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A baseB for a spaceX is said to besharpif, wheneverx € X and (By),cw iS a sequence of 22
pairwise distinct element oB each containing, the collection{( i<nBji n €w}is abase at 23
the pointx. We answer questions raised by Alleche et al. and Arhangegskil. by showing that 24
a pseudocompact Tychonoff space with a sharp base need not be metrizable and that the prgduct
of a space with a sharp base &ifd1] need not have a sharp base. We prove various metrizatigg
theorems and provide a characterization along the lines of Ponomarev’s for point countable bg;,es.
0 2002 Published by Elsevier Science B.V.
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The notion of a uniform base was introduced by Alexandroff who proved that a spage
(by which we meari; topological space) is metrizable if and only if it has a uniformy
base and is collectionwise norma][This result follows from Bing’s metrization theorem
since a space has a uniform base if and only if it is metacompact and developable. Recgntly
Alleche et al. P] introduced the notions of sharp base and weak development. Thgse
fit very naturally into the hierarchy of strong base conditions, which includes weakly
uniform bases, introduced by Heath and Lindgr&f],[ and point countable bases (seeyq
Fig. 1 below). In this paper we look at the question of when a space, with a sharp base is
42
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uniform base =
metacompact+development,

RN

development sharp base = point countable
sharp base

NN\ N

weak weakly point countable
development uniform base base

© 0O N o g b~ W N P

N T e =
A w N B O

base of
countable order

=
o O

Fig. 1. 17

18

metrizable. In particular, we show that a pseudocompact space with a sharp base nea not
be metrizable, but generalize various situations where a space with a sharp base is seen to

be metrizable. 21
22

Definition 1. Let B be a base for a space 23
24

(1) Bis said to besharpif, wheneverr € X and(B, )<, IS a sequence of pairwise distinct2s
element of3 each containing, the collection() ., B;: n € w} is a base at the point 26

Jj<n
X 27
(2) B is said to beuniformif, wheneverx € X and (B,),c, iS @ sequence of pairwise 2s
distinct elements oB each containing, then(B,),c. IS @ base at the point 29
(3) B is said to bewveakly uniformif, whenever3’ is an infinite subset oB, then(\ B’ 3o
contains at most one point. 31

(4) B is said to be aveak development B = | J,., B, eachB, a cover ofX and, 32
wheneven € B, € 3, foreachn € w, then{ﬂjgn Bj: n e w}is abase atthe point 33
34

Arhangel’ski et al. prove that a space with a sharp base has a point countable sharp
base P,4] and is meta-Lindeltf. Moreover a weakly developable space lasdiagonal 36
and a submetacompact space with a base of countable order is devel@pable [ 37
We note in passing that the obvious definition of ‘uniform weak developability’ (havirsg
abasgj = J{G,: n € »} such that eaclyr,, is a cover and whenevere G, € G,, {G,}, 3
is a base at) is simply a restatement of developability. We also note that a space with a0
disjoint base need not have a sharp base: Bennett and Ldjzerstruct a first countable 41
(and a Lindelof) example of a non-metrizable LOTS witldisjoint bases (and continuous 42
separating families), which cannot have a sharp base by Theorem 2. 43

When is a space with a sharp base metrizable? We summarize relevant the reQults of [

4,6] in the following theorem. 45
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Theorem 2. Let X be a regular space with a sharp base, th€is metrizable if any of the 1
following hold

(1) X is separable

(2) X islocally compactso a manifold with sharp base is metrizahle
(38) X is countably compact

(4) X is pseudocompactand CGCC

(5) X is a GO space.

