each s ∈ S with P s ≤ Q, cs : P → Q is in homF (P,Q), and
(2) for each φ ∈ homF (P,Q), φ : P → Pφ is in homF (P, Pφ), and
(3) if φ ∈ homF (P,Q) is an isomorphism, then φ−1 ∈ homF (Q,P ).
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Usually S will be a finite p-group for some prime p.

Example 2.2. Let G be a group and S ≤ G. Write FS(G) for the category whose
objects are the subgroups of S, and for objects P,Q in FS(G),

homFS(G)(P,Q) = {cg : P → Q : g ∈ G with P g ≤ Q}.

Then FS(G) is a fusion system on S.

In the remainder of the section assume F is a fusion system on S. Write P ∈ F to
indicate that P is an object in F ; that is P is a subgroup of S.

Notation 2.3. Given P ∈ F , set

PF = {Pφ : Q ∈ F and φ ∈ homF (P,Q)},

and (as in 1.1) AutF (P ) = homF (P, P ). Thus AutF (P ) ≤ Aut(P ).

(2.4) Let P,Q ∈ F , and R ≤ P . Then

(1) The inclusion map ιR,P from R into P is in F .

(2) For φ ∈ homF (P,Q), the restriction φ|R : R→ Q is in homF (R,Q).

Proof. By 2.1.1, c1 : R → P is in homF (R,P ). Hence as c1 : R → P is ιR,P , (1) holds.
For φ ∈ homF (P,Q), ιR,Pφ ∈ homF (R,Q), and ιR,Pφ = φ|R, so (2) holds.

Definition 2.5. Assume S is a finite p-group. Define P ≤ S to be fully centralized,
fully normalized if for all Q ∈ PF , |CS(P )| ≥ |CS(Q)|, |NS(P )| ≥ |NS(Q)|, respectively.
Write Ff for the set of fully normalized subgroups of S.

Definition 2.6. A fusion system F over a finite p-group S is saturated if:

(I) For all P ∈ Ff , P is fully centralized and AutS(P ) ∈ Sylp(AutF (P )).

(II) Whenever P ∈ F and φ ∈ homF (P, S) such that Pφ is fully centralized, then each
α ∈ Nφ extends to a member of homF (Nφ, S), where

Nφ = {g ∈ NS(P ) : c∗g ∈ AutS(Pφ)},

using the notation in 1.1.
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Example 2.7. Let G be a finite group, p a prime, and S ∈ Sylp(G). Then FS(G) is a
saturated fusion system on S. Moveover for P ≤ S, P is fully centralized iff CS(P ) ∈
Sylp(CG(P )), and P is fully normalized iff NS(P ) ∈ Sylp(NG(P )). See 1.3 in [BLO] for
a proof.

Definition 2.8. Let P ∈ F . Define CF (P ) to be the category whose objects are the
subgroups of CS(P ), and for objects U, V in CF (P ), homCS(P )(U, V ) consists of those
φ ∈ homF (U, V ) such that φ extends to φ̂ ∈ homF (PU,PV ) such that φ̂ = 1 on P . Call
CF (P ) the centralizer in F of P . Observe that CF (P ) is a fusion system.

Similarly define NF (P ) to be the category whose objects are the subgroups of NS(P ),
and for objects U, V in NF (P ), homNS(P )(U, V ) consists of those φ ∈ homF (U, V ) such
that φ extends to φ̂ ∈ homF (PU,PV ) such that φ̂ acts on P . Call NF (P ) the normalizer
in F of P . Observe that NF (P ) is a fusion system.

The subsystems CF (P ) and NF (P ) are local subsystems of F .

(2.9) Let F be a saturated fusion system on the finite p-group S, and P ∈ Ff . Then
CF (P ) and NF (P ) are saturated fusion systems on CS(P ) and NS(P ), respectively.

Proof. This is a consequence of Proposition A.6 in [BLO].

Definition 2.10. Define P ∈ F to be centric if for each Q ∈ PF , CS(Q) ≤ Q. Write
Fc for the set of centric subgroups of S.

Example 2.11. Let G be a finite group, p a prime, S ∈ Sylp(G), and F = FS(G).
Then P ≤ S is centric iff P contains each p-element in CG(P ). Equivalently, CG(P ) =
Z(P )×Op′(NG(P )).

(2.12) Assume P ∈ Fc. Then
(1) PF ⊆ Fc.
(2) If P ≤ Q ≤ S then Q ∈ Fc.
(3) If S is a finite p-group then P is fully centralized.

Proof. As P ∈ Fc, CS(Pφ) ≤ Pφ for each Q ∈ F and each φ ∈ homF (P,Q). Let R ∈ F
and µ ∈ homF (Pφ,R). Then φµ ∈ homF (P,R), so CS(Pφµ) ≤ Pφµ and hence (1)
holds.

Next for R ∈ F and η ∈ homF (Q,R), CS(Qη) ≤ CS(Pη) ≤ Pη ≤ Qη, so (2) holds.
Assume S is a finite p-group. By (1), CS(P ) = Z(P ) and CS(Pφ) = Z(Pφ), so

|CS(P )| = |Z(P )| = |Z(Pφ)| = |CS(Pφ)|, so (3) follows.
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Definition 2.13. Assume S is a finite p-group. Define P ∈ F to be radical ifOp(AutF (P )) =
Inn(P ). Write Fr for the set of radical subgroups of S, and for X ⊆ {f, c, r} set

FX =
⋂

x∈X

Fx.

Example 2.14. Let G be a finite group, p a prime, S ∈ Sylp(G), and F = FS(G). Then
P ≤ S is radical iff Op(NG(P )/PCG(P )) = 1.

Definition 2.15. A morphism α : F → F̃ of fusion systems from F to a system F̃ on
S̃, is a family (α, αP,Q : P,Q ∈ F) such that α : S → S̃ is a group homomorphism, and
αP,Q : homF (P,Q) → homF̃ (Pα,Qα) is a function, such that α = (P 7→ Pα, αP,Q :
P,Q ∈ F) is a functor from F to F̃ , and for all P,Q, φα = α(φαP,Q).

The kernel ker(α) of the morphism α is the kernel of the group homomorphism α :
S → S̃. Thus ker(α) is a normal subgroup of S.

The morphism α is surjective if α : S → S̃ is surjective, and for all P,Q ≤ S,
αP0,Q0 : homF (P0, Q0) → homF̃ (Pα,Qα) is surjective, where for X ≤ S, X0 is the
preimage in S of Xα under α.

Definition 2.16. A sub-fusion category, subsystem of F is a fusion category, fusion
system E on a subgroup T of S such that for all objects P,Q ∈ E , we have P,Q ∈ F and
homE(P,Q) ⊆ homF (P,Q).

Given a family (Fi : i ∈ I) of fusion categories Fi on subgroups Si of S, define the
fusion system on S generated by the family to be the fusion system on S obtained by
intersecting all fusion systems on S containing each Fi. Write

〈Fi : i ∈ I〉

for this subsystem.

Definition 2.17. Define T ≤ S to be strongly closed in S with respect to F , if for each
subgroup P of T , each Q ∈ F , and each φ ∈ homF (P,Q), Pφ ≤ T .

Exercises for Section 2

1. Assume G is a finite group, p is a prime, and S ∈ Sylp(G). Let K be a normal
p′-subgroup of G and Ḡ = G/K. Prove FS(G) ∼= FS̄(Ḡ).
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2. Assume G is a finite group, p is a prime, and S ∈ Sylp(G) is abelian. Let H =
NG(S) and H̄ = H/Op′(H). Prove FS(G) ∼= FS̄(H̄).

3. Assume G is a finite group, p is a prime, and S ∈ Sylp(G). Prove

(1) Let T ≤ S. Then T is strongly closed in S with respect to FS(G) iff T is strongly
closed in S with respect to G.

(2) Let H E G. Then H ∩ S is strongly closed in S with respect to FS(G).

4. Let α : F → F̃ be a morphism of fusion systems. Prove ker(α) is strongly closed
in S with respect to F .

Section 3. Saturated fusion systems

In this section we assume F is a saturated fusion system on a finite p-group S.

(3.1) Let P ≤ S. Then:

(1) If φ ∈ homF (P, S) with Pφ fully centralized then φ extends to ϕ ∈ homF (PCS(P ), S).

(2) If φ ∈ homF (P, S) with Pφ fully normalized then there exists χ ∈ AutF (P ) such
that χφ extends to a member of homF (NS(P ), S). In particular ϕ = χφ ∈ homF (P, S)
with Pϕ = Pφ and ϕ extends to a member of homF (NS(P ), S).

Proof. These are special cases of A.2.b in [BLO].

