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Abstract. It is a well established fact that in Zermelo-Fraenkel set theory, Ty-
chonoff’s Theorem, the statement that the product of compact topological spaces
is compact, is equivalent to the Axiom of Choice. On the other hand, Urysohn’s
Metrization Theorem, that every regular second countable space is metrizable, is
provable from just the ZF axioms alone. A.H.Stone’s Theorem, that every metric
space is paracompact, is considered here from this perspective. Stone’s Theorem is
shown not to be a theorem in ZF by a forcing argument. The construction also shows
that Stone’s Theorem cannot be proved by additionally assuming the Principle of
Dependent Choice.

1. Introduction

Given an infinite set X, is it possible to define a Hausdorff topology on X such that
X has at least two non-isolated points? In ZFC, the answer is easily shown to be yes.
However, models of ZF exist that contain infinite sets that cannot be expressed as
the union of two disjoint infinite sets (amorphous sets - see [6]). For any model of ZF
containing an amorphous set, the answer is no. So, as we see, even the most innocent
of topological questions may be undecidable from the Zermelo-Fraenkel axioms alone.
Further examples of the counter-intuitive behaviour of ‘choiceless topology’ can be
found in [3] and [4].

The concept of paracompactness in a topological space was first defined by Dieudonné
in [2], in which he proved that every metrizable space that is second countable or lo-
cally compact is paracompact. The importance of paracompactness in general topol-
ogy was raised when A.H.Stone proved the theorem of the title, namely that every
metric space is paracompact [11]. Rudin later improved the proof in [10]. One no-
table point about Rudin’s proof is the very first line: ‘Let U = {Uα} be an open cover
indexed by ordinals’, an immediate use of the Axiom of Choice. Stone’s original proof
also uses Choice, but in a less obvious manner. We are therefore prompted to ask
whether this is an essential part of Stone’s Theorem: just how heavily does Stone’s
Theorem depend on the Axiom of Choice? We address this question here.

The fact that every separable metrizable space is paracompact can be proved from
ZF [4]. That every second countable metric space is paracompact, Dieudonné’s orig-
inal result, can also be so proved (but recall from [4] that there are models of ZF
containing second countable metric spaces that are not separable). However, we
show that this is not true of the general theorem: we construct symmetric models of
ZF in which there are metric spaces that are not paracompact.
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2. Symmetric models of ZF

We review some facts about symmetric models, referring the reader to [6] for further
details. Our notation follows that of [6] and [7].

Let M be a transitive model of ZFC and B a complete Boolean algebra in M. For
an automorphism π of B, we extend π to MB by induction on the rank of x ∈MB:

(1) π(0) = 0
(2) dom(πx) = {πy : y ∈ dom(x)} and (πx)(πy) = π(x(y))

It follows that π is a one-to-one function from MB onto itself and πx̌ = x̌ for every
x ∈ M. Let G be a group of automorphisms of B. A non-empty set F of subgroups
of G is called a normal filter on G if and only if for all subgroups H, K of G,

(1) if K ∈ F and K ⊆ H then H ∈ F
(2) if H ∈ F and K ∈ F then H ∩K ∈ F
(3) if π ∈ G and H ∈ F then πHπ−1 ∈ F

Let F be a fixed normal filter. For each x ∈MB, define sym(x) = {π ∈ F : πx = x}.
We say that x ∈ MB is symmetric if sym(x) ∈ F . The class HS ⊆ MB of all
hereditarily symmetric names is defined by recursion:

(1) 0 ∈ HS
(2) if dom(x) ⊆ HS and x is symmetric, then x ∈ HS

Now let G be an M-generic ultrafilter on B and iG be the interpretation of MB by
G. Define N = {iG(x) : x ∈ HS}. Then N is a symmetric extension of M and
M⊆ N ⊆M[G] . More importantly, N is a model of ZF.

3. The partial order

We use one partial order as the basis for our symmetric model constructions, namely
P = Fn(ω ×R × ω1 × ω1, 2, ω1), the set of partial functions p with |dom(p)| < ω1,
dom(p) ⊆ ω × R × ω1 × ω1 and ran(p) = {0, 1}. We define the ordering on P by
p 6 q if and only if q ⊆ p. Let B = RO(P ) in M, the complete Boolean algebra of
regular open sets of P in M.