© 0O N o g b~ W N P
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9

A space is pseudocompact if every continuous real valued function is bounded. Every
(Tychonoff) pseudocompact space with a uniform base is metrizablel@8gejor [17]), 11
whilst a pseudocompact space with a point-countable base need not be mettizhble P
Moreover pseudocompact Tychonoff spaces with regiifadiagonals are metrizabléJ], 13
whilst Mrowka’sW space is an example of a pseudocompact, non-metrizable Moore space.
So itis natural to ask (se@ H]) whether every pseudocompact space with a sharp baseids
metrizable. The spacB of Example 3 shows that the answer to this question is ‘no’. I
addition, P answers a number of other questions in the negative: Alleche et al. ask whether
the productX x [0, 1] has a sharp base X does; Heath and Lindgrea ()] ask whethera 18
space with a weakly uniform base ha&&-diagonal; andP is another example (se&f, 10
19]) of a pseudocompact space with a point countable base that is not compact, ancds a
non-compact pseudocompact space with a weakly uniform base, answering questioris of
Peregudovi4]. 22

23
Example 3. There exists a Tychonoff, non-metrizable pseudocompact space with a sharp
base but without &7 -diagonal whose product with the closed unit interval does not hase
a sharp base. 26

27
Proof. Our exampleP is a modification of the example of a non-developable space with
a sharp base?]. We add extra points to a (hon-separable) metric sgaae such a way 29
that the resulting space is pseudocompact, has a sharp base but is not compact, herre not
metrizable. 31

Let B = “¢ be the Tychonoff product of countably many copies of the discrete spaee
of size continuum with the usual Baire metric. For each finite partial functien®c, let 33

[ /1 denote the basic open subsetBf 34
35

[f]:{ge“’c:fgg} 36
(so[f] is the collection of all elements @ which agree withf on domy). Note that, if 37
domf C domg, then the two basic open sdts] and[g] have non-empty intersection if 38
andonlyif f C g ifand only if [g] C [f]. If [f]1N[g] =@ then the functiong andg are 39
incompatible (we writef L g) and neitherf € g norg C f. 40

Let a

42
S={S€”(?¢): S(m) L S(n), for eachm andn},
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so that eacl$ in S codes for a sequence of disjoint basic open set8.ikEnumerateS 44
as{S,: o €} in such a way that each in S occursc times. To ensure that our space is#s

IS
a
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1 pseudocompact, we recursively add limit points (to some of) these sequences of opentsets.
2 These limit points, will have basic open neighbourhoods of the form 2
3 3
. N(at.n) = {sa} U | [Tu(m)]. .
5 mzn 5
6 WhereT, € “(=%¢) is defined depending a§),. 6
7 Suppose that for eaeh< y we have either defined if possible a sequefice “(<“c¢) 7
s  such that 8
9 9
10 (Ly) fori#j, To () L To (), 10
1 (2y) for B <y, B #a, T defined, rarT, NranTg =¥, and 11
12 (3y) for B <y, B #a, Tg defined, if T,(i) 2 Tg(j), then T, (i) L Tg(j’) for all 1
13 (@, ") # . j) 13
14 14
15 or we have not defined,. We now defineT;, . 15
16 First note that ifS;, (i) extendssS, (i), then the open SQS;, (i)]is a subset ofS, ()], S0 16
17 any limit of the sequence of open sets)/, (1)]: i € w} will also be a limit of the sequence 17
18 {[Sy()]: i €w}. 18
19 Since eaclty (j) is finite, there is somé < ¢ which is notinl {7, (j): e <y, jew}. 19
20 For eachi € w, let S)’/(i) =S, (i) {8} extendS, (i). Then for alli, j € w anda <y, 20
21 S;,(i) ¢ Ty(j) and T, (j) € S'(i) only if T, (j) € S(i). Notice that this implies that 2
2 [To()H1E [S)/,(i)] and that[S)//(i)] C[Tu(HIonlyif [S, (@) S [T ()] 22
23 Casel. Suppose that there exists some: y for which 7,, was defined, such that for 23
24 infinitely manyi € w there exists somg e w such thab‘;(i) D 8,() 2 Tx(j). Inthis case 24
25 we do not defind, (since infinitely many of the basic open s¢I ()] contain an open 25
26 set[S, ()] and the limit points, will deal with the sequencs, ). 26
27 Case2. Now suppose that case 1 does not hold and that hence 27
28 28
29 (%) for eacha < y there are at most finitely marniyfor which S;, (i) 2 Ty (j) for some;j. 29
30 30

w
s

Suppose further that for eatkC k, we have chosen natural numbers@ <ry <---<rp 31
and defined, (i) to beS)// (ri). 32