(3.2) (Alperin’s Fusion Theorem) Let P,Q ≤ S and φ ∈ homF (P,Q) and isomorphism.
Then there exist sequences P = P0, P1, . . . Pn = Q in F , U1, . . . , Un in Ffrc, and αi ∈
AutF (Ui), such that for each 1 ≤ i ≤ n, Pi−1 ≤ Ui, Pi−1αi = Pi, and φ = α1 · · ·αn.

Proof. See A.10 in [BLO]. Observe that (in the language of 2.16), Alperin’s Fusion The-
orem can be stated as: F = 〈AutF (U) : U ∈ Ffrc〉.

Definition 3.3. A subgroup R of S is normal in F if F = NF (R); that is for each
P ≤ S, each φ ∈ homF (P, S) extends to a member of homF (RP, S) which acts on R.
Write R E F to indicate that R is normal in F .

We say F is constrained if there exists a normal centric subgroup of F .

Example 3.4. Let G be a finite group, S ∈ Sylp(G), and F = FS(G). If R is a normal
p-subgroup of G, then by Exercise 3.1, R E F . Further if CG(Op(G)) ≤ Op(G), then
by Exercise 3.1, F is constrained.
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(3.5) If R ≤ S is normal in F then R E S.

Proof. By 2.1.1, for each s ∈ S and P ≤ R, cs : R→ S is in homF (R,S), so as R E F ,
Rs = Rcs ≤ R, and hence R = Rs.

(3.6) Let R ≤ S. Then the following are equivalent:

(1) R E F .

(2) R is strongly closed in S with respect to F , and R is contained in each member of
Ffrc.

Proof. This is Exercise 3.2.

(3.7) Let R ≤ S. Then the following are equivalent:

(1) R E F .

(2) There exists a series 1 = R0 ≤ R1 ≤ · · · ≤ Rn = R such that

(a) for each 1 ≤ i ≤ n, Ri is strongly closed in S with respect to F , and

(b) for each 0 ≤ i < n, [R,Ri+1] ≤ Ri.

Proof. We first show (2) implies (1). By 3.6, it suffices to show R is contained in each
member U of Ffrc. Choose i maximal subject to Ri ≤ U . We may assume i < n. Let
B = Ri+1 ∩ U , D = NRi+1(U), and φ ∈ AutF (U). As i < n, B < D. Now [U,D] ≤ B.
By (2b), D centralizes B/Ri and Rj+1/Rj for j < i. By (2a), AutF (U) acts on B and
Rk for each k ≤ i. Therefore D centralizes each factor in the AutF (U)-invariant series

1 = R0 ≤ · · · ≤ Ri ≤ B ≤ U,

soAutD(U) ≤ Op(AutF (U)). However U ∈ Fr, soOp(AutF (U)) = Inn(U), soAutD(U) ≤
Inn(U). Therefore D ≤ UCS(U). However as U ∈ Fc, CS(U) ≤ U , so D ≤ U , contra-
dicting B < D. This completes the proof that (2) implies (1).

Next assume (1) and let 1 = R0 ≤ · · · ≤ Rn = R be the ascending central series
for R. Then by construction, (2b) holds, so it remains to verify (2a). Let P ≤ Ri and
φ ∈ homF (P, S). By (1), φ extends to φ̂ ∈ AutF (R). Then as Ri is characteristic in R,
Pφ ≤ Riφ̂ = Ri, completing the proof.

Definition 3.8. By Exercise 3.3, there is a largest subgroup of S normal in F . Write
Op(F) for that subgroup.
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(3.9) (1) An abelian subgroup R of S is normal in F iff R is strongly closed in S with
respect to F .

(2) Op(F) 6= 1 iff there is a nontrivial abelian subgroup of S strongly closed in S with
respect to F .

Proof. Let R be an abelian subgroup of S. If R E F then R is strongly closed by 3.6.
Conversely if R is strongly closed then R E F by 3.7, since condition (2) of 3.7 holds
with respect to the series 1 = R0 ≤ R1 = R. Thus (1) is established.

If there is a nontrivial strongly closed abelian subgroup R, then R E F by (1), so
Op(F) 6= 1. Conversely if R = Op(F) 6= 1, then by 3.7 there is a series 1 = R0 ≤ · · · ≤
Rn = R satisfying 3.7.2, so R1 is a nontrivial strongly closed abelian subgroup. Therefore
(2) holds.

Exercises for Section 3

1. Let G be a finite group, S ∈ Sylp(G), and F = FS(G). Prove
(1) If R is a normal p-subgroup of G, then R E F .
(2) If CG(Op(G)) ≤ Op(G), then F is constrained.
2. Prove 3.6.
3. Assume F is a saturated fusion system on the finite p-group S. Prove:
(1) If R,Q E F then RQ E F .
(2) There is a largest subgroup of S normal in F .
4. Assume F is a saturated fusion system on the finite p-group S, and let R ≤ S.

Prove R E F iff for each P ≤ R and each φ ∈ homF (P, S), φ extends to a member of
AutF (R).

Section 4. Models for constrained saturated fusion systems

In this section we assume F is a saturated fusion system on a finite p-group S.

Definition 4.1. Write G(F) for the class of finite groups G such that S ∈ Sylp(G),
CG(Op(G)) ≤ Op(G), and F = FS(G). Call the members of F the models of F .

By Exercise 3.1.2, if G(F) 6= ∅ then F is constrained. The following lemma says the
converse is true, while Lemma 4.3 says all models for a constrained system are isomorphic
in a strong sense.
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(4.1) If F is constrained then G(F) 6= ∅.

Proof. This is Proposition C in [BCGLO1].

(4.2) Assume F is constrained, F̃ is a fusion system over S̃, and α : F → F̃ is an
isomorphism of fusion systems. Let G ∈ G(F) and G̃ ∈ G(F̃). Then

(1) The set E(α) of isomorphisms α̌ : G→ G̃ extending α : S → S̃ is nonempty.
(2) Let α̌ ∈ E(α). Then E(α) = {czα̌ : z ∈ Z(S)}, where cz ∈ Aut(G) is the

conjugation map.

Proof. See 2.5 in [A1].

(4.3) Assume F is constrained and let G1, G2 ∈ G(F). Then there exists an isomor-
phism ϕ : G1 → G2 which is the identity on S.

Proof. Apply 4.2.1 with F̃ = F , α the identity map on F , G = G1, and G̃ = G2.

Example 4.4. Let U ∈ Ff with CS(U) ≤ U , and set D = NF (U). By 2.9, D is a
saturated fusion system on D = NS(U). By Exercise 4.1, U ∈ Ffc. As D = NF (U),
U E D. Then as CD(U) = CS(U) ≤ U , D is constrained, so by 4.1 there exists
G = GF (U) ∈ G(D). Thus D ∼= FD(G). By 4.3, G is unique up to isomorphism.

Example 4.5. Assume T is strongly closed in S with respect to F and let U ≤ T with
U ∈ Ff and CT (U) ≤ U . Set V = UCS(U) and D = NF (V ). By Exercise 4.2, V ∈ Ff

with CS(V ) ≤ V , D ≤ NF (U), and D = NS(V ) ≤ NS(U). Hence applying Example 4.4
to V in the role of U , we conclude that D is a saturated constrained fusion system on D,
so there exist G = GF,T (U) ∈ G(D), and G is unique up to isomorphism.

Exercises for Section 4

1. Assume F is a saturated fusion system on the finite p-group F , and U ∈ Ff with
CS(U) ≤ U . Prove U ∈ Ffc.

2. Assume F is a saturated fusion system on the finite p-group F , and T is strongly
closed in S with respect to F . Assume U ≤ T with U ∈ Ff and CT (U) ≤ U . Set
V = UCS(U), and prove:

(1) U = T ∩ V E NF (V ).
(2) V ∈ Ff .
(3) CS(V ) ≤ V .
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Section 5. Factor systems and surjective morphisms

In this section F is a fusion system over the finite p-group S.

Definition 5.1. Assume T ≤ S is strongly closed in S with respect to F and set
N = NF (T ). We define a category F+ and a morphism θ : N → F+.

Set S+ = S/T and let θ : S → S+ be the natural map θ : x 7→ x+ = xT . The objects
of F+ are the subgroups of S+. For P ≤ S and α ∈ homN (P, S) define α+ : P+ → S+

by x+α+ = (xα)+. This is well defined as T is strongly closed in S with respect to F .
Now define

homF+(P+, S+) = {β+ : β ∈ homN (PT, S)},

and define θP : homN (P, S) → homF+(P+, S+) by αθP = α+. For α ∈ homN (P, S), α
extends to α̂ ∈ homN (PT, S) and α̂+ = α+, so θP is well defined and surjective.

