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Abstract. We say a space X with property P is a universal space for or-

bit spectra of homeomorphisms with property P provided that if Y is any
space with property P and the same cardinality as X and h : Y → Y is any

(auto)homeomorphism then there is a homeomorphism g : X → X such that

the orbit equivalence classes for h and g are isomorphic. We construct a com-
pact metric space X that is universal for homeomorphisms of compact metric

spaces of cardinality the continuum c and prove that there is no such space that

is countably infinite. In the presence of some set theoretic assumptions we also
give a separable metric space of size c that is universal for homeomorphisms

on separable metric spaces.

1. Introduction

In [5] Good, et al, classified up to orbit equivalence all (auto)homeomorphisms
of compact metric spaces. They showed that if the collection of orbits of a bijection
T on a set X satisfy a few weak cardinality conditions then X can be given a
compact metric topology with respect to which T is a homeomorphism (we give the
precise statement of the result in the next section). In proving this classification of
homeomorphisms, many different construction techniques were utilized and many
exotic dynamical systems were constructed.

In this paper, motivated by the classification theorem of homeomorphisms on
compact metric spaces, we address the following question:

Does there exist a single compact metric space X of size κ which
admits every possible homeomorphism allowed on the class of com-
pact metric spaces of size κ?

That is to say in the language of this paper, is there a compact metric space that
is universal for homeomorphisms.

The answer depends, not surprisingly, on the size of κ. If κ is finite, then the
answer is trivially ‘yes’ and the only possible compact metric topology, the discrete
topology, is the example. It is not hard to show that if κ is countably infinite
(ℵ0) then the answer is ‘no.’ The main result of this paper is that if κ = c, the
cardinality of the continuum, then there is a single compact metric space X with
c-many points such that X admits every possible homeomorphism allowed on the
class of compact metric spaces of size c. Surprisingly, X cannot be a Cantor space
or even a subset of a Cantor space, for instance X cannot not be a subshift. It is
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known that any such compact metric universal space X must contain nondegenerate
connected components, [10], and it is not hard to see that it must also have isolated
points (see [11] for a classification of homeomorphisms on Cantor space).

In [6], Good and Greenwood give a classification theorem for all homeomorphisms
on separable metric spaces (we state the theorem in the next section). We use this
theorem to address the related question of the existence of a separable metric space
X with size c which is universal for homeomorphisms. Assuming a statement weaker
than the Continuum Hypothesis, we construct a separable metric space with size c
which is universal for homeomorphisms. Under the assumption of the Continuum
Hypothesis, we show that the space made up of the irrational numbers together
with a single convergent sequence of isolated points is also such a universal space.

In the next section we give definitions and preliminary results that are useful
throughout the paper. In Section 3 we show that there is no compact metric space
X with ℵ0-many points which is universal for homeomorphisms. In Section 4 we
construct a compact metric space with c-many points that is universal for homeo-
morphisms. In the last section we prove (with some set theoretic assumptions) that
there is a separable metric space with size c which is universal for homeomorphisms.

2. Preliminary Definitions and Results

By an abstract dynamical system we mean a function T : X → X on a set X
that has no specified structure. The relation ∼ on X, defined by x ∼ y if and
only if there exist m,n ∈ N with Tm(x) = Tn(y), is an equivalence relation, whose
equivalence classes are the orbits of T . If O is an orbit of T , then we say that:

(1) O is an n-cycle, for some n ∈ N, if there are distinct points x0, · · · , xn−1 in
O such that T (xj−1) = xj , where j is taken modulo n;

(2) O is a Z-orbit if there are distinct points {xj : j ∈ Z} ⊆ O such that
T (xj−1) = xj for all j ∈ Z;

(3) O is an N-orbit if it is neither an n-cycle for some n ∈ N, nor a Z-orbit.
The cycle type or orbit spectrum of T is, then, the sequence

σ(T ) = (ν, ζ, σ1, σ2, σ3, . . . )

of cardinals, where ν is the number of N-orbits, ζ the number of Z-orbits and σn
is the number of n-cycles. In this paper we will be dealing solely with bijections,
so ν will always be 0. We denote the cardinality of the continuum by c and regard
cardinals as initial ordinals (so that ω = ℵ0).

Definition 2.1. Let P be a topological property. We say that a spaceX is universal
for homeomorphisms of spaces with property P if X has P and whenever a space
Y with P, has a homeomorphism with orbit spectrum σ = (0, ζ, σ1, σ2, . . . ), then
there is a homeomorphism of X with orbit spectrum σ.

Given an abstract dynamical system, one might naturally ask whether one can
impose a structure on X with respect to which T has some property. In particular,
if P is a topological property, one can ask whether one can endow X with a topology
that satisfies P and with respect to which T is continuous.

In [5], the existence of a compact Hausdorff topology on X with respect to
which T is continuous is characterized in terms of the orbit structure of T . The
existence of a compact metric topology on X making a bijection T continuous is
also characterized in [5].
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Theorem 2.2. [5] Let T : X → X be a bijection and let σ(T ) = (0, ζ, σ1, σ2, . . . )
be the orbit spectrum of T . The following are equivalent:

(1) There is a compact metrizable topology on X with respect to which T is a
homeomorphism.