Since eaclt, (i) is a finite partial function, there are at most finitely many possible
partial functions such that < T, (i) for somei < k. By condition (3/) there are at most 34
finitely manya < y with such anf in ranT,. List thesex asa(1), ..., a(m). By (%), for 35
eacha(m), there is aj,, such that for alf > j, S;, (i) does not extend any(,)(j). Now 36
let ry11 = maxj, andT), (k +1) = S)/, (rea1). 37

We now claim that conditions €}, (2c) and (3) hold. Suppose thafg and 7, were 38
defined for some8 < « < ¢. Condition (k) is obvious since eacl, is a subsequence 39
of S, each term of which extends the corresponding terns,ofand S, is a sequence 4o
of pairwise incompatible partial functions.c)zholds since, if8 < «, then the extension a1
S)/, (i) was chosen to ensure tHat(j) 2 S, (i) foranyj, soin particulafg (j) # T, (i) and 42
ranTg NranT,. To see that (3 holds, note first tha), (/) was chosen so th&f, (i)  Ts(j) 43
for any j, which implies that?, (i) ¢ Ts(j) for any (i, j). On the other hand, suppose that4
i is least such that for somg T(j) € T, (). If k > i, thenTy (k) = S/, (rx) andry was 45

AD A B D OB WOoW W oW oW W oW W
O F W N P O © ® N & 0o &~ XN



ARTICLE IN PRESS

S0166-8641(01)00300-5/FLA AID:2082 Vol.eee(eee) P.5 (1-10)
ELSGMLTM(TOPOL) :mla 2001/12/20 Prn:22/12/2001; 14:31 TOP2082)y:Violeta p- 5

C. Good et al. / Topology and its Applicationge (eeee) see—see 5

chosen precisely so thaf (r¢) 2 Tg(l) for anyl € w. Moreover, there can be at most one 1
such thally (i) 2 Tg(j), since by (%), Tg(j) L Tg(l), j #I. This completes the recursion. 2

Let L = {s4: T, has been defingéde a set of pairwise distinct points disjoint frobn 3
and letP = B U L. We topologizeP by letting B be an open subspace with the usuat
Baire metric topology and declaring théh basic open set about the poigtto be the set 5
N(@,n) = {52} U U, su [ Tu(m)]. :

If 7, ={[T,(n)]: n € w}, then condition (&) ensures that each, is a pairwise disjoint 7
collection, (2) ensures that each basic open [s&f occurs in at most on&,, and (3) 8
ensures that itV(«, n) meetsN (8, m), thenN(a,n) N N(B,m) = [T,(j)1 N [Tg(k)] for °
somej > n andk > m. 10

That P has a sharp base follows exactly as for the example due to Alleche et #zLet!?
be a sharp base f@ and letB = Bg U{N («, n): s, € L andn € }. SUppose € (|, Bx
for some (injective) sequendd; € B: k € w}. SinceBp isasharpbaseang e Ne 5 13
if and only if N = («, n) for somen, the only case that is not obvious is wher B and 4
By = N(ay, my) for all but finitely manyk. But in this case condition ¢3implies that, for 15
n>1, ﬂkgn By = ﬂkgn[Tak (jx)]. Moreover (2) implies thatTy, (ji) # Tw,, (i), SO that 16
{ﬂk@ By: n € w} contains a strictly decreasing subsequence and is therefore a hase at