(5.2) (1) F+ is a fusion system on the finite p-group S+.
(2) θ : N → F+ is a surjective morphism of fusion systems.

Proof. Observe x+ ∈ ker(α+) iff 1 = x+α+ = (xα)+ iff xα ∈ T iff x ∈ T iff x+ = 1. So
the members of homF+(P+, Q+) are monomorphisms.

Suppose α ∈ homN (P,Q) and β ∈ homN (Q,S). Then for x ∈ P ,

(x+α+)β+ = (xα)+β+ = ((xα)β)+ = (x(αβ))+ = x+(αβ)+,

so

(!) α+β+ = (αβ)+

By (!), F+ is a category and θ : F → F̃ is a functor.
For s ∈ S, cs+ : S+ → S+ is the map (cs)+, so condition (1) of 2.1 is satisfied.
If φ ∈ homF+(P+, Q+) then φ = α+ for some α ∈ homF (PT,QT ). By 2.1.2 ap-

plied to F , α : PT → (PT )α = PαT is in homF (PT, PαT ), so φ : P+ → P+φ

is in homF+(P+, P+φ), since P+φ = (PαT )+. Thus F+ satisfies condition (2) of
2.1. Suppose φ is an isomorphism. By 2.1.3 applied to α, α−1 ∈ homF (QT,PT ), so
φ−1 = (α−1)+ ∈ homF+(Q+, P+), completing the proof of (1).

Let φ ∈ homF (P,Q) and x ∈ P . Then

xφθ = (xφ)+ = x+φ+ = xθ(φθP,Q),

so from 2.15, θ : F → F+ is a morphism of fusion systems. We observed in 5.1 that θ is
surjective.
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Definition 5.3. Suppose T is strongly closed in S with respect to F . Then appealing to
5.2.1, we can form the fusion system F+ as in 5.1. We write F/T for this fusion system,
and call it the factor system of F modulo T . By 5.2.2, θ : N → F/T is a surjective
morphism of fusion systems, which we denote by θF/T .

(5.4) Assume α : F → F̃ is a surjective morphism of fusion systems and F is saturated.
Then F̃ is saturated.

Proof. See 8.5 in [A1].

(5.5) Assume F is saturated and T is strongly closed in S with respect to F . Then F/T
is saturated.

Proof. As T is strongly closed in S, T E S, so T ∈ Ff . Therefore N is saturated by
2.9. Therefore F/T is saturated by 5.2.2 and 5.4.

Example 5.6. Assume F = FS(G), H E G, and set T = S ∩H. Let M = NG(T ) and
M∗ = M/NH(T ). By Exercise 2.3.2, T is strongly closed in S. In 8.8 in [A1] is is shown
that:

(1) F/T ∼= FS∗(M∗).

(2) FS∗(M∗) ∼= FSH/H(G/H).

Thus F/T ∼= FSH/H(G/H).

In the remainder of the section, assume F is saturated and S0 is strongly closed in S
with respect to F .

Definition 5.7. For P,Q ≤ S define

Φ(P,Q) = {φ ∈ homF (P,Q) : [P, φ] ≤ S0},

where for x ∈ P , [x, φ] = x−1 · xφ ∈ S, and [P, φ] = 〈[x, φ] : x ∈ P 〉 ≤ S.

For α ∈ homF (P, S) define F(α) to be the set of pairs (ϕ, φ) such that ϕ ∈ homF (PS0, S),
φ ∈ Φ(Pϕ, S), and α = ϕφ.

Form N = NF (S0) and the factor system F+ = F/S0 on S+ = S/S0 and θ : N → F+

as in 5.1.
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(5.8) Let α ∈ homF (P, S), β ∈ homF (Pα, S), (ϕ, φ) ∈ F(α), and (Ψ, ψ) ∈ F(β). Then
(1) If Q,R ≤ S, µ ∈ Φ(P,Q), and η ∈ Φ(Q,R), then µη ∈ Φ(P,R).
(2) φΨ∗ ∈ Φ(PϕΨ, S).
(3) (ϕΨ, (φΨ∗)ψ) ∈ F(αβ).

Proof. Exercise 5.1.

Theorem 5.9. For each P ≤ S and α ∈ homF (P, S), F(α) 6= ∅.

Proof. This is contained in some unpublished notes.

(5.10) Let P ≤ S, α ∈ homF (P, S), and (ϕ, φ) ∈ F(α). Then
(1) ϕ ∈ homN (P, S) and ϕ+ ∈ homF+(P+, S+).
(2) For x ∈ P , (xα)+ = x+ϕ+.

Proof. As (ϕ, φ) ∈ F(α), ϕ ∈ N , so by definition of the +-notation, x+ϕ+ = (xϕ)+.
That is (1) holds. Further

(xα)+ = (xϕφ)+ = (xϕ · [xϕ, φ])+ = (xϕ)+[xϕ, φ]+ = (xϕ)+,

as φ ∈ Φ(Pϕ, S), so [xϕ, φ] ∈ S0, the kernel of θ : S → S+, where θ : x 7→ x+ = xS0.
Thus (2) holds.

Definition 5.11. For P ≤ S and α ∈ homF (P, S), define αΘ ∈ homF+(P+, S+)
by αΘ = ϕ+ and (ϕ, φ) ∈ F(α). Observe that Θ is well defined: Namely by 5.10.1,
ϕ+ ∈ homF+(P+, S+). Further if (Ψ, ψ) ∈ F(α) and x ∈ P , then by 5.10.2, x+ϕ+ =
(xα)+ = x+Ψ+, so the definition of αΘ is independent of the choice of (ϕ, φ) in F(α).

Next define Θ : S → S+ to be the natural map Θ : s 7→ s+.
Write ΘF,S0 for this map from F to F/S0.

(5.12) (1) Θ = ΘF,S0 : F → F/S0 is a surjective morphism of fusion systems.
(2) θ is the restriction of Θ to N = NF (S0).

Proof. Let P ≤ S. For γ ∈ homN (P, S), (γ, 1) ∈ F(γ), so γΘ = γ+ = γθ. Then as θ = Θ
as a map of groups on S, (2) holds.

Let α ∈ homF (P, S) and β ∈ homF (Pα, S). By 5.8.3, (αβ)Θ = αΘ · βΘ. Let
(ϕ, φ) ∈ F(α) and x ∈ P . Then by 5.10.2,

(xα)Θ = (xα)+ = x+ϕ+ = (xΘ)(αΘ),

so Θ is a morphism of fusion systems. By definition, Θ : S → S+ is surjective. By (2),
Θ extends θ, so as θ is surjective, so is Θ.
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(5.13) Assume ρ : F → F̃ is a surjective morphism of fusion systems, with S0 = ker(ρ).
Then

(1) For P,Q ≤ S and φ ∈ Φ(P,Q), φρ = 1.
(2) For P ≤ S, α ∈ homF (P, S), and (ϕ, φ) ∈ F(α), αρ = ϕρ.
(3) Define π : F+ → F̃ by x+π = xρ for x ∈ S, and ϕ+π = ϕρ, for ϕ an N -map.

Then π : F+ → F̃ is an isomorphism of fusion systems such that Θπ = ρ.

Proof. First assume the setup of (1), and let x ∈ P . Then

(xρ)(φρ) = (xφ)ρ = (x · [x, φ])ρ = xρ · [x, φ]ρ = xρ,

as [x, φ] ∈ S0 and S0ρ = 1. Thus (1) holds.
Next assume the setup of (2). Then by (1), αρ = (ϕφ)ρ = (ϕρ)(φρ) = ϕρ, establishing

(2).
As S0 = ker(ρ), π : S+ → S̃ is a well defined group isomorphism, with Θπ = ρ as a

map of groups.
Let P ≤ S and η, µ ∈ homN (P, S). Then ηρ = µρ iff for all x ∈ P , xηρ = (xρ)(ηρ) =

(xρ)(µρ) = (xµ)ρ iff xη ∈ xµS0. Thus if η+ = µ+ then as S0 = ker(ρ), ηρ = µρ, so
π : homN (P+, S+) → homF̃ (Pρ, S̃) = homF̃ (P+π, S̃) is well defined. Further η+ = µ+

iff ηρ = µρ, so π is injective.
For x ∈ P ,

(x+π)(η+π) = (xρ)(ηρ) = (xη)ρ = (xη)+π = (x+η+)π.

For ξ ∈ homN (Pη, S),

(η+ξ+)π = (ηξ)+π = (ηξ)ρ = ηρ · ξρ = η+π · ξ+π.