(2) Either
(a) X is finite; or
(b) X is countably infinite and T has both a Z-orbit and a cycle; or
(c) X is countably infinite and there are ni-cycles, for each i ≤ k, such

that if T has an n-cycle, then n is divisible by ni for some i ≤ k; or
(d) X has the cardinality of the continuum and the number of Z-orbits and

the number of n-cycles, for each n ∈ N, is finite, countably infinite, or
has the cardinality of the continuum.

(3) ζ and each σi is finite, equal to ω or equal to c and either:
(a) ζ = 0 and

∑
n∈N σn < ω; or

(b) ζ 6= 0 and
∑
n∈N σi 6= 0; or

(c) there are ni such that σni
6= 0, for each i ≤ k, and, if σn 6= 0, then n

is divisible by some ni; or
(d) ζ +

∑
n∈N σn = c.

In [6], the continuity of arbitrary maps in separable metric spaces is characterized
in terms of the cardinality of the set X. The next theorem follows immediately from
Theorem 1.8 in [6].

Theorem 2.3. [6] Let T : X → X be a bijection and let σ(T ) = (0, ζ, σ1, σ2, . . . )
be the orbit spectrum of T . The following are equivalent:

(1) |X| ≤ c;
(2) X can be identified with a subset of the Cantor set in such a way that T is

a homeomorphism;
(3) There is a (zero-dimensional) separable metric topology on X with respect

to which T is a homeomorphism;
(4) ζ +

∑
n∈N σn ≤ c.

A closely related question arises in permutation group theory: given a subgroup
G of the full permutation group on a set X, when is there a structure on X that
gives elements of G some meaning? Neumann [9], Mekler [8] and Truss [12] consider
this question in the case that X is countable (see also [1]).

Theorem 2.4 (Mekler [8] & Truss [12]). Let X be a countable set and G be a
countable subgroup of the full symmetric group on X. There is a topology on X
with respect to which Xis homeomorphic to the rationals and each g ∈ G is a
homeomorphism of X if and only if only if, for every finite F ⊆ G,⋂

g∈F
{x : g(x) 6= x}

is empty or infinite.

Theorem 2.5 (Neumann [9] & Truss [12]). Let T : X → X be a bijection of the
countable set X with spectrum σ(T ) = (0, ζ, σ1, σ2, . . . ) The following are equiva-
lent:

(1) There is a topology on X with respect to which X is homeomorphic to Q
and T is a homeomorphism;
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(2)
⋂
n∈F {x : Tn(x) 6= x} is empty or infinite for all finite F ⊆ N;

(3) Either:
(a) ζ 6= 0; or
(b) {n : σn 6= 0} is infinite; or
(c) whenever σk 6= 0, there is some m such that k divides m and σm = ω.

So in a strong sense, the rationals act as a universal space for groups of permu-
tations of a countable set with the property that, for finite F ,

⋂
g∈F {x : g(x) 6= x}

is either empty or infinite (which corresponds to the fact that non-empty open
subsets of Q are infinite. (On the other hand, Truss [12] points out that not all
bijections can be realized as homeomorphisms of Q, for example when T is such
that ν = ζ = 0, σ12 = σ18 = ω, σ36 = 1 and σn = 0 otherwise.)

In a private communication, W. N. Everitt asked how specific the spaces con-
structed in the proof of Theorems 2.2 of this result were to the function T . This
question and the other results mentioned above raises the question of the existence
of universal spaces for certain types of abstract dynamical system. The character-
ization in Theorem 2.4 for the rationals is in terms of the behaviour of the fixed
point sets, the characterization in 2.3 for separable metric spaces is in terms of the
cardinality X, and the characterization in 2.2 for metric compacta is in terms of
the orbit structure of the function. All three of these, for bijections at least, can
be expressed in terms of the orbit spectrum of the function, and so we focus on
universal spaces for the set of admissible spectra of homeomorphisms.

3. Universal Spaces for Homeomorphisms of Small Compact Metric
Spaces

It is well known (see [4]) that a compact metric spaces is either countable or has
cardinality the continuum. If X is a set of cardinality k for some k ∈ N, then the
discrete topology is the unique topology with respect to which X is compact metric
and any bijection of X will then be a homeomorphism, so X is then universal for
homeomorphisms of metric compacta of cardinality k. A more interesting situation
occurs when X is countable. We have the following theorem.

Theorem 3.1. No space is universal for homeomorphisms of countably infinite
metric compacta.