Define the following elements of M[G] together with their canonical names:
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xnrα1 = {δ ∈ ω1 : ∃p ∈ G p(n, r, α, δ) = 1}(1)

dom(xnrα) = {δ̌ : δ ∈ xnrα}(2)

xnrα(δ̌) = sup{p ∈ P : p(n, r, α, δ) = 1} = unrαδ(3)

Xnr = {xnrα : α ∈ ω1}(4)

dom(Xnr) = {xnrα : α ∈ ω1}(5)

Xnr(xnrα) = 1(6)

Rn = {Xnr : r ∈ R}(7)

dom(Rn) = {Xnr : r ∈ R}(8)

Rn(Xnr) = 1(9)

M = {Rn : n ∈ ω}(10)

dom(M) = {Rn : n ∈ ω}(11)

M(Rn) = 1(12)

Let d(x, y) = |x−y| be the usual distance function on R that generates the Euclidean
topology (inM). Recall that if G is P-generic overM then (R)M = (R)N = (R)M[G],
where M⊆ N ⊆M[G] - see [7 7.6.14].

Theorem 1. Let M be a transitive model of ZFC. There is a symmetric extension
N of M which contains a collection of sets Rn for which there is no set S ∈ N with
∅ 6= S ∩Rn ( Rn for all n and where

⋃
Rn can be topologized as a metric space with

each Rn a connected subspace.

Proof. We define a group G and a filter F such that the names xnrα, Xnr, Rn and
M are all symmetric. Observe that every permutation π on ω × R × ω1 induces
an order-preserving 1-1 mapping on P, by (πp)(π(n, r, α), δ) = p(n, r, α, δ) and an
automorphism of B, by πu = sup{πp : p 6 u}. One can check that

π(unrαδ) = uπ(n,r,α)δ and π(xnrα) = xπ(n,r,α) . . . (†)
Let G be the group of all automorphisms of B induced by permutations of ω×R×ω1

satisfying π(n, r, α) = (n, ρ(r), α′) where π(n, r, .) is a permutation on ω1 for fixed n, r
and ρ = ρπ : R → R is either a reflection about some point xπ ∈ R, or the identity
map.

By (†), dom(πXnt) = {xπ(n,t,α) : α ∈ ω1} = dom(Xnρ(t)). It follows that, as π ∈ G
is an automorphism of B, π(Rn) = Rn and π(M) = M .

For each finite subset e ⊆ ω ×R× ω1, let fix(e) = {π ∈ G : ∀s ∈ e π(s) = s}. Let
F be the filter on G generated by {fix(e) : e ∈ [ω ×R× ω1]

<ω}.
Claim 1.1 F is a normal filter on G.
Proof: Omitted. ¤

Let HS be the set of all hereditarily symmetric names in MB. Let N be the
symmetric extension of M given by the interpretation of HS by G.

Claim 1.2 For all n, r and α, the sets xnrα, Xnr, Rn,M are in the model N .
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Proof: By (†), sym(xnrα) = fix((n, r, α)) ∈ F . Inductively, δ̌ ∈ HS for all δ ∈ ω1, so
dom(xnrα) ⊆ HS. Hence xnrα ∈ HS. Fix α0 ∈ ω1. Then

sym(Xnr) = {π ∈ G : πXnr = Xnr}
(13)

= {π : dom(πXnr) = dom(Xnr) and πXnr(πxnrα) = π(Xnr(xnrα)) = π(1) = 1}
(14)

⊇ fix(n, r, α0)
(15)

So sym(Xnr) ∈ F and dom(Xnr) ⊆ HS. Thus each Xnr is in HS. It follows that
dom(Rn) ⊆ HS and sym(Rn) = G, so dom(M) ⊆ HS and sym(M) = G. Therefore
each Rn and M is in HS. By the definition of the interpretation of MB by G, we
have xnrα, Xnr, Rn,M ∈ N . ¤
Claim 1.3 There is no function f ∈ N such that dom(f) = M and f(Rn) is a
proper non-empty subset of Rn for each n.
Proof: Assume there is such an f ∈ N . Let f be a symmetric name for f and let
p0 ∈ G be such that

p0 ° (f is a function) and (∀ň ∅ 6= f(Rn) ( Rn).

Let e be a finite subset of ω ×R × ω1 such that fix(e) ⊆ sym(f). Pick n ∈ ω such
that e ∩ ({n} ×R× ω1) = ∅. Then there are r, s ∈ R and p 6 p0 such that

p ° Xnr ∈ f(Rn) and Xns /∈ f(Rn).