Since the sefs,: o € ¢} is infinite, closed discrete? is not compact. On the other hand,*®
P is pseudocompact (sB is not metrizable). To see this, suppose ipas a continuous *°
real-valued function orP taking values iffn, o) for eachn € w. SinceB is dense inP, 20
for eachn € w, there is some, in B such thatp(x,) > n. By continuity, {x,: n € 0} %
does not have a limit point iB. Sinceg is continuous and3 is metrizable, there are 22
basic open setgf,] for eachn € w such thatx, € [f,] € ¢ 1(n,00) and{[f,]: n € w} =
is a disjoint collection. But in this casg, L f,, whenn # m so that{f,: ncw} =S, %
for somea € ¢. In which case, eithes,, and7,, were defined ok, was not defined and, #
for someB < «, Tp(j) < Sy (n) = f, for infinitely manyn. In the second case, each basi¢®
open neighbourhood (8, n) of sz contains infinitely many of the sefg;, 1. In the first 27
case,T, was chosen so thd, (i) 2 f,, for eachi € w, so that[T,(i)] C [f,,]. In either 28
case, each neighbourhoodsf or s, contains points which take arbitrarily large value§9
underg, contradicting continuity.

Now suppose for a contradiction th&tx [0, 1] has a sharp base. We shall show that*
this would imply thatP has ao-point finite base, which is impossible since Uspehigki] ~ *
shows that a pseudocompact space withoint finite base is metrizable. 3

To this end, le®V be a sharp base fa? x [0, 1] and letC be a countable sharp base*
for [0, 1]. For eachy in L chooseW? in W, B} in B (the sharp base faP), andC¥ in  *
C such thatB; x C;y € W;y, {W;': n € w} (and hencgB; x C;: n € w}) is a base at the
point (x, 1/2) andWy N (L x [0, 1]) € {x} x [0, 1], which is possible sincé is a closed
discrete subset af.

Let Bc ={B € B: for somen € w and somer € L, B= B andC = C;}. If B¢ is not
point finite then for some in P, y € (1, B; for some pairwise distincB; € Bc. By
definition, for eachy there is some; € L andn; € » such thatB; = B,/ andC = C,’.
But then

0 x €S [ (Ba] x Cu)) S [ W) “

JEw jew
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SinceB; # By, either there is an infinite sgtC w such thatc; # xi, for distinctj, ke J, 1
or there is an infinite sek C w such thatx; = x; = x butn; # n; for somex € L and 2

distinct j, k € K. In the first case{W,f]: J € J} is a pairwise distinct subset of the sharp?

1
2
3
: baseyv and(;, W,)f_-/." contains at most one point. In the second case :
6 () (B x C3F) = (x.1/2). 6
7 keK 7
z since{B; x C}: n € w} is a base afx, 1/2). In either case{y} x C contains at most one z

point, which is not the case, aiff} is point finite.

Since{B; x C;: n € w} is a base atx, 1/2) andC is countable3 = | J-.-Bc is a
o -point finite base for points of.. But P = B U L and B is a metric space, s& has a
o-point finite base: a contradiction.

By Theorem 4,P does not have & diagonal, nor indeed is it submetacompact. W%j
also note thaP is dense-in-itself. O

i
o

10

i
[N

11
12

e =
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15
So when is a pseudocompact space with a sharp base metrizable? As mentioned akove,

a pseudocompact, CCC regular space with a sharp base is metrizablecprem 2] 17
Pseudocompact, Moore spaces &€C. Moreover, in proving that a psgocompact 1s
Tychonoff space with a regulaFs-diagonal is metrizable, McArthurlB] proves that a 19
pseudocompact space withGg-diagonal is developable. Hence we have 20

21
Theorem 4. A pseudocompact regular spa&ewith a sharp base is metrizable if either of »,

NNN R R R e
N B © © ® N O

23 the following hold 23
24 24
25 (1) X is developable, or 25
26 (2) X has aGj}-diagonal. 26

N
BN

o 27
A pseudocompact space withG-diagonal isCech complete4, Lemma 2(, hence g

Baire, so the following theorem is a strengthening of Theorem 214pfA space is
strongly quasi-complete if there is a mgpassigning to each € X andn € w an open
setg(n, x) containingx such that{x,} clusters atx whenever{x, x,,} C ﬂign g,y 4
Weakly developable spaces are clearly strongly quasi-complete. 2