Proof. Recall that the Cantor-Bendixson derivative of a subset A of a topological
space X is the set A′ of limit points of A. Let X(0) = X. Given X(α), for any
ordinal α, define X(α+1) = X(α)′. Given X(β), for all ordinals β < λ, and λ a limit
ordinal, define X(λ) =

⋂
β<λX

(β).
Now suppose that X is countable, compact metric space. It is a well-known fact

(see [4]), that a countable compact metric space is homeomorphic to a compact
subset of the rationals with their usual topology. Such spaces are scattered, which
is equivalent to saying, at least in the compact case, that for some ordinal α, X(α)

is finite and X(α+1) is empty. (In the case of countable, metric compacta, α will
be a countable ordinal.) Let us suppose that X(α) has k points.

Since being a limit point is preserved by homeomorphism, any homeomorphism
T of X will permute X(α). But this implies that T must have an m-cycle for
some m ≤ k. On the other hand there are homeomorphisms of countable metric
compacta which do not have m-cycles for any m ≤ k. See for example Lemma 4.3.
Thus X is not universal. �
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4. A Universal Space for Homeomorphisms of Metric Compacta with
Cardinality c

In this section we construct a universal compact metric space X for bijections
that can be realized as homeomorphisms of metric compacta. The space X is a
compact subset of a family of concentric circles in the complex plane C. We will
express it as the union of two compact subsets of C, Y and Z, where Y ∩ Z is the
unit circle centered at the origin.

The following notation will be helpful in what follows. Recall that a subset A of
X is said to be invariant under T : X → X if and only if T (A) ⊆ A.

Definition 4.1. Let T : X → X and S : Y → Y be functions such that X − Y is
invariant under T , Y − X is invariant under S, X ∩ Y is invariant under both S
and T , and T (x) = S(x) for all x ∈ X ∩ Y . We define

T ∨ S(x) =


T (x) if x ∈ X,
T (x) = S(x) if x ∈ X ∩ Y,
S(x) if x ∈ Y.

The proof of the next lemma is straightforward.

Lemma 4.2. Let T : X → X and S : Y → Y be functions such that X − Y is
invariant under T , Y −X is invariant under S, X ∩ Y is invariant under both S
and T , and T (x) = S(x) for all x ∈ X ∩ Y . Suppose that

(1) σ(T �X−Y ) = (ν1, ζ1, σ1
1 , σ

1
2 , . . . ),

(2) σ(T �X∩Y ) = σ(S �X∩Y ) = (ν2, ζ2, σ2
1 , σ

2
2 , . . . ),

(3) σ(S �Y−X) = (ν3, ζ3, σ3
1 , σ

3
2 , . . . ),

Then

σ(T ∨ S) =
(
(ν1 + ν2 + ν3), (ζ1 + ζ2 + ζ3), (σ1

1 + σ2
1 + σ3

1), . . .
)
.

The space Y is constructed to consist of a sequence of concentric circles converg-
ing to the unit circle. Y will have the following property: if σ = (0, ζ, σ1, σ2, . . . )
is a sequence of cardinals such that ζ and each σn is either 0 or c, then there is a
homeomorphism of Y with σ(T ) = σ.

The space Z is constructed to consist of the unit circle together with a count-
able collection of isolated copies of the convergent sequence {0} ∪ {1/n : 1 ≤
n ∈ N} whose union is dense in Z. Z will have the following property: if σ =
(0, ζ, σ1, σ2, . . . ) is a sequence of cardinals with exactly one of ζ or σn, n ∈ N, equal
to c and all others finite or equal to ω, then there is a homeomorphism T of Z with
σ(T ) = σ.

The space X is the space formed by taking the union of Y and Z, applying
Lemma 4.2. It is then easy to see that X then has the following property: if
σ = (0, ζ, σ1, σ2, . . . ) is a sequence of cardinals such that ζ and each σn are either
finite, equal ω or equal to c and ζ +

∑
n∈N σn = c, then there is a homeomorphism

T of X with σ(T ) = σ.

For each d > 0, let Sd = {z ∈ C : |z| = d} and, for each n ≥ 1, let

En = S1+1/2n ∪

 ⋃
j>n+1

S1+1/2n+1/2j

 .
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For z ∈ S1, let Lz be the ray passing from the origin through z. Let D = {dn : 1 ≤
n} be a countable dense subset of S1.

For R = {r} ∪ {rn : 1 ≤ n}, where {rn : 1 ≤ n} is an increasing sequence of
positive reals converging to r, we define

YR = Sr ∪

(⋃
n∈N

Srn

)
.

In particular, we define
Y = Y{1}∪{1−1/2n:1≤n}.

Clearly Y is a compact subset of C.
For a sequence F = {Fn : n ≥ 1} of subsets of S1, let

ZF = S1 ∪
⋃
n≥1

⋃
z∈Fn

En ∩ Lz.

In particular, we define
Z = ZD

where D = {{dn} : dn ∈ D}. Notice that if z ∈ S1, then Lz ∩ En consists of the
sequence of points {(1 + 1/2n + 1/2j)z : n + 1 < j} together with its limit point
(1 + 1/2n)z. Hence Z consists of the unit circle and an isolated sequence of copies
of the convergent sequence {0} ∪ {1/n : 0 < n} whose union is dense in the space.
Since, for any ε > 0, only finitely many copies of the convergent sequence contain
points of Z that lie distance more than ε from S1, Z is a compact subset of C.