Fix these n, r, s and p. Pick ε ∈ ω1 such that for all α > ε and all t and δ, (n, t, α, δ) /∈
dom(p). Let ρ be the reflection of R about the point r+s

2
, so ρ(r) = s and ρ(s) =

r. The set of ordinals [0, ε] and (ε, 2ε] are order isomorphic. Let φ be the order
isomorphism: φ(0) = ε + 1, φ(ε) = 2ε, φ(ω) = ε + ω and so on, and let π ∈ G be the
permutation on ω ×R× ω1 defined by

π(m, t, α) =





(m, t, α) m 6= n

(n, ρ(t), φ(α)) m = n, α ∈ [0, ε]

(n, ρ(t), φ−1(α)) m = n, α ∈ (ε, 2ε]

(n, ρ(t), α) m = n, α > 2ε

Then π has the following properties:

(1) πf = f - after all, by the definition of e and the choice of n, π ∈ fix(e).
(2) πXnt = Xnρ(t).
(3) πp and p are compatible elements of P. If (m, t, α, δ) ∈ dom(p)∩ dom(πp) for

m 6= n, then (πp)(m, t, α, δ) = p(m, t, α, δ) by definition of π. If (n, t, α, δ) ∈
dom(p)∩dom(πp), then (π−1(n, t, α), δ) ∈ dom(p), πp(n, t, α, δ) = p(π−1(n, t, α), δ)
and α < ε. But π−1(n, t, α) = (n, ρ(t), φ−1(α)), so

πp(n, t, α, δ) = p(π(n, ρ(t), φ−1(α)), δ) = p(n, t, α, δ).
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To establish the Claim, notice that, by (iii), πp ∪ p is a well-defined extension of
p. But πp ° π(Xnr) ∈ πf(π(Rn)) and π(Xns) /∈ πf(π(Rn)). So, by (i) and (ii),
πp ° Xns ∈ f(Rn) and Xnr /∈ f(Rn). Therefore

πp ∪ p ° (Xns /∈ f(Rn)) and (Xns ∈ f(Rn)).

This is a contradiction. ¤
The reader should observe from Claim 1.3 that functions such as f(Rn) = {Xn0},

where 0 is the additive identity on R, have no symmetric name and hence are not in
N .

Claim 1.4
⋃

Rn can be given a metrizable topology where each Rn is connected.
Proof: Consider the following elements of M[G]:

dn = {(Xnr, Xns,
d(r, s)

1 + d(r, s)
) : r, s ∈ R}(16)

D = {dn : n ∈ ω}(17)

E = {(Xnr, Xms, 1) : n 6= m and r, s ∈ R}(18)

One can check that each of these sets has a symmetric name and hence are elements
of N . E ∪⋃

D defines the required metric on
⋃

Rn in N . This completes the proof
of Theorem refmain. ¤

We now use the collection M ∈ N to construct a space contradicting Stone’s
Theorem.

Theorem 2. It is consistent relative to ZF that there is a (locally connected, locally
compact) metric space that is not paracompact.

Proof. Let M = {Rn : n ∈ ω} be the collection of sets constructed in Theorem
1. As above, X =

⋃
M is a metric space (the reader may like to check that it is

locally compact and to compare this with the results of [2]). We show that X is not
paracompact.

Define an open cover U = {Bε(x) : x ∈ Rn, ε ∈ R and n ∈ ω}. Suppose U had a
locally finite open refinement, V . Let S = {x ∈ X : ∀V ∈ V x /∈ V − V } and, for
n ∈ ω, let Sn = S ∩Rn. We claim that Sn is a proper subset of every Rn.

Pick any x ∈ Rn and some open set W such that x ∈ W and W meets only finitely
many elements of V . Suppose that W meets precisely the sets V0, V1, . . . , Vk ∈ V .
Define a finite F ⊆ ω inductively by i ∈ F if and only if W ∩ Vi ∩

⋂{Vj : j < i, j ∈
F} 6= ∅. Let O = W ∩⋂

i∈F Vi. Then, for V ∈ V , V ∩ O 6= ∅ if and only if V = Vi

for some i 6 m. Hence (V − V ) ∩ O = ∅ for all V ∈ V , i.e. ∅ 6= O ⊆ Sn. Also, for
any V ∈ V with V ⊆ Rn, V is an open bounded subset of Rn. As Rn is connected,
there is some z ∈ V − V , i.e. z /∈ Sn.