W W W W NN
W N B O ©

33
Theorem 5. A regular, locally CCC, locally Baire space with a sharp base is metrizable.,,

w W
a b

Proof. Let X be a regular, locally CCC, locally Baire space with a sharp base. Sinche
X has a weak development, it is strongly quasi-complete. Had#lghows that every .
regular, quasi-complete CCC Baire space with eithéfsadiagonal or a point countable
separating open cover is separable. Sikceas a sharp bas& has a point countable
base, aGs-diagonal and is quasi-complete. Henkeis locally separable. But every
locally separable regular space with a point countable base is a disjoint union of clogen
subspaces each of which has a countable base (see Theorem )2 bfehce X is
metrizable. O
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A space isw1-compact if every subset of cardinaligyy has a limit point. Generalizing 44
the fact that a countably compact space with a sharp base is metrizable we have: 45

P
o b
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1 Theorem 6. A regular,w1-compact space with a sharp base is metrizable. 1
2 2
% Proof. SinceX is wi-compact, every point-countable open coverX¥ohas a countable 3
4 subcover 9, Lemma 7.k Since X has a sharp base, it has a point countable base ahd
> therefore is Lindeldf. A metacompact space with a sharp base is developphia[so a °
®  Lindelof space with a sharp base is metrizables

7 7
8 Not surprisingly a monotonically normal space with a sharp base is metrizables]c.f.4
9 whereitis shown that a GO-space with a sharp base is metrizable). 9
10 10
1 Theorem 7. For a monotonically normak space the following are equivalent 1

o
N

12
13

[
w

(1) X is metrizable

(2) X has a sharp base

(3) X has a weak development

(4) X is strongly quasi-complete

(5) X has a base of countable order andzg-diagonal.

i
»

14

[
ol

15

=
(2]

16

o
S

17

=
@

18
19

=
©o

Proof. Since (1) —= (2) — (3) = (4) — (5) (that (4) implies (5) follows from
Theorems 2.2 and 2.3 o8)]), it remains to show that a monotonically normal spacé’
with a base of countable order andGa-diagonal is metrizable. By the Balogh—Rudin®
theorem §], since a stationary set of a regular cardinal does not hawg-diagonal, a %
monotonically normal space with @s-diagonal is paracompact. The result then follow$®
since a paracompact space with a base of countable order is metriZjablel] 2

N N NN
a A W N B O

25

The proof thatP x [0, 1] does not have a sharp base does not quite extend to a pr&of
that if the product of a spack with [0, 1] has a sharp base théhhas ac-point finite 27

base. The converse however is easily seen to be true. 28
29

W NN
o © O N O

Proposition 8. If a spaceX has ac -point finite sharp base thek x [0, 1] has a sharp *°

base.

w
s

31
32
33

w W
w N

Proof. Suppose tha8 = | J B, is ao-point finite sharp base fak andC = | JC, is a
development fof0, 1] such that eachi, ;1 is finite and refineg,, (so thatC is also a sharp
base foi{0, 1]). For eachn e w let W, ={B x C: B € B,, C € C,} and letW =, W,.

Firstly note thatV is a base foiX x [0, 1]. If (x, r) is in some open sdf, choosen
andB € B,, such that(x,r) € B x st(r,C,) C U. Now for somek > maxX{m, n}, there is
B’ € By, x € B’ C B. But then, sinc&}, refinesC,, if r € C € Cx, B’ x C € W} and