Thus π : F+ → F̃ is a morphism of fusion systems. Further by (2),

αΘπ = ϕ+π = ϕρ = αρ.

Then as ρ is a surjection, so is π. We saw π : S+ → S̃ is an isomorphism, as is
π : homN (P+S+) → homF̃ (P+π, S̃), so (3) follows.

(5.14) The map S0 7→ F/S0 is a bijection between the set of subgroups S0 of S, strongly
closed in S with respect to F , and the set of isomorphism classes of homomorphic images
of F .

Proof. This is a consequence of 5.12.1 and 5.13.3.
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Exercises for Section 5

1. Prove 5.8.

Section 6. Invariant subsystems of fusion systems

In this section F is a saturated fusion system over the finite p-group S. We saw in the
previous section that there is a 1-1 correspondence between the homomorphic images of
F and strongly closed subgroups T of S, and we may take the factor system F/T to be
the image corresponding to T . Proceeding by analogy with the situation for groups, we
would like to show there exists a “normal subsystem” E of F on T which is saturated,
and hence realize F as an “extension” of E by F/T . Unfortunately such a subsystem
may not exist, but still we will be able to construct a theory which seems sufficiently
robust for our purposes. We begin to investigate the situation.

Let E is a subsystem of F on a subgroup T of S. Write Ff
T for the set of nontrivial

subgroups P of T such that P is fully normalized in F .

Definition 6.1. Define E to be F-invariant if:

(I1) T is strongly closed in S with respect to F .

(I2) For each P ≤ Q ≤ T , φ ∈ homE(P,Q), and α ∈ homF (Q,S), φα∗ ∈ homE(Pα, T ).

Definition 6.2. The subsystem E is F-Frattini if for each P ≤ T and γ ∈ homF (P, S),
there exists ϕ ∈ AutF (T ) and φ ∈ homE(Pϕ, S), such that γ = ϕφ on P .

(6.3) Assume T is a subgroup of S which is strongly closed in S with respect to F and
E is a subsystem of F on T . Then the following are equivalent:

(1) E is F-invariant.

(2) AutF (T ) ≤ Aut(E) and E is F-Frattini.

(3) AutF (T ) ≤ Aut(E) and condition (I2A) holds:

(I2A) For each U ∈ Ff
T there exists a normal subgroup A(U) of AutF (U), such that

for each U ′ ≤ T , and each β ∈ isoF (U,U ′), AutT (U ′) ≤ A(U)β∗ ≤ AutE(U ′).

Proof. See 3.3 in [A1].

Invariant subsystems are fairly natural and have many nice properties. For example:
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(6.4) Assume E is F-invariant and D is a subsystem of F on the subgroup D of S.
Then

(1) E ∩ D is a D-invariant subsystem of D on T ∩D.
(2) If D is F-invariant then E ∩ D is F-invariant on T ∩D.

Proof. Exercise 6.1.

On the other hand invariant subsystems have the big drawback that they need not be
saturated.

Example 6.5. Assume T is strongly closed in S with respect to F . Define E to be
the subsystem of F such that for each P,Q ≤ T , homE(P,Q) = homF (P,Q). Then
trivially E is F-invariant. But in most circumstances, E is not saturated. For example
for P ≤ T , AutE(P ) = AutF (P ). In particular if P ∈ Ff

T then as F is saturated,
AutS(P ) ∈ Sylp(AutF (P )) = AutE(T ) by 2.6.I. However (cf. 3.4.5 in [A1]) P ∈ Ef , so if
AutS(P ) 6= AutT (P ) then E is not saturated.

Exercises for Section 6

1. Prove 6.4.

Section 7. Normal subsystems of fusion systems

In this section F is a saturated fusion system over the finite p-group S, and E is a
subsystem of F on a subgroup T of S. We continue the notation and terminolgy from
the previous sections.

We saw in the previous section that if E is F-invariant, then E need not be saturated.
One way to repair this problem is to only consider saturated F-invariant subsystems.
It turns out that to obtain a class of subsystems with appropriate properties, one more
condition must be added. In any event we are lead to the following definition:

Definition 7.1. The subsystem E is normal in F if E is F-invariant and saturated, and
the following condition holds:

(N1) Each φ ∈ AutE(T ) extends to φ̂ ∈ AutF (TCS(T )) such that [φ̂, CS(T )] ≤ Z(T ).

We write E E F to indicate that E is normal in F .



NOTES ON THE LOCAL THEORY OF SATURATED FUSION SYSTEMS 17

(7.2) Assume F = FS(G) for some finite group G with S ∈ Sylp(G). Let H E G,
T = S ∩H, and E = FT (H). Then E E F .

Proof. As H E G, T = S ∩ H ∈ Sylp(H) and T is strongly closed in S with respect
to G. Thus (I1) holds. By a Frattini argument, E is F-Frattini. Let x ∈ NG(T ),
P ≤ T , and h ∈ NH(P, T ). Then hx ∈ NH(P x, T ), so cx ∈ Aut(FT (H)), and hence
AutF (T ) ≤ Aut(E). Therefore E is F-invariant by 6.3.

As E = FT (H), E is saturated. Thus it remains to verify (N1). Let R = CS(T ),
V = RT , K = NH(T ), and X = Op′(K). Then CH(T ) = XZ(T ). Now R acts on K

and [R,K] ≤ CH(T ) = XZ(T ). Then by a Frattini argument, KR = XRNKR(R) =
XRNK(R). Next for φ ∈ AutE(T ), φ = ck|T for some k ∈ K. Then k = ch for
some c ∈ XR and h ∈ NK(R). Now φ = ck|T = ch|T and h acts on TR = V with
[h,R] ≤ XZ(T ) ∩R = Z(T ). Therefore (N1) holds, completing the proof of the lemma.

Example 7.3. Let H = H1 × H2 × H3 be the direct product of three copies Hi,
1 ≤ i ≤ 3, of A4. Let Xi = 〈xi〉 ∈ Syl3(Hi), Si = O2(Hi), and S = S1 × S2 × S3 ∈
Syl2(H). Let X = 〈x1x2, x1x3〉 ≤ H and set G = XS. Then G1 = 〈x1x2, S1, S2〉 and
G2 = 〈x1x3, S1, S3〉 are normal subgroups of G with Sylow 2-subgroups T1 = S1S2 and
T2 = S1S3, respectively. Let Fi = FTi(Gi), for i = 1, 2. As Gi E G, Fi E F by 7.2.

Let E = F1 ∩ F2. Then E = FS1(H1) as

φ = cx1x2|S1 = cx1x3|S1 = cx1|S1 ∈ AutE(S1).

In particular E is a saturated fusion system, and by 6.4.2, E is F-invariant. On the other
hand E is not normal in F , as (N1) is not satisfied. Namely S1CS(S1) = S, but φ does
not extend to φ̂ ∈ AutF (S) with [φ̂, S] ≤ S1.

This shows, first, that there exist F-invariant saturated fusion systems which do not
satisfy (N1), and, second, that the intersection of normal subsystems is not in general
normal. Moreover this also shows, third, that (N1) is a necessary hypothesis if the
converse of 7.2 is to hold for constrained fusion systems, since E has no model normal in
G. Put another way, if we are to extend arguments from the local theory of finite groups
to the domain of saturated fusion systems, it is crucial to have the property that when
F is constrained, G ∈ G(F), and E E F , then there exist H ∈ G(E) with H E G.
Thus it is necessary that the definition of “normal subsystem” contain some condition
such as (N1).
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(7.4) Assume F is constrained and T is strongly closed in S with respect to F . Then

(1) There exists G ∈ G(F). Let R = Op(G) and set L = 〈TG〉 and V = (T ∩R)CS(T ∩
R).

(2) Assume AutT (T ∩R) ∈ Sylp(B(T ∩R)), and let AutL(T ) ≤ Σ ≤ Γ(T )∩B′(T ) with
Σ E AutF (T ), where Γ(T ) consists of those φ ∈ AutF (T ) such that φ extends to φ̂ ∈
AutF (TCS(T )) with [φ̂, CS(T )] ≤ Z(T ), and for P ∈ Ff

T , B(P ) = 〈AutT (P )AutF (P )〉,
and B′(P ) is the preimage in AutF (P ) of Op′(AutF (P )/B(P )). Then T ∈ Sylp(L) and
there exists a unique normal subgroup H = HΣ of G such that L = Op′(H), F ∗(H) =
T ∩Op(G), and AutH(T ) = Σ.

(3) If E E F , then E = FT (H) is the fusion system of the normal subgroup H = HΣ

of G on T ∈ Sylp(H), where Σ = AutE(T ).

Proof. See 6.7 in [A1].