The space X, then is defined by

X = Y ∪ Z

= S1 ∪
⋃
1≤n

S1− 1
2n

∪
⋃
1≤n

(
{(1 + 1/2n + 1/2j)dn : n+ 1 < j} ∪ {(1 + 1/2n)dn}

)
.

Since Y and Z are both compact, X is also compact.

Let W = {0} ∪ {1/n : 1 ≤ n} inherit the usual Euclidean topology from R, and,
for each n ∈ N, let n = {0, 1, . . . , n−1} have the discrete topology. Let Wn = W×n
have the Tychonoff product topology so that it consists of n disjoint copies of the
convergent sequence W .

Lemma 4.3. (1) There is a homeomorphism T of Wn such that each point of
Wn lies in an n-cycle.

(2) For each 1 ≤ k ≤ ω, there is a homeomorphism T of Wn such that {(0, j) :
0 ≤ j < n} forms an n-cycle and all other points lie in one of k many
Z-orbits.

Proof. For (1), we write Wn = {(0, j) : 0 ≤ j < n} ∪ {(1/k, j) : 1 ≤ k, 0 ≤ j < n}.
The map T : Wn →Wn define by T (x, j) = (x, j + 1), where j + 1 is taken modulo
n is clearly a homeomorphism of Wn whose only orbits are n-cycles.

For (2) we express Wn in a slightly different, but equivalent, form:

Wn = {(0, j) : 0 ≤ j < n} ∪ {(l,m, j) : l ∈ Z,m ∈ N, 0 ≤ j < n}.
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Points of the form (l,m, j) are isolated and basic open neighbourhoods of (0, j)
take the form {(0, j)} ∪ {(l,m, j) : l,m ∈ Z − F}, where F is a finite set. Define
T : Wn → Wn by T (0, j) = (0, j + 1), where j + 1 is taken modulo n, T (l,m, j) =
(l,m, j + 1), where j < n − 1, and T (l,m, n − 1) = (l + 1,m, 0). Then T is a
homeomorphism of Wn consisting of one n-cycle, {(0, j) : 0 ≤ j < n}, and ω many
Z-orbits, one for each m ∈ N. Restricting T to

W ′n = {(0, j) : 0 ≤ j < n} ∪ {(l,m, j) : l ∈ Z, 0 ≤ m < k, 0 ≤ j < n},
which is homeomorphic to Wn, yields a homeomorphism with one n-cycle and k
many Z-orbits. �

The proof of the following lemma is obvious.

Lemma 4.4. Suppose that R′ and R = {r}∪{rn : 0 ≤ n} are sets of positive reals,
that R′ is finite and that rn → r as n→∞. Then YR ∪

⋃
r∈R′ Sr is homeomorphic

to Y .

Lemma 4.5. Suppose that:
(1) F = {Fn : 1 ≤ n} is a sequence of subsets of S1 such that each Fn is finite

and
⋃

1≤n Fn is dense in S1.
(2) G = {zn ∈ C : n ∈ N} is a (possibly finite) sequence of points such that

G is disjoint from ZF , 1 < |zn| for each n ∈ N but that, for each ε > 0,
{n ∈ N : 1 + ε < |zn|} is finite.

(3) N = {nj ∈ N : j ≤ k}, is a finite subset of N, that is possibly empty and
possibly has repetitions. For each j ≤ k, let W (j) be a distinct copy of Wnj

in C disjoint from ZF ∪G.
Then the free union ZF ∪G ∪

⋃
j≤kW (j) is homeomorphic to Z.

Proof. It is routine to show that Z is homeomorphic to a free union of itself together
with a finite number of distinct points and a finite number of distinct copies of the
convergent sequence W . Hence we may assume that G is infinite and N is empty.

Claim 1. There is a homeomorphism f of C that maps ZF onto Z.

To see this, we first note that S1 is countably dense homogeneous [2], which is to
say that for any two countable dense subsets A and B of S1, there is a homeomor-
phism of S1 which maps the set A to the set B. Let f be such a homeomorphism
of S1 taking

⋃
1≤n Fn to D. The function f extends to a homeomorphism f∗ of the

complex plane by defining f∗(rz) = rf(z) for each non-negative real r. Note that
for all z ∈ C, |z| = |f∗(z)|.

The image f∗(ZF ) of ZF has the following property: for z /∈ D, Lz ∩ f∗(Z) =
Lz ∩ S1 = {z}, whereas, for z ∈ D, Lz ∩ f∗(ZF ) consists of the point z itself and
a single copy of a convergent sequence together with its limit point. Specifically, if
z = dm ∈ D, then there exists an n ∈ N and w ∈ Fn such that dm = f∗(w), and

Ldm
∩ f∗(ZF ) = {dm} ∪ {(1 + 1/2n + 1/2j)dm : n+ 1 < j} ∪ {(1 + 1/2n)dm}.