Hence we have shown that if U has a locally finite open refinement, S has a proper
intersection with each Rn, contrary to the property of M . ¤

We record here that the Principle of Dependent Choice (DC) holds in our model,
demonstrating that Stone’s Theorem cannot be proved from ZF+DC:
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Principle of Dependent Choice: If R is a relation on a set X such that for all
x ∈ X there exists y ∈ X with xRy, then for any ζ ∈ X there exists a sequence
f : ω → X with f(0) = ζ and f(n)Rf(n + 1) for all n ∈ ω.

Theorem 3. Stone’s Theorem cannot be proved from ZF+DC.

Proof. Observe that if p0 > p1 > · · · > pn > . . . for a sequence of pn ∈ P, then there
is a q ∈ P with q 6 pn for all n ∈ ω, namely q =

⋃
n∈ω pn. We can now repeat the

proof of Lemma 8.5 in [6] to show that if g ∈M[G] is a function on ω with values in
N , then g ∈ N .

To complete the proof, suppose X ∈ N and R ∈ N is a relation on X, as in the
hypothesis of DC. Then X and R are in M[G] and, using DC in M[G], given ζ ∈ X
there is an f ∈M[G], f : ω → X, with f(0) = ζ and f(n)Rf(n + 1) for all n ∈ ω. It
follows that f ∈ N . Therefore Dependent Choice holds in N . ¤

Recall from [6] that AC is equivalent to ∀κ DCκ. By reproducing the proof of
Theorem 1 using the partial order P = Fn(λ × R × λ × λ, 2, λ) for regular λ and
by generating the normal filter with sets having support less than λ, we obtain a ZF
model of ∀κ < λ DCκ in which Stone’s Theorem fails.

Notice that an essential part of the proof of Theorem 2 is the fact that every proper
open subset of a connected space has a non-empty border.

Theorem 4. (Con ZF) There exists a zero-dimensional metric space that is not
paracompact.

Proof. Let G be the group of automorphisms of B induced by permutations π of
ω×R×ω1 satisfying π(n, r, α) = (n, σ(r), α′), where π(n, r, .) is a permutation on ω1

for fixed n, r and σ : R → R is a translation by some rational value. Let F be the
(normal) filter on G generated by {fix(e) : e ∈ [ω ×R × ω1]

<ω} and N the natural
symmetric model.

In addition to the previous elements of M[G], consider the following sets:

Qn = {Xnr : r ∈ Q}(19)

In = {Xnr : r /∈ Q}(20)

As σ is a rational shift, the Qn and In have symmetric names and hence are elements
of N .

Claim 4.1 There is no function f ∈ N such that dom(f) = ω and for all n ∈ ω,
∅ 6= f(n) ( Qn.
Proof: Follow the proof of Claim 1.3, noting that r and s can be chosen to be rational
and π ∈ G can be constructed appropriately. ¤

Notice that Q =
⋃{Qn : n ∈ ω} ∈ N .

Claim 4.2 Q is a zero-dimensional metric space.
Proof: The metric on

⋃
M induces a metrizable topology on Q. A symmetric name

exists for the linear order on Rn, so each Rn is linearly ordered in N . The base of
clopen sets {(x, y) ∩Qn : x, y ∈ In, n ∈ ω} shows that Q is zero-dimensional. ¤
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Claim 4.3 Q is not paracompact.
Proof: Let U be the open cover consisting of all open intervals with endpoints in some
Qn. Suppose V were a locally finite open refinement of U . For x ∈ Q, define the open
set Vx =

⋂{V ∈ V : x ∈ V }, ord(x) = |{V ∈ V : x ∈ V }| and V ′ = {Vx : x ∈ X}. Let
S be the set of all x ∈ Q satisfying

either (1) x ∈ Qn, ∃y ∈ Qn ord(x) 6= ord(y) and ∀z ∈ Qn ord(x) 6 ord(z)(21)

or (2) whenever x ∈ V ∈ V ′ ∃y ∈ V ∀u, v ∈ V d(x, y) > 2

3
d(u, v)(22)

Let Sn = S ∩Qn. If there are x, y ∈ Qn with ord(x) 6= ord(y), then Sn is a proper
subset of Sn. If not, the sets in V ′ meeting Qn will be pairwise disjoint, and hence Sn

will be a proper subset of Qn, because Qn is densely ordered. In any case, we have a
contradiction to Claim 4.1. ¤

4. Further research

As we observed after Theorem 3, ZF+(∀κ < λ DCκ) does not imply Stone’s Theo-
rem, for any λ. It is natural to ask, therefore, whether other weakenings of AC imply
Stone’s Theorem:

Question: Does ZF+ BPI, OP or SP imply Stone’s Theorem?