(7.5) Assume G is a finite group, S ∈ Sylp(G), and F = FS(G). Assume CG(Op(G)) ≤
Op(G) and E E F on T ≤ S. Then there exists a unique normal subgroup H of G such
that T ∈ Sylp(H) and E = FT (H).

Proof. As F = FS(G), F is saturated and G ∈ G(F). Let R = Op(F). As F = FS(G),
R = Op(G). Thus CS(R) ≤ R, and hence F is a constrained saturated fusion system.
Now 7.4.3 completes the proof.

Remark 7.6. Observe that 7.5 shows that our definition of “normal subsystem” has
the desirable property discussed in Example 7.3. On the other hand our next example
shows that one cannot remove the condition in 7.5 that CG(Op(G)) ≤ Op(G).

Example 7.7. Here is an example which shows the hypothesis in 7.5 that F ∗(G) =
Op(G) cannot be removed. Assume G is a finite group, S ∈ Sylp(G), and T is a strongly
closed abelian subgroup of S contained in Z(S). Then M = NG(T ) controls fusion in
T . Set E = FT (T ). Then E ≤ F and as T is abelian, E consists only of inclusion maps.
Therefore E is F-invariant. Let P ≤ T . Then AutE(P ) = 1, so trivially E is saturated
and (N1) is satisfied, and hence E E F .

However there are plenty of examples of this set up in which T is not normal in G. For
example take G to be simple and S = T an abelian Sylow group of G. To get examples
where T is proper in S, take G simple and S cyclic with |S| > p, and T = Ω1(S). Or
take p = 2, G = Sz(2n) or U3(2n), and T = Ω1(S).
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On the other hand these examples are a bit deceiving, since F is isomorphic to FS(M),
and T is normal in M .

Here is a different sort of example: Take Ĝ to be the extension of the natural module
V for G = Sz(2n) or U3(2n), take T as above, and set T̂ = TV . Then T̂ is strongly
closed in Ŝ = SV with respect to Ĝ, but is not Sylow in any normal subgroup of Ĝ. Thus
by 7.5, there is no normal subsystem of F̂ = FŜ(Ĝ) on T̂ . This example shows that even
when F̂ is a saturated constrained fusion system, there can be a strongly closed subgroup
T̂ of Ŝ in F̂ such that there exists no normal subsystem of F̂ on T̂ .

Further V = O2(Ĝ), so V E F̂ by 7.2. Moreover F̂/V ∼= FS(G) by 5.6, and, as
we saw above, T E F . However the preimage T̂ of T under ΘF̂,V : F̂ → F̂/V is not
normal in F̂ , and indeed by 7.5, there is no normal subsystem of F̂ on T̂ . This shows
that the standard result in group theory fails for morphisms of saturated fusion systems:
A normal subsystem of F̂/V need not lift under ΘF̂,V to a normal subsystem of F̂ .

Section 8. Invariant maps

In this section F is a saturated fusion system over the finite p-group S, and T is a
subgroup of S strongly closed in S with respect to F .

In order to work with the notion of “normal subsystem” defined in the previous section,
we need effective conditions to verify when a subsystem of F on T is normal, and to
produce normal subsystems on T . Moreover in most situations, these conditions should
be local; that is we should be able to check them in local subsystems, and indeed even in
local constrained subsystems.

This section contains a brief overview of some such conditions.

Definition 8.1. Define a F-invariant map on T to be a function A on the set of
subgroups of T such that:

(IM1) For each P ≤ T and α ∈ homF (P, S), A(P )α∗ = A(Pα) ≤ AutF (Pα).

(IM2) For each P ∈ Ff
T , AutT (P ) ≤ A(P ).

Given an F-invariant map A on T , set E(A) = 〈A(P ) : P ≤ T 〉, regarded as a fusion
system on T .

Example 8.2. Pick a set U of representatives in Ff
T for the orbits of F on the subgroups

of T . For U ∈ U , pick a normal subgroup A(U) of AutF (U) containing AutT (U). For
α ∈ homF (U, T ), define A(Uα) = A(U)α∗. As A(U) E AutF (U), the function A is well
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defined, and by construction A is a F-invariant map on T . Thus each such map on U
extends uniquely to an F-invariant map, and it is easy to check that each invariant map
can be obtained via this construction.

Here is a special case: Define B(U) = 〈AutT (U)AutF (U)〉 as in 7.4.2. Then B defines
an invariant map.

(8.3) Let A be a F-invariant map on T . Then E(A) is a F-invariant subsystem of F
on T .

Proof. See 5.5 in [A1].

Example 8.4. Write Ffc
T for the set of U ∈ Ff

T such that CT (U) ≤ U , and set

Fc
T =

⋃
U∈Ffc

T

UF .

By Exercise 8.1,

Fc
T = {P ≤ T : CT (Pφ) ≤ Pφ for all φ ∈ homF (P, S)}.

Let V = U ∩Ffc
T and suppose A is a map on V satisfying AutT (V ) ≤ A(V ) E AutF (V )

for each V ∈ V. Then as in 8.2, we can extend A to a map on Fc
T via A(V α) = A(V )α∗.

Then for U ∈ U , set A(U) = AutA(UCT (U))(U). One can show that A satisfies the
conditions of 8.2, and hence defines an invariant map.

Define an F-invariant map A to be constricted if A(U) = AutA(UCT (U)(U) for each
U ∈ Ff

T . Thus the maps A constructed in Example 8.4 are constricted.

Definition 8.5. Define a constricted F-invariant map A on T to be normal if for each
U ∈ Ffc

T :

(SA1) AutT (U) ∈ Sylp(A(U)).

(SA2) For each U ≤ P ≤ Q = NT (U) with P fully normalized in NF (UCS(U)),
AutA(P )(U) = NA(U)(AutP (U)).

(SA3) Each φ ∈ NA(Q)(U) extends to φ̂ ∈ AutF (QCS(U)) with [CS(Q), φ̂] ≤ Z(Q).

If U ∈ Ffc
T then by Example 4.5, D(U) = NF (UCS(U)) is saturated and constrained,

and hence there exists G(U) ∈ G(D(U)).
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(8.6) Let E be a subsystem of F on T . Then the following are equivalent:
(1) E E F .
(2) There exists a normal map A on T such that E = E(A).
(3) For each U ∈ Ffc

T there exists a normal subgroup H(U) of G(U) such that NT (U) ∈
Sylp(H(U)) and

(i) for each P ∈ D(U)f with U ≤ P , and for each α ∈ homF (NS(P ), S) with Pα ∈
Ffc

T , AutH(Pα)(Uα) = AutNH(U)(P )(U)α∗, and
(ii) E = 〈A(Uϕ) : U ∈ Ffc

T , ϕ ∈ AutF (T )〉, where A is the constricted invariant map
defined by A(U) = AutH(U)(U) as in 8.4.

Proof. This is 7.18 in [A1].

Remark 8.7. To me 8.6 says the following: Given a strongly closed subgroup T of
S, we look for normal subsystems E of F on T . To do so we consider the members U
of Ffc

T , the associated constrained saturated systems D(U) = NF (UCS(U)), and their
models G(U). We look for a set {H(U) : U ∈ Ffc

T } of subgroups H(U) E G(U) with
NT (U) ∈ Sylp(H(U)), satisfying the compatibility conditions in 8.6.3.i. Given such a
collection, E is essentially the subsystem of F generated by the systems AutH(U)(U), and
AutE(U) is AutH(U).

Exercises for Section 8

1. Prove Fc
T = {P ≤ T : CT (Pφ) ≤ Pφ for all φ ∈ homF (P, S)}.

Section 9. Theorems on normal subsystems

In this section F is a saturated fusion system on a finite p-group S.
We list various results about normal subsystems, and extensions of theorems in the

local theory of finite groups to the setting of saturated fusion systems. These result are
proved in [A2]. The proofs use results from the previous section. Most of the proofs are
moderately difficult.

In Example 7.3, we saw that the intersection E1 ∩ E2 of normal subsystems Ei of F
need not be normal in F . However this is not a serious problem, since it develops that
E1 ∩ E2 is not quite the right object to consider. Rather:

Theorem 9.1. Let Ei be a normal subsystem of F on a subgroup Ti of S, for i = 1, 2.
Then there exists a normal subsystem E1 ∧ E2 of F on T1 ∩ T2 contained in E1 ∩ E2.
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The next result probably already appears somewhere in the literature in the special
case where F = FS(G) is the system of a finite group G on a Sylow p-subgroup S of G. I
have not been able to find a reference to such a theorem, but it would be a bit surprising
if the result were not known for finite groups.