On the other hand,

Ldm ∩ Z = {dm} ∪ {(1 + 1/2m + 1/2j)dm : m+ 1 < j} ∪ {(1 + 1/2m)dm}.
To complete the proof of the claim, we argue that we can ‘slide’ each Ldm

∩f∗(ZF )
along the ray Ldm

so that it is mapped bijectively onto Ldm
∩Z. But, for any ε > 0,



8 C. GOOD, S. GREENWOOD, B.E. RAINES, AND C. SHERMAN

there are only a finite number of points z ∈ D for which the compact set Lz∩f∗(ZF )
is not a subset of {z ∈ C : |z| ≤ 1 + ε}. Hence, there is a homeomorphism, h, of
C that fixes S1 and maps each Lz ∩ f∗(ZF ) onto Lz ∩ Z. The claim is proved by
setting f = h ◦ f∗.

Now consider the image Z ∪ f(G) of ZF ∪G under f . That G′ = f(G), satisfies
Condition (2) of the Lemma with respect to Z is routine. The following claim will,
therefore, complete the proof of the Lemma.

Claim 2. Z ∪G′ is homeomorphic to Z

Let G′ = {z′n : n ∈ N}. We prove the claim in two stages. Recall that for each
dm ∈ D, Z∩Ldm

consists of a convergent sequence of points together with the point
dm lying on the unit circle. First we perturb each z′n in G′ to the point |z′n|dmn

lying on the ray Ldmn
, dmn ∈ D, so that it lies just further from the origin than

the points of the convergent sequence. Then we shuffle the points of the convergent
sequence along the ray to accommodate the point |z′n|dmn

, much in the same way
that the map 1/n 7→ 1/(n+1) shuffles {0}∪{1/n : 1 ≤ n} onto {0}∪{1/n : 1 ≤ n}.

Note that for each 1 ≤ m and each dm ∈ D, if w ∈ Em ∩ Ldm
, then |w| <

1 + 1/2m−1. For each z′n ∈ G′, we inductively choose mn ∈ N as follows:
(a) mj < mn for all j < n;
(b) 1 + 1/2mn−1 < |z′n|;
(c) | arg(z′n)− arg(dmn

)| < | arg(z′n−1)− arg(dmn−1)| < 1/2n−1.
Define the map h′ : Z ∪G′ → C by

h′(z) =

{
z if z ∈ Z,
|z′n|dmn

if z = z′n.

Since, for any ε > 0, h′ moves only finitely many points a distance more than ε, and
the set of points that are moved by h′ converge to points in S1, a compact subset
of C, h′ extends to a homeomorphism of C. Let Z ′ = h′(Z ∪ G′). Notice that for
each m ∈ N, if m 6= mn, for any n, then Z ′ ∩ Ldm

= Z ∩ Ldm
. On the other hand,

if m = mn, for some n ∈ N, then

Z ′ ∩ Ldm = (Z ∩ Ldm) ∪ {|zn|dmn} where

Z ∩ Ldm
= (S1 ∪ Em) ∩ Ldm

= {dm} ∪ {(1 + 1/2m + 1/2j)dm : m+ 1 < j} ∪ {(1 + 1/2m)dm}.

Note, in particular, that Z ′ = Z∪{|zn|dmn
: 1 ≤ n}, where 1+1/2mn−1 < |zn||dmn

|.
This accomplishes our first goal of perturbing each z′n ∈ G′ onto a ray Ldmn

for
some dmn

∈ D.
Now let Z ′′ = Z ∪ {((1 + 1/2mn + 1/2mn+1)dmn

: 1 ≤ n}. It is easy to see that
there is a homeomorphism, h′′, from Z ′′ to Z. Define h∗ : Z ′ → Z ′′ by

h∗(z) =

{
z if z ∈ Z,
(1 + 1/2mn + 1/2mn+1)dmn

if z = |zn|dmn
.

Again, since, for any ε > 0, h∗ moves only finitely many points a distance more
than ε, and the set of points that are moved by h∗ converge to points in S1, a
compact subset of C, h∗ extends to a homeomorphism of C. This accomplishes our
second goal of sliding each point a little along the ray Ldmn

. It follows that there
is a homeomorphism of C that maps Z ∪G′ to Z ′′, and, as stated above, it is easy
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to see that Z ′′ is homeomorphic with Z. This completes the proof of the and hence
the Lemma. �

Definition 4.6. Let ux : C→ C, for x ∈ R, and s : C→ C be defined by

ux : reiθ 7→ rei(θ+2πx)

s : reiθ 7→ rei(θ+2πr).

The following lemma is standard (see for example [3])

Lemma 4.7. Both ux, for any x ∈ R and s are homeomorphisms of C that preserve
each circle Sr, 0 ≤ r, and fix the origin.

The orbit of a point z 6= 0 under ux is an n-cycle if x = m/n is a rational
expressed in lowest terms and is a Z-orbit if x is irrational.