Recall from [9] that the Boolean Prime Ideal Theorem, the statement that every
Boolean algebra has a prime ideal, is equivalent to Tychonoff’s Theorem for compact
Hausdorff spaces, which is equivalent to the existence of the Stone-C̆ech compactifi-
cation for Tychonoff spaces and also to the Compactness Theorem of first-order logic.
BPI implies the Ordering Principle, OP, the statement that every set can be linearly
ordered. Note that the ZFC proof of Stone’s Theorem in [12] almost follows through
using only ZF+OP. The only part of the argument which does not extend to this
system is in showing that the locally finite refining collection of open sets covers the
space.

The Selection Principle states that for every family of sets F with at least two
elements there is a function f such that for each F ∈ F , ∅ 6= f(F ) ( F . SP follows
from AC and implies OP [6]. Clearly SP fails in any model where Stone’s Theorem
is made to fail in the way we have devised here.

As indicated by the referee, the Axiom of Choice for infinite sets of pairs, C(∞, 2),
fails in our models, and hence so do each of BPI, OP and SP, since these all imply
C(∞, 2). For instance, to see that C(∞, 2) fails in the model of Theorem 4 we argue
as follows:

If A is any subset of Qn, then fix((n, 0, α)) ⊆ sym(A) for any α, since π(n, r, α) =
(n, r, α′) for any π ∈ fix((n, 0, α)). Hence every subset of every Qn is in N . Now
if P is the set of unordered pairs {{C, D} : C, D ⊆ Qn for some n,C 6= D}, then
sym(P) = G, so P ∈ N . Suppose that f were a choice function for P with symmetric
name f and let e be a finite subset of ω ×R × ω1 such that fix(e) ⊆ sym(f). Pick
n ∈ ω such that e ∩ ({n} × R × ω1) = ∅ and let On = {Xn,2i+1 : i ∈ Z} and
En = {Xn,2i : i ∈ Z}. Then, without loss of generality, there exists some p such that
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p ° (f is a function) and (f((On, En)) = On).

With ε and φ as in Claim 1.3, define π ∈ G by

π(m, t, α) =





(m, t, α) m 6= n

(n, r + 1, φ(α)) m = n, α ∈ [0, ε]

(n, r + 1, φ−1(α)) m = n, α ∈ (ε, 2ε]

(n, r + 1, α) m = n, α > 2ε

Now, as in 1.3, π(f) = f , π(On, En) = (On, En) and πp and p are compatible. So

πp ∪ p ° (f((On, En)) = On) and (f((On, En)) = En),

a contradiction, completing the argument. ¤
On the other hand, Proposition 5 below shows that all proofs of Stone’s Theorem

(known to the authors) actually prove a stronger conclusion which implies AC. It
is based on an idea from [1]. Let us call a refinement V of U effective if there is a
function a : V → U such that V ⊆ a(V ) for all V ∈ V . (We do not require each
a(V ) to be non-empty, but that V covers). Let us also say that a space is effectively
metacompact if every open cover has an effective point-finite open refinement.

Proposition 5. (ZF) If every discrete metric space is effectively metacompact then
the Axiom of Choice holds.

Proof. Let F be any family of disjoint non-empty sets and let X = F ∪ ⋃F have
the discrete metric. Let V be an effective point-finite open refinement of the open
cover U = {{x, F} : x ∈ F ∈ F}, with associated function a. For each F ∈ F , let
C(F ) = {V : F ∈ V }. Now each C(F ) is finite and non-empty, so f(F ) = {x :
{x, F} = a(V ), V ∈ C(F )} is a finite and non-empty subset of F , for each F ∈ F .

Thus the Axiom of Multiple Choice holds for an arbitrary collection of non-empty
pairwise disjoint sets, F , but MC implies AC in ZF [6 9.1]. ¤

Finally, it is possible to work with models of set theory with atoms, ZFA, to
construct non-paracompact metric spaces. With reference to the question above,
Mostowski has shown in [8] that SP is false in every model in which the set of atoms
cannot be well ordered.
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