Theorem 9.2. Assume Ti, i = 1, 2, are strongly closed in S with respect to F . Then
T1T2 is strongly closed in S with respect to F .

If H1 and H2 are normal subgroups of a group G, then H1H2 E G. The analogue of
this result may hold for saturated fusion systems, but in [A2] there is a proof only in a
very special case; this case suffices for our most immediate applications.

Theorem 9.3. Assume Ei E F on Ti for i = 1, 2, and that [T1, T2] = 1. Then there
exists a normal subsystem E1E2 of F on T1T2. Further if T1 ∩ T2 ≤ Z(Ei) for i = 1, 2,
then E1E2 is a central product of E1 and E2.

Section 1 in [BLO] defines and discusses the direct product F1 ×F2 of fusion systems
F1 and F2. A central product F1 ×Z F2 is a factor system (F1 × F1)/Z, for some
Z ≤ Z(F1 ×F2) such that Z ∩ Fi = 1 for i = 1, 2.

Theorem 9.3 bears some resemblance to earlier theorems about finite groups due to
Gorenstein-Harris in [GH], and Goldschmidt in [Go2]. Namely in each of these papers,
the authors prove the existence of certain normal subgroups of a group G under the
hypothesis that for S ∈ Syl2(G), there are subgroups Ti of S for i = 1, 2, such that
[T1, T2] = 1 and Ti is strongly closed in S with respect to G.

Let E E F . In [A1] we define the centralizer in F of E , denoted by CF (E), and prove:

Theorem 9.4. If E E F then CF (E) E F .

In [A2] we find that there is a characteristic subsystem Op(F) of F such that

S ∩Op(F) = 〈S ∩Op(G(U)) : U ∈ Ffc〉,

and G(U) is the model of NF (U). For example if F = FS(G) for some finite group G

with S ∈ Sylp(G), then Op(F) = FS∩Op(G)(Op(G)). Moreover:

Theorem 9.5. Let E E F on T , and T ≤ R ≤ S. Then there exists a unique saturated
fusion subsystem RE of F on R such that Op(RE) = Op(E). In particular F = SOp(F).
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Define F to be simple if F has no proper nontrivial normal subsystems. Define F to
be quasisimple if F = Op(F) and F/Z(F) is simple. Define the components of F to be
the subnormal quasisimple subsystems of F . Recall Op(F) is the largest subgroup of S
normal in F . We can view R = Op(F) as the normal subsystem FR(R) of F .

Define E(F) to be the subsystem of F generated by the set Comp(F) of components
of F , and set F ∗(F) = E(F)Op(F). We call F ∗(F) the generalized Fitting subsystem of
F . Of course all of these notions are similar to the analogous notions for groups.

Theorem 9.6. (1) E(F) is a characteristic subsystem of F .

(2) E(F) is the central product of the components of F .

(3) Op(F) centralizes E(F).

(4) CF (F ∗(F)) = Z(F ∗(F)).

Finally in [A2] we prove a version of the Gorenstein-Walter theorem on so called
L-balance [GW]:

Theorem 9.7. For each fully normalized subgroup X of S, E(NF (X)) ≤ E(F).

It is worth noting that the proof of L-balance for a group G requires that the com-
ponents of G/Op′(G) satisfy the Schreier conjecture, or when p = 2, a weak version of
the Schreier conjecture due to Glauberman. Our proof of Theorem 9.7 requires no deep
results. The theorem does not quite imply L-balance for groups, since there is not a nice
one to one correspondence between quasisimple groups and quasisimple fusion systems.
The proof can be translated into the language of groups, but even there at some point
one seems to need some result like Theorem A of Goldschmidt in [Go2], which is only
proved for p = 2 without the classification. Still, something is going on here, which
suggests that in studying fusion systems, one may be lead to new theorems or better
proofs of old theorems about finite groups.

Section 10. Composition series

In this section F is a saturated fusion system over the finite p-group S.

Definition 10.1. By 9.1, there is a smallest normal subsystem of F on S. Denote this
system by Op′(F).
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Example 10.2 Let G be a finite group with S ∈ Sylp(G), CG(Op(G)) ≤ Op(G), and
F = FS(G). Then by 7.2 and 7.5, the map H 7→ FS(H) is a bijection between the
overgroups H of S normal in G and the normal subsystems of F on S. Therefore
Op′(F) = FS(Op′(G)). Recall Op′(G) is the smallest normal subgroup H of G such that
G/H is a p′-group; equivalently Op′(G) = 〈SG〉.

Definition 10.3. We recursively define the set S = S(F) of supranormal series of F .
The members of S are sequences λ = (λi : 0 ≤ i ≤ n), such that for each i, λi is a
subsystem of S on Ti ≤ S, 1 = λ0 ≤ λ1 ≤ · · · ≤ λn = Op′(F), and:

(SS) If the length n = l(λ) of λ is greater than 1, then there exists 0 < j < n

such that 1 6= Tj < S, λj = Op′(λj) E Op′(F), (λi : 0 ≤ i ≤ j) ∈ S(λj), and
(λi/Tj : j ≤ i ≤ n) ∈ S(F/Tj).

For λ, µ ∈ S, we write λ ≺ µ if l(µ) = l(λ) + 1 = n + 1, and there exists 0 ≤ m ≤ n

such that λi = µi for 0 ≤ i ≤ m, λi = µi+1 for m < i ≤ n, Tm is strongly closed in
Tm+1 with respect to λm+1, and µm+1/Tm E λm+1/Tm. Transitively extend ≺ to a
partial order < on S. Define the composition series for F to be the maximal members
of S under the partial order <.

(10.4) Let λ = (λi : 0 ≤ i ≤ n) ∈ S be of length n > 1. Then for each 0 < i ≤ n, Ti−1

is strongly closed in Ti with respect to λi, and λi/Ti−1 = Op′(λi/Ti−1) is saturated.

Proof. Unpublished notes.

Definition 10.5. For λ = (λi : 0 ≤ i ≤ n) ∈ S and 0 < i ≤ n, define Fi(λ) = λi/Ti−1,
and F (λ) = (Fi(λ) : 1 ≤ i ≤ n). We call F (λ) the family of factors of F . By 10.4 this
makes sense and the factors in F (λ) are saturated.

(10.6) λ = (λi : 0 ≤ i ≤ n) ∈ S is a composition series for F iff all factors of λ are
simple.

Proof. Unpublished notes.

Theorem 10.7. (Jordon-Holder Theorem for fusion systems) If λ and µ are composition
series for F , then l(λ) = l(µ) and F (λ) = F (µ).

Proof. Unpublished notes.
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Definition 10.8. By 10.7, we may define the family of composition factors of F to be
the set F (λ) of factors of any composition series λ of F .

Define F to be solvable if all composition factors of F are of the form FG(G) for G of
order p.

(10.9) (1) For each normal subsystem E of F , F is solvable iff E and F/E are solvable.
(2) If F is solvable then F is constrained.

Proof. Unpublished notes.

Section 11. Constrained systems and solvable systems

In this section F is a saturated fusion system over the finite p-group S. We concentrate
on the case where F = FS(G) for some finite group G with S ∈ Sylp(G). By Exercise
2.1, we may assume with little loss of generality that Op′(G) = 1.

(11.1) The following are equivalent:
(1) F is constrained.
(2) F ∗(F) = Op(F).

Proof. Let R = Op(F). Suppose (1) holds, so that CS(R) ≤ R. By 9.6.3, E(F) central-
izes R, so E = S ∩E(F) ≤ CS(R) = Z(R), so E is abelian. Then E(F) = 1 by Exercise
11.1, so (2) holds.

Assume (2) holds. By 9.6.4, CS(F ∗(F)) ≤ F ∗(F), so CS(R) ≤ R, and hence (1) holds.

(11.2) Assume F is constrained. Then
(1) Each subnormal subsystem of F is constrained.
(2) Assume G is a finite group with S ∈ Syl2(G) and F = FS(G). Then:
(a) For each H E E G, FS∩H(H) is constrained.
(b) If L is a component of G, T = S∩L, and L̄ = L/Z(L), then FT̄ (L̄) is constrained.

Proof. Exercise 11.2.

Definition 11.3. A Bender group is a finite simple group which is of Lie type of
characteristic 2 and Lie rank 1. The Bender groups are the groups L2(q), Sz(q), U3(q),
q a suitable power of 2.

A Goldschmidt group is a nonabelian finite simple group with a nontrivial strongly
closed abelian subgroup. By a theorem of Goldschmidt in [Go1], a nonabelian finite



26 MICHAEL ASCHBACHER

simple group G is a Goldschmidt group iff G is a Bender group or a Sylow 2-subgroup S
of G is abelian. The groups in the latter case are L2(q), q ≡ ±3 mod 8, 2G2(q), and J1.