The orbit of a point reiθ 6= 0 under s is an n-cycle if r = m/n is a rational
expressed in lowest terms and is a Z-orbit if r is irrational.

Lemma 4.8. Let σ = (0, ζ, σ1, σ2, . . . ) be a sequence of cardinals each of which is
either 0 or c. There is a homeomorphism T of Y such that:

(1) σ(T ) = T ; and
(2) such that the orbits of points in S1 under T are Z-orbits if ζ = c and

n-cycles if σn = c and ζ = σk = 0 for all k < n.

Proof. Suppose that J = {j : σj 6= 0} is finite. For each j ∈ J , the map u1/j

restricted to S1/j or restricted to Y is a rotation consisting of c many j-cycles. For
any irrational x, ux restricted to Y is a rotation with c many Z-orbits. The result
now follows trivially by Lemmas 4.2 and 4.4.

Suppose then that J = {j : σj 6= 0} is infinite. There are two cases. ζ = c; or
for some 1 ≤ n, σn = c and ζ = σj = 0 for all j < n. In the first case choose r to
be a positive irrational. In the second case choose r = 1/n. Indexing J (in the first
case), or J − {n} (in the second case) as {jk : k ∈ N}, so that jk < jm whenever
k < m. We can choose natural numbers pk such that pk and jk are co-prime and
|r − pk/jk| is minimal. Then pk/jk → r as k →∞. Let R = {r} ∪ {pk/jk : k ∈ N}
and let T be the restriction of the homeomorphism s to YR. Clearly σ(T ) = σ. By
Lemma 4.4, YR is homeomorphic to Y and we are done. �

Lemma 4.9. Let σ = (0, ζ, σ1, σ2, . . . ) be a sequence of cardinals such that either:
(1) ζ = c and each σn is finite; or
(2) ζ = 0, σn = c for some n and σm is finite for all m 6= n.

There is a homeomorphism T of Y ′ = S1 ∪
⋃

1≤m S1+1/2m and a compact subspace
S1 ∪G of Y ′ such that:

(a) G =
⋃

1<mGm;
(b) for each 1 ≤ m, Gm ⊆ S1+1/2m consists of σm many m-cycles under T ;
(c) the orbits of points in S1 under T are Z-orbits if (1) holds and n-cycles if

(2) holds;
(d) σ(T �S1∪G) = σ;
(e) for any ε > 0, {z ∈ G : 1 + ε < |z|} is finite; and
(f) {z/|z| : z ∈ G} is dense in S1.
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Proof. For Case (1), by Lemma 4.8, there is a homeomorphism T ′ of Y and, there-
fore a homeomorphism T of Y ′, such that σ(T ) = σ(T ′) = (0, c, c, c, . . . ), points of
S1 ⊆ Y ′ lie in Z-orbits under T and points of S1+1/2m lie in m-cycles. For each
σm 6= 0, choose a subset Gm of S1+1/2m consisting of σm many m-cycles. Oth-
erwise let Gm be empty. Let G =

⋃
1≤mGm. Clearly one may choose G so that

{z/|z| : z ∈ G} is dense in S1.
For Case (2), let σ′ = (0, 0, σ′1, σ

′
2, . . . ), where

σi =

{
0 if i < n,

σi if n ≤ i.

Arguing as for Case (1), there is a homeomorphism T ′ of Y ′ such that points of S1

lie in n-cycles and points of S1+1/2m lie in m-cycles, for all 1 ≤ m. Again we can
choose Gm ⊆ S1+1/2m to consist of σm many m-cycles and so that {z/|z| : z ∈ G}
is dense. �

Lemma 4.10. Let σ = (0, ζ, σ1, σ2, . . . ) be a sequence of cardinals all of which are
countable except for precisely one, which is equal to c. There is a homeomorphism
T of Z such that σ(T ) = σ and each point of S1 has the same orbit type under the
action of T .

Proof. Suppose that 0 < ζ < c, σn = c and that there is a homeomorphism S of
Z such that σ(S) = (0, 0, σ1, σ2, . . . ). By Lemma 4.3, there is a homeomorphism
U of Wn with exactly one n-cycle and ζ many Z-orbits. By Lemma 4.2, S ∨ U
is a homeomorphism of Z ∪Wn with σ(S ∨ U) = σ. By Lemma 4.5, Z ∪Wn is
homeomorphic to Z. Therefore there is a homeomorphism T of Z with σ(T ) = σ
and we may assume without loss of generality that either ζ = c or ζ = 0.

Suppose that J = {n : σn = ω} is non-empty but finite. Let σ′ = (0, ζ, σ′1, σ
′
2, . . . ),

where

σ′n =

{
0 if σn = ω,

σn otherwise.

Suppose that there is a homeomorphism S of Z such that σ(S) = σ′. Again,
by Lemma 4.3, there is a homeomorphism Un of Wn that consists of precisely
countably many n-cycles. It follows by Lemma 4.2 that there is a homeomorphism
T ′ of Z ∪

⋃
n∈JWn such that σ(T ′) = σ. Therefore, by Lemma 4.5, there is a

homeomorphism T of Z with σ(T ) = σ. Hence we may assume that {n : σn = ω}
is either empty or infinite. Exactly the same argument allows us to assume that if
σn = c for some n ∈ N, then {k < n : σk = ω} is empty.

