
UNCOUNTABLE ω-LIMIT SETS WITH ISOLATED
POINTS

CHRIS GOOD, BRIAN RAINES, AND ROLF SUABEDISSEN

Abstract. We give two examples of tent maps with uncount-
able (as it happens, post-critical) ω-limit sets, which have isolated
points, with interesting structures. Such ω-limit sets must be of
the form C ∪R, where C is a Cantor set and R is a scattered set.
Firstly, it is known that there is a restriction on the topological
structure of countable ω-limit sets for finite-to-one maps satisfying
at least some weak form of expansivity. We show that this restric-
tion does not hold in the case that the ω-limit set is uncountable.
Secondly we give an example of an ω-limit set of the form C ∪ R
for which the Cantor set C is minimal.

1. Introduction

Let X be a space and F : X → X be continuous. For x ∈ X, the
omega-limit set of x is the set

ω(x) =
⋂
n∈N

{F j(x) : j ≥ N}.

The topological structure of the omega-limit set of x is an indication of
the complexity of the orbit of x, and as such the topological structure
and dynamical features of omega-limit sets is the subject of much study,
[1], [2], [4], [7], [9], [11], [12], [15]. Of particular interest is the case that
X = [0, 1] and f is a unimodal map with critical point c. In this setting
we consider the omega-limit set of the critical point, ω(c). Typically
(in the sense of Lebesgue measure) the orbit of c is dense, and so
ω(c) = [0, 1], [5], but ω(c) can be much more complicated.

If the ω-limit set of a point (in particular, the critical point) of a uni-
modal map with large enough gradient is not dense, then it is totally
disconnected. By definition, these sets are compact and strongly invari-
ant (i.e. f(ω(c)) = ω(c)). So it is common to think of such ω-limit sets
as periodic orbits or invariant Cantor sets. However, there are many
more varieties. For instance a sort of in between case is the case that
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the ω-limit set is infinite yet contains isolated points. Suppose that A
is an infinite, totally disconnected, compact subset of [0, 1]. We can
get an idea of the topological structure of A by considering its iterated
derived set.

Let X be any non-empty topological space and let A be a subset of
X. The Cantor-Bendixson derivative, A′ of A, is the set of all limit
points of A. Inductively, we can define the iterated Cantor-Bendixson
derivatives of X by

X(0) = X,

X(α+1) =
(
X(α)

)′
,

X(λ) =
⋂
α<λ

X(α) if λ is a limit ordinal.

Clearly for some ordinal γ, X(γ) = X(γ+1). If this set is non-empty,
then it is called the perfect kernel and, if it is empty, then X is said
to be scattered. In the scattered case, a point of X has a well-defined
Cantor-Bendixson rank, often called the scattered height or limit type
of x, defined by lt(x) = α if and only if x ∈ X(α) \ X(α+1). The αth

level Lα of X (or, more formally, LXα ) is then the set of all points of
limit type α. Clearly Lα is the set of isolated points of X(α).

Since the collection of X(α)s forms a decreasing sequence of closed
subsets of X, if X is a compact scattered space, then it has a non-empty
finite top level X(γ) = Lγ.

We endow an ordinal (regarded as the set of its own predecessors)
with the interval topology generated by its natural order. With this
topology every ordinal is a scattered space.

The standard set-theoretic notation for the first infinite ordinal, i.e.
the set of all natural numbers, is ω. The ordinal ω+ 1, then, is the set
of all ordinals less than or equal to ω, so ω+ 1 is the set consisting of ω
together with all natural numbers. Then ω+ 1 with its order topology
is homeomorphic to the convergent sequence S0 = {0} ∪ {1/n : 0 <
n ∈ N} with the usual topology inherited from the real line. In fact
every countable ordinal is homeomorphic to a subset of Q. The next
limit ordinal is ω+ω = ω ·2. The space ω ·2 + 1 consists of all ordinals
less than or equal to ω · 2, i.e. all natural numbers, ω, the ordinals
ω + n for each n ∈ N and the limit ordinal ω · 2. The set ω · 2 + 1
with its order topology is homeomorphic to two disjoint copies of S0.
For each n ∈ N, the ordinals n and ω + n (0 < n) have scattered
height 0 in. On the other hand, ω and ω · 2 have scattered height 1,
corresponding to the fact that 0 is a limit of isolated points in S0 but is
not a limit of limit points in S0. The ordinal space ω2 +1 consists of all
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ordinals less than or equal to ω2 (namely: 0; the successor ordinals n
and ω ·n+ j, for each j, n ∈ N; the limit ordinals ω ·n, for each n ∈ N;
and the limit ordinal ω2). With its natural order topology, ω2 + 1 is
homeomorphic to the subset of the real line S = {0}∪

⋃
n∈N Sn defined

in the Introduction. In this case, the ordinals ω · n, ∈ N, which have
scattered height 1, correspond to the points 1/n, which are limits of
isolated points 1/n + 1/k but not of limit points. The ordinal ω2 has
scattered height 2 and corresponds to the point 0, which is a limit of
the limit points 1/n.