(11.4) Assume G is a finite group, S ∈ Sylp(G), and F = FS(G). Assume in addition
any one of the following hold:

(a) S is abelian, or
(b) S is a TI-subgroup of G.
(c) S is of class 2 and Z(S) is strongly closed in S with respect to G.

Then F = FS(NG(S)) and S = Op(F).

Proof. By Exercise 11.3, F = FS(NG(S)) iff S = Op(F) iff NG(S) controls fusion in S.
By a result of Burnside (cf. 7.7 in [SG]), if S is abelian then NG(S) controls fusion

in S. If (b) holds then S ∩ Sg = 1 for g ∈ G − NG(S), so NG(S) controls fusion in S.
Finally suppose that (c) holds. As Z(S) is strongly closed in S with respect to G, and
as F = FS(G), Z(S) is strongly closed in S with respect to F . Then as S is of class 2,
the series 1 < Z(S) < S satisfies condition (2) of 3.7, so S = Op(F) by 3.7. Thus the
lemma holds.

(11.5) Assume p = 2, G is a nonabelian finite simple group, S ∈ Syl2(G), and F =
FS(G). Then the following are equivalent:

(1) F is constrained.
(2) S = O2(F).
(3) G is a Goldschmidt group. In particular either S is abelian or G is a Bender

group.

Proof. If G is Bender then S is a TI-subgroup of G. Thus (3) implies (2) by 11.4.
Trivially, (2) implies (1). Finally suppose (1) holds. Then there is a nontrivial abelian
subgroup of S, strongly closed in S with respect to G by 3.9.2. Thus (3) holds by a
theorem of Goldschmidt in [Go1].

Definition 11.6. We extend the definition of “Goldschmidt groups” to odd primes,
by defining the notion of a p-Goldschmidt group. The Goldschmidt groups are the 2-
Goldschmidt groups.

Define a nonabelian finite simple group G with p ∈ π(G) to be a p-Goldschmidt group
if for S ∈ Sylp(G), one of the following hold:

(a) S is abelian.
(b) L is of Lie type in characteristic p of Lie rank 1.
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(c) p = 5 and L ∼= Mc.

(d) p = 11 and L ∼= J4.

(e) p = 3 and L ∼= J2.

(f) p = 5 and G ∼= HS, Co2, or Co3.

(g) p = 3 and G ∼= G2(q) for some prime power q prime to 3 such that q is not
congruent to ±1 modulo 9.

(h) p = 3 and G ∼= J3.

In cases (b)-(d), we say G is p-Bender. In those cases, S is a TI-subgroup of G. In
cases (c)-(g), S ∼= p1+2.

Remark 11.7. We will see that if L is a nonabelian finite simple group and T ∈ Sylp(L),
then FT (L) is constrained iff L is p-Goldschmidt. Then, using 11.2, it is not difficult
to show that if G is a finite group with Op′(G) = 1 and S ∈ Sylp(G), then FS(G) is
constrained iff for each component L of G, L/Z(L) is p-Goldschmidt.

(11.8) The following are equivalent:

(1) F is solvable.

(2) F is constrained, and for G ∈ G(F), FT (H) is solvable for each composition factor
H of G and T ∈ Sylp(H).

Proof. From 4.1 and Exercise 3.1.2, F is constrained iff G(F) 6= ∅. Further if F is
solvable then F is constrained by 10.9.2. Thus we may assume F = FS(G) for some
finite group G with S ∈ Sylp(G).

Let L E G and Ḡ = G/L. By 7.2, E = FS∩L(L) E F , and by 5.6, F/E ∼= FS̄(Ḡ).
By 10.9.1, F is solvable iff E and F/E are solvable, so F is solvable iff FS∩L(L) and
FS̄(Ḡ) are solvable. Then continuing this process, the lemma holds.

Remark 11.9. If L is a nonabelian finite simple group, T ∈ Sylp(L), and L is p-
Goldschmidt, then FT (L) is solvable. Hence from the discussion in 11.7 holds, and by
11.8, F is solvable iff F is constrained, and for G ∈ G(F), all nonabelian composition
factors L of G with p ∈ π(L) are p-Goldschmidt.

Exercises for Section 11

1. Prove that if 1 6= F is quasisimple then S is nonabelian.

2. Prove lemma 11.2.
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3. Assume G is a finite group, S ∈ Sylp(G), and F = FS(G). Prove the following are
equivalent:

(1) F = FS(NG(S)).
(2) S = Op(F).
(3) NG(S) controls fusion in S.

Section 12. Fusion systems in simple groups

In this section p is a prime, G is a finite group, S ∈ Sylp(G), and F = FS(G). Thus
F is a saturated fusion system over the finite p-group S.

(12.1) Assume
(a) there exists no nontrivial proper subgroup of S strongly closed in S with respect to

G, and
(b) AutG(S) = 〈AutOp′ (NG(R))(S) : R ∈ Ffrc〉.

Then FS(G) is simple.

Proof. See notes.

(12.2) Assume G is simple of Lie type and characteristic p, or p = 2 and G ∼= 2F 4(2)′

is the Tits group. Assume the Lie rank of G is at least 2. Then
(1) No proper nontrivial subgroup of S is strongly closed in S with respect to G.
(2) F is simple.

Proof. See notes.

(12.3) Assume G ∼= An is an alternating group on Ω = {1, . . . , n} with n ≥ 6 and
S 6= 1. Write n = ap + b with 0 ≤ b < p, let X = NG(M(S)), and Y = GM(S), where
M(S) is the set of points of Ω moved by S. Then

(1) FS(G) = FS(X) ∼= FS(XM(S)).
(2) p ≥ n.
(3) S is abelian iff n < p2.
(4) If n ≥ p2 and b ≤ 1 then FS(G) is simple and XM(S) ∼= Apa.
(3) If n ≥ p2 and b ≥ 2 then XM(S) ∼= Spa, FS(Y M(S)) / FS(XM(S)), and Y M(S) ∼=

Apa.

Proof. See notes.
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(12.4) Assume G is a sporadic simple group, and let Π = Π(G) be the set of odd primes
p ∈ π(G) such that |G|p > p2. Then

(1) S is nonabelian iff either:
(a) p ∈ Π and (G, p) 6= (O′N, 3), or
(b) p = 2 and G is not J1.
(2) If G is M11, M22, M23, or J1, then Π = ∅.
(3) If G is M12, M24, J2, J3, Suz, F22, or F23, then Π = {3}.
(4) If G is a Conway group, Mc, Ru, Ly, F5, F3, or F2, then Π = {3, 5}.
(5) If G is HS then Π = {5}.
(6) If G is He, O′N , or F24 then Π = {3, 7}.
(7) If G is J4 then Π = {3, 11}.
(8) If G is F1 then Π = {3, 5, 7, 13}.

Proof. We appeal to the Tables in [GLS3] for the local structure of G. In particular
from those Tables, a Sylow 2-subgroup of G is abelian iff G is J1. Further groups of
order p and p2 are abelian, so if p is an odd prime not in π, then Sylow p-subgroups of
G are abelian. Finally by inspection of the Tables in [GLS3], if p ∈ Π then either S is
nonabelian and (2)-(8) hold, or (G, p) = (O′N, 3) and S ∼= E81.

(12.5) Assume G is a sporadic simple group, but not J1, and p = 2. Then FS(G) is
simple.

Proof. See notes.

(12.6) Assume G is a sporadic simple group which is p-Goldschmidt. Then S = Op(FS(G)).

Proof. Let F = FS(G). If S is abelian, then S E F by 11.4. Thus we may assume S
is nonabelian. Therefore by 12.4, p ∈ Π. If one of (c)-(f) holds then from the Tables in
[GLS3], S ∼= p1+2 and Z(S) is strongly closed in S with respect to G. But then condition
(c) of 11.4 is satisfied, so S = Op(F) by 11.4.

This leaves the case p = 3 and G ∼= J3. In this case from the Tables in [GLS3],
Z = Z(S) ∼= E9 is strongly closed in S with respect to G, and S E NG(Z). Therefore
S E F by the equivalence of parts (1) and (2) of 3.7. (cf. Exercise 12.1.)

(12.7) Assume G is a sporadic simple group, but not p-Goldschmidt. Then either
(1) FS(G) is simple, or
(2) (G, p) = (Ru, 3), (M24, 3), (Ru, 5), or (J4, 3), and S ∈ Sylp(L) where FS(G) ∼=

FS(L) and L ∼= 2F 4(2), Aut(M12), Aut(L3(5)), or 2F4(2), respectively.
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Proof. See notes.