Now let σ′ = (0, ζ, σ′1, σ
′
2, . . . ), where

σ′n =

{
0 if σn < ω,

σn otherwise,

and let σ′′ = (0, ζ, σ′′1 , σ
′′
2 , . . . ), where

σ′′n =

{
0 if σn = ω,

σn otherwise.

By Lemma 4.9, there is a compact subset S1 ∪G of Y and a homeomorphism U of
S1∪G such that σ(U) = σ′′ and points of S1 lie in Z-orbits of U if ζ = c or n-cycles
of U if σn = σ′′n = c. Suppose that there is a homeomorphism S of Z such that
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σ(S) = σ′. Note that the action of S on S1 consists of either Z-orbits, if ζ = c, or
n-cycles, if σn = σ′n = σ′′n = c. Hence, by Lemma 4.2, S∨U is a homeomorphism of
Z ∪G with σ(S∨U) = σ. But by Lemma 4.5, Z ∪G is homeomorphic to Z, so that
there is a homeomorphism T of Z with σ(T ) = σ and without loss of generality we
may assume that {n : σn < ω} is empty.

We are left with four cases to consider:
(1) ζ = c and σj = 0 for all 1 ≤ j;
(2) ζ = c and {j : σj = ω} is infinite;
(3) ζ = σj = 0, for j 6= n, and σn = c and
(4) ζ = σj = 0, for j < n, σn = c and {j : n < j, σj = ω} is infinite.

We deal with these in order of simplicity. For Case (3), let u1/n be the homeo-
morphism defined in Lemma 4.7 and let

Z ′ = Z ∪ u1/n(Z) ∪ · · · ∪ un−1
1/n (Z).

Clearly Z ′ is a compact subset of C with the property that all orbits under the
action of u1/n are n-cycles. On the other hand, it is easy to see that Z ′ = ZF , where
F = {Fn : 1 ≤ n} and Fn = {dn, u1/n(dn), . . . , un−1

1/n (dn)}, which is homeomorphic
to Z.

Cases (2) and (4) are similar. We prove Case (2). By Lemma 4.9, there is
compact subset of C, Z ′ = S1 ∪

⋃
1<mGm and a homeomorphism T ′ of Z ′ such

that S1 consists of Z-orbits of T ′, Gm ⊆ S1+1/2m and consists of σm many m-
cycles of T ′, and {z/|z| : z ∈ Gm, 1 ≤ m} is dense in S1. For each 1 < m, let
Fm = {z/|z| : z ∈ Gm} and let F = {Fm : 1 ≤ m}. Recall that

ZF = S1 ∪
⋃

1<m

⋃
z∈Fm

Em ∩ Lz,

where

Em ∩ Lz = {(1 + 1/2m)z} ∪ {(1 + 1/2m + 1/2j)z : m+ 1 < j}.
Define T : ZF → ZF by

T (z) =


T ′(z) if z ∈ S1,

(1 + 1/2m)
T ′(w)
|T ′(w)|

if z = (1 + 1/2m)
w

|w|
, w ∈ Gm,

(1 + 1/2m + 1/2j)
T ′(w)
|T ′(w)|

if z = (1 + 1/2m + 1/2j)
w

|w|
, w ∈ Gm,

It is routine to check that σ(T ) = σ.
Finally, for Case (1), let p be an irrational, let up be the homeomorphism defined

in Lemma 4.7 and let {zn : n ∈ Z} be a Z-orbit of the action of up on S1, indexed
so that up(zn) = zn+1, for each n ∈ Z. Let F0 = {z0} and, for each 0 ≤ n, let
Fn = {z−n, zn}. Let F = {Fn : 1 ≤ n} and let

Z ′ = ZF ∪ (E0 ∩ Lz0)

= S1 ∪ (E0 ∩ Lz0) ∪
⋃
0<n

En ∩ (Lz−n
∪ Lzn

).

Since {zn : n ∈ Z} is dense in S1, by Lemma 4.10, Z ′ is homeomorphic to Z. Note
that

E0 ∩ Lz0 = {(1 + 1/20)z0} ∪ {(1 + 1/20 + 1/2j)z0 : 1 < j}
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and, for 0 < n,

En ∩ Lz−n = {(1 + 1/2n)z−n} ∪ {(1 + 1/2n + 1/2j)z−n : n+ 1 < j},
En ∩ Lzn = {(1 + 1/2n)zn} ∪ {(1 + 1/2n + 1/2j)zn : n+ 1 < j},

Define U : Z ′ → Z by

U(z) =



up(z) if z ∈ S1,

(1 + 1/2n−1)z−n+1 if z = (1 + 1/2n)z−n, 0 < n,

(1 + 1/2n−1 + 1/2j−1)z−n+1 if z = (1 + 1/2n + 1/2j)z−n
0 < n, n+ 1 < j,

(1 + 1/2n+1)zn+1 if z = (1 + 1/2n)zn, 0 ≤ n,
(1 + 1/2n+1 + 1/2j+1)zn+1 if z = (1 + 1/2n + 1/2j)zn,

0 ≤ n, n+ 1 < j.