W W W
o 0 b

36

w
J

37
38
39

AW W
o © @

(x,r) € B’ x C € B’ x st(r,Cx) € B x si(r,C,) C U. 40
41

Now suppose thatx,r) € B; x C; = W; e W for distinct W;, j € w. EachWV, isa 42
point finite family since botlB, andC, are point finite and so bofB;} jc, and{C;}jc., 43
are infinite. Since8 andC are sharp bases, this implies th}; ., B; x Cj: n € w}isa 4
base at the pointx, r) and)V is a sharp base as requireda 45
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1 Ponomarev, se®], characterized those spaces with a point countable base as precisely
2 the opens-images of metric spaces (a map issamap if it has separable fibres). There is2
3 asimilar characterization for sharp bases. 3
4 4
5  Theorem 9. A spaceX has a sharp base if and only if there is a metric spafewith s
6 a baseB and a continuous open mapping: M — X such that, whenever € X and s
7 {B, € B: n € w}is a pairwise distinct collection, iff ~1(x) N B, # @ for eachn € w, 7
s then there existsg such that for eachy € X, if f~1(y) N Bj # 9, foreachj <np, then s
o LN Bo#D. o
10 10
11 Proof. Suppose thaf is a sharp base for the spakelLet 11
12 12
1 M:{(Gn)eg‘”:xeﬂanorsomexeX} 13
14 new 14

be the subspace of the Baire metric spgtewith metricd ((G,), (H,)) = 1/2* wherekis 15
least such that, # H,. Let f : M — X be defined lettingf ((G,,)) be the unique element 16
of ,e, Gn and letB be the base foM consisting of all ¥2"-balls about points oM. 17
Then f is easily seen to be a continuous, open mapping &émd the condition o8 in 18
the statement of the theorem is merely a translation of the facGtisaa sharp base.o 19
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It is clear from the proof that, in the statement of the theorem, we cania&ede the
collection of /2" balls for anyn rather than a base fa#. Since a space with a sharp base1
has a point countable sharp base, we can also assume that the map in the statementof the
theorem is an-map. However, it is not immediately clear that we can prove that a spaée
with a sharp base has a point countable base directly from the theorem.

We conclude with some open problems. Since every collectionwise normal Moore spzéce
is metrizable, the following is a natural and intriguing question.
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Question 1. Is every collectionwise normal space with a sharp base metrizable?

w N
o ©

Example 4 of P] shows that weakly developable, collectionwise normal spaces do bt
have to be metrizable and the Heath V-space over a Q-set is an example of a normal Space
with a uniform base that is not metrizable. On the other hand, the answer is ‘yes’ if the
space is also submetacompact (since it is then a Moore space) or a strict p-space. We #hight
also ask whether a perfect, collectionwise normal space with a sharp base is metrizéble.
It is interesting to note that it is not known whether a collectionwise normal space witf°a
point countable base need be paracompact. 36

Since the Heath V-space ovenaset is countably paracompact but not nornig][at  ¥7
least consistently a countably paracompact, (Moore) space with a sharp base need 1#t be
normal. What about the converse? 39

40

Question 2. Is there a Dowker space with a sharp base? 4
42

Question 3. Is every perfect, regular space with a sharp base developable? Is every no#enal
space with a sharp base developable? Is every perfectly regular, pseudocompact space with
a sharp base metrizable? 45
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Not every Moore space with a weakly uniform base has a uniform baseZj}se jwe
ask:

Every pseudocompact space withGg-diagonal isCech complete4], and every

1
2
3
Question 4. Does every Moore space with a sharp base have a uniform base? 4
5
6
pseudocompact Moore space with a sharp base is metrizable. 7

© 0O N o g b~ W N P

Question 5. Is every(::ech complete Moore space with a sharp base metrizable? What

about Baire instead dtech complete? 10
11
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Question 6. If X x [0, 1] has a sharp base, doEshave as-point finite sharp base?

B
)

As the referee points out, the open, perfect pre-image of a space with a sharp baselﬁeed
not have a sharp base (the projection map fi®m [0, 1] to P is open and perfect), so we *
ask:

B
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16
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Question 7. Does the image of a space with a sharp base under a perfect map (cIosedLSand
open map, open map with compact, countable or finite fibres) have a sharp base? o
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