Exercises for Section 12

1. Assume F = FS(G) for some finite group G and S ∈ Sylp(G). Prove that if Z(S)
is strongly closed in S with respect to F , and S E NG(Z(S)), then S E F .

Section 13. Fusion systems in groups of Lie type

In this section p and r are distinct primes, with p odd, G is a finite simple group of
Lie type and characteristic r with p ∈ π(G), S ∈ Sylp(G), and F = FS(G).

Let Ĝ be the universal group of Lie type defined by the Steinberg relations for G,
Ẑ = Z(Ĝ), and π : Ĝ → G the covering with Ẑ = ker(π). Thus Ĝ is quasisimple and
Ĝ/Ẑ ∼= G. Take G = dΣ(q), with q = re as in Notation 4.2.1 of [GLS3], where Σ is a
root system for the algebraic group Ḡ defining G. Let W̄ be the Weyl group of Σ and
m0 = dp(q), where dp(q) is the order of q in the group of units of the ring of integers
modulo p.

(13.1) Let Ŝ ∈ Sylp(Ĝ). Then:
(1) We have

|Ĝ| = qN
∏

i

Φi(q)ni ,

where N = |Σ+|, Φi(t) is the ith cyclotomic polynomial, and the ni ∈ N are almost all
0. The integers ni are given explicitly in Tables 10.1 and 10.2 in [GL].

(2) nm0 6= 0. Let pa be the p-part of qm0 − 1.
(3) There exist a normal subgroup Ŝ0 of Ŝ such that Ŝ splits over Ŝ0, Ŝ/Ŝ0 is isomor-

phic to a subgroup of W̄ , |Ŝ : Ŝ0| = pb, and either
(i) Ŝ0 is homocyclic of rank nm0 and exponent pa, and setting I = {i : pcm0 =

i and c > 0}, b =
∑

i∈I ni, or
(ii) p = 3, G = 3D4(q), b = 1, and Ŝ0

∼= Zpa × Zpa+1 .
(4) If p /∈ π(W̄ ) or b = 0 then Ŝ = Ŝ0 is abelian.

Proof. Part (1) is well known and appears on page 237 of [GLS3]. Part (2) is 4.10.1 in
[GLS3], while (3) appears in 4.10.2 of [GLS3], and implies (4). Note that (3) is actually
proved in 8.1 of [GL], and the translation from that lemma to [GLS3] is not quite correct.
Indeed even the statement in [GL] for 3D4(q) is a bit garbled.
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(13.2) Assume G is classical. Define d = dp(εq) if G ∼= Lε
n(q), ε = ±1, while if G

is PΩε
n(q) or Spn(q), set d = dp(q), 2dp(q), for dp(q) even, odd, respectively. Write

n = n0d+ k0 with 0 ≤ k0 < d. Then S is abelian iff one of the following holds:
(1) n0 < p, or
(2) p = 3, G ∼= Lε

3(q) with q ≡ ε mod 3 but q not congruent to ε mod 9, and S ∼= E9.

Proof. See notes.

(13.3) Assume G is classical and S is nonabelian. Then no proper nontrivial subgroup
of S is strongly closed in S with respect to F . Hence Op′(F) is simple.

Proof. See notes.

Remark 13.4. Suppose G is classical and S is nonabelian. When is F = FS(G) simple?
By 13.3 and 12.1, F is simple if

(*) AutG(S) = 〈AutOp′ (NG(R))(S) : R ∈ Ffrc〉.

Indeed (essentially) from 5.2 in [BCGLO2], (*) is necessary and sufficient. Moreover
from work of Oliver, it appears to be possible to check when (*) holds using a certain
maximal torus of Ĝ, although I have done so only in some selected cases. What is true
is that sometimes the normal simple subsystem E = Op′(F) of F is exotic; that is E is
not of the form FT (H) for any finite group H and Sylow p-subgroup T of H.

We now move on to the exceptional groups of Lie type: Sz(q), 2G2(q), 3D4(q), 2F4(q),
G2(q), F4(q), Eε

6(q), E7(q), and E8(q).

(13.5) Assume G is exceptional. Then S is nonabelian iff one of the following holds:
(1) p = 3, so that G is not Sz(q) or 2G2(q).
(2) p = 5 and G ∼= Eε

6(q), q ≡ ε mod 5, E7(q) with q ≡ ±1 mod 5, or E8(q).
(3) p = 7 and G ∼= E7(q) or E8(q) with q ≡ ±1 mod 7.

Proof. See notes.

(13.6) Assume p = 3 and G ∼= G2(q). Let Z = Z(S) and H = NG(Z). Then
(1) H is O3′(H) = L ∼= SLε

3(q), q ≡ ε mod 3, extended by a graph automorphism t.
(2) Z is strongly closed in S with respect to F .
(3) F = FS(H) and FS(L) E F .
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(4) If q is not congruent to ε modulo 9, then F = FS(NH(S)), so that S = Op(F).
(5) If q ≡ ε mod 9 then FS(L) is quasisimple with center Z.

Proof. See notes.

(13.7) Assume p = 3 and G is the Tits group or 2F4(q), q = 22m+1. Then
(1) If G is the Tits group then F is simple.
(2) If 0 < m ≡ 0 or 2 mod 3, then S ∈ Syl3(L) with 2F4(2) ∼= L ≤ G, F = FS(L),

and FS(E(L)) E F .
(3) If m ≡ 1 mod 3 then F is simple.

Proof. See notes.

(13.8) Assume G is exceptional, S is non abelian, and G ∼= 3D4(q), F4(q), Eε
6(q), E7(q),

or E8(q). Then F is simple.

Proof. See notes.

Section 14. Some open problems

In this section I list some problems about saturated fusion systems which seem to me
to be of interest.

Problem 1. Let p be an odd prime, r 6= p a prime, G a classical group of characteristic
r, S ∈ Sylp(G), and F = FS(G). By 13.3, Op′(F) is simple. Determine Op′(F). In
particular:

(a) When is F = Op′(F)?
(b) When is Op′(F) exotic?

See the discussion in Remark 13.4.

Problem 2. Let G be simple of Lie type of odd characteristic, S ∈ Syl2(G), and
F = FS(G). What are the composition factors of F?. When is F simple?

The theory of fundamental subgroups of groups of Lie type and odd characteristic in
[A4] and [A5] should be useful here.

Problem 3. Is it possible to extend the characterization in [A4] of groups of Lie type
of odd characteristic to the domain of saturated fusion systems at the prime 2?
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Namely consider the following hypothesis (or something like it):

Hypothesis Ω. F is a saturated fusion system on a finite 2-group S, and Ω is a collection
of subgroups of S such that ΩF = Ω and

(1) There exists e ≥ 3 such that for all K ∈ Ω, K has a unique involution z(K) and
K is nonabelian of order 2e.

(2) For each pair of distinct K,J ∈ Ω, |K ∩ J | ≤ 2 with [K,J ] = 1 in case of equality.
(3) If K,J ∈ Ω and v ∈ J − Z(J), then vF ∩ CS(z(K)) ⊆ NS(K).

Then try to extend the various Theorems in [A4] to results about fusion systems
satisfying Hypothesis Ω. In particular if F is simple, show that (essentially) F is the
fusion system of some group of Lie type and odd characteristic.

Problem 4. Is it possible to extend Theorem III in [W] to the domain of saturated
fusion systems at the prime 2?

Namely consider the following hypothesis (or something like it):

Hypothesis W. F is a saturated fusion system on a finite 2-group S with F ∗(F)
quasisimple. Assume there exists an involution i ∈ S such that 〈i〉 ∈ Ff and CF (i) has
a component in Chev∗(r) for some odd prime r.

Here Chev∗(r) is essentially the class of fusion systems of quasisimple groups of Lie
type and odd characteristic, distinct from L2(re) and 2G2(re). One would like to show
that if Hypothesis W holds, then, with known exceptions, Hypothesis Ω holds. Note that
one class of exceptions are the exotic systems of Solomon and Benson, constructed by
Levi and Oliver. These arise in [W] during the proof of Proposition 4.3 of that paper.

Problem 5. Is it possible to extend the Component Theorem of [A3] to the domain of
saturated fusion systems at the prime 2?

This extension would say that, modulo known exceptions, if F is a saturated fusion
system on a finite 2-group S, and there exists an involution i ∈ S such that 〈i〉 ∈ Ff and
CF (i) is not constrained, then there exists a “standard component” in the centralizer of
some involution.

Perhaps this is not quite the right result. Instead, perhaps one should also assume
i ∈ Z(S), and proceed as in Chapter 16 of [AS].
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