It is routine to check that U is a homeomorphism of Z ′ each orbit of which is a
Z-orbit. �

Theorem 4.11. Let σ = (0, ζ, σ1, σ2, . . . ) be a sequence of cardinals. There is a
homeomorphism T of X such that σ(T ) = σ if and only if

(1) ζ and each σn, 1 ≤ n, is either finite, equal to ω or equal to c, and
(2) at least one of ζ or σn, 1 ≤ n, is equal to c.

Proof. That σ(T ) satisfies Conditions (1) and (2) follows immediately from Theo-
rem 2.2. Conversely, given σ, let σY = (0, ζY , σY1 , σ

Y
2 , . . . ), where

ζY =

{
0 if ζ ≤ ω,
c if ζ = c,

and, for each 1 ≤ n,

σYn =

{
0 if σn ≤ ω,
c if σn = c,

and let σZ = (0, ζZ , σZ1 , σ
Z
2 , . . . ), where ζZ = ζ and

σZn =


c if σn = c, ζ 6= c and σk 6= c, for all k < n,

σn if σn ≤ ω,
0 if σn = c, and either ζ = c or σk = c, for any k < n.

So σY is a sequence of cardinals each of which is equal to either 0 or c. σZ is
a sequence of cardinals each of which is countable except for one element of the
sequence which is equal to c. Moreover, if ζZ = c, then ζ = ζY = ζZ = c, and if
σZn = c, then σYn = σZn = σn = c and this is the first term in the sequence σ that is
equal to c.

By Lemmas 4.8 and 4.10, there are homeomorphisms U of Y and S of Z such
that U and S agree on S1, σ(U) = σY , and σ(S) = σZ . By Lemma 4.2, T = U ∨S
is a homeomorphism of X = Y ∪ Z such that σ(T ) = σ. �
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5. A Universal Space for Homeomorphisms of Separable Metric
Spaces

Under the continuum hypothesis the space X constructed above is also univer-
sal for homeomorphisms of separable metric spaces of size continuum. We can,
however, do better.

Theorem 5.1 (c < ℵω1). There is a universal space for homeomorphisms of sepa-
rable metric spaces of cardinality c.

Proof. Let R have its usual topology, and let Z have the discrete topology. Since
c < ℵω1 , c = ℵγ for some γ ∈ ω1. Let R0 = {0} and, for each 0 < α ≤ γ, let Rα
be a subspace of R of cardinality ℵα. Then, for each α < γ, Xα = Rα × Z is a
separable metric space.

Let
X =

⋃
α≤γ

Xα

be the free topological sum of the spaces Xα, so that X has cardinality c.
Let π be a permutation of Z. If σ(π) = (0, ζπ, σπ1, σπ2, . . . ), then, for each 0 < α,

the map Tα,π : Xα → Xα defined by Tα,π(x, n) = (x, π(n)) is a homeomorphism of
Xα with orbit spectrum σ(Tα,π) = (0, ζ, σ1, σ2, . . . ) where

ζ =

{
ℵα if ζπ 6= 0,
0 if ζπ = 0,

and, for each 1 ≤ n, σn =

{
ℵα if σπn 6= 0,
0 if σπn = 0.

Let σ = (0, ζ, σ1, σ2, . . . ) be a sequence of cardinals such that ζ ∪
∑

1≤n σn = c.
Since the cofinality of c is uncountable [7], at least one term of σ is equal to c. For
each α ≤ γ, define σα = (0, ζα, σα1, σα2, . . . ) where

ζα =


ζ if α = 0 & ζ ≤ ω,
ζ if α 6= 0 & ζ = ℵα,
0 otherwise,

and, for 1 ≤ n, σαn =


σn if α = 0 & σn ≤ ω,
σn if α 6= 0 & σn = ℵα,
0 otherwise.

Let A = {α < γ : σα 6= (0, 0, 0, . . . )}. By the above, for each α ∈ A, there is a
homeomorphism Tα of Xα such that σ(Tα) = σα. Since at least one term of σ is
equal to c, σγ 6= (0, 0, 0, . . . ) and, again by the above, there is a homeomorphism Tγ
of Xγ∪

⋃
α/∈AXα such that σ(Tγ) = σγ . Let T : X → X be defined by T (x) = Tα(x)

for x ∈ Tα where α ∈ A, and T (x) = Tγ(x) for x ∈ Xγ ∪
⋃
α/∈AXα. By Lemma 4.2,

T is a homeomorphism of X with σ(T ) = σ. �

Corollary 5.2 (CH). (R − Q) ∪ N is universal for homeomorphisms of separable
metric spaces of cardinality c.
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