In general, the ordinal space ωα · n + 1 consists of n copies of the
space ωα + 1, which itself consist of a single point with limit type α
as well as countably many points of every limit type β with β < α.
It is a standard topological fact that every countable, compact Haus-
dorff space X is not only scattered, but homeomorphic to a countable
successor ordinal of the form ωα · n + 1 for some countable ordinal α.
Of course every countable compact metric space is also homeomorphic
to a subset of the rationals and, in this context, we can interpret the
statement that X ' ωα · n+ 1 as notation to indicate that X is home-
omorphic to a compact subset of the rationals with n points of highest
limit type α. For more on scattered spaces, see section G of [13].

If f is a unimodal map of the interval, then the ω-limit set of the
critical point is a subset of [0, 1]. In this case, ω(c) is a subset of [0, 1],
the perfect kernel exists and γ is countable. Moreover this ‘final level’
of A contains no isolated points and is either empty or a Cantor set.

We show in [11] that if A is a scattered ω-limit set of a finite-to-one
map on a compact metric space, with a weak form of expansivity, then
height of A is a countable ordinal not equal to a limit ordinal or the
successor of a limit ordinal, i.e. the empty perfect kernel cannot occur
at a limit ordinal. This result applies, for example to locally eventually
onto unimodal maps of the interval, such as tent maps with gradient
greater than

√
2. Conversely, given a compact scattered subset A of

the interval with height not equal to limit ordinal or the successor of
a limit ordinal, there is a tent map for which the ω-limit set of the
critical point is homeomorphic to A.

In this paper we address the case of non-scattered, i.e. uncount-
able, ω-limit sets that nevertheless have isolated points. Specifically,
we build an ω-limit set of a tent map such that the perfect kernel for A
occurs at a limit height (in fact height ω.) This demonstrates that the
restriction on the height of scattered ω-limit sets [11] is not valid for
uncountable ω-limit sets with isolated points. In this example the Can-
tor set perfect kernel contains a fixed point and is hence not minimal.



4 C. GOOD, B.E. RAINES, AND R. SUABEDISSEN

Therefore, in response to a question of the referee, we construct a tent
map with a critical point whose ω-limit set is the union of a minimal
Cantor set and a scattered part (consisting of isolated points) that is
dense in the ω-limit set. In such cases the scattered part is always a
dense subset of the ω-limit set.

2. The construction of a perfect kernel at level ω

In this section we construct a particular unimodal map, f , with
critical point c such that ω(c) is an infinite set with isolated points that
violates the limit height restriction on scattered ω-limit sets. We make
extensive use of symbolic dynamics and itineraries. For background
definitions and results see [6] or [10].

We begin by constructing a kneading sequence that ‘encodes’ a Can-
tor set, C ⊆ {0, 1}N, in the sense that ω(c) is made up of all the points
with itineraries in C. (As usual, {0, 1}N has the product topology, so
that two sequences are close if they agree on a long initial segment.)
Inside this Cantor set we designate a countable collection of sets, ∆n,
each of which is countable and has limit height n such that the sets
∆n accumulate on a finite collection of points in C. Then we use this
countable collection of subsets of C to encode another kneading se-
quence that also encodes C but now with homeomorphic copies of ∆n,
∆∗n, that are not in the Cantor set, but accumulate on the same fi-
nite subset of C. Since these sets are not in C we will see that the
ω-limit set of this new kneading sequence is of the form C ∪ R where
R =

⋃
n∈N ∆∗n, C is the largest Cantor set in ω(c), and for each n there

are points in R with limit type n but the points in ω(c) with limit type
ω are in C.

Let {0, 1}<N =
⋃
n∈N{0, 1}n be the collection of all finite words in

the alphabet {0, 1}. Let

A = 1051

and for every n > 5 let

Bn,0 = 10312n031

and

Bn,1 = 10312n+1031

For every γ = (γ0, γ1, . . . γk) ∈ {0, 1}<N and n > 5 let

Cn,γ = Bn,γ0Bn,γ1 . . . Bn,γk .

Extend this definition to all γ ∈ {0, 1}N in the obvious way. Notice
that the set

Γ∗n = {Cn,γ}γ∈{0,1}N
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is a Cantor set in {0, 1}N. Let

Γn =
⋃
m∈N

σm(Γ∗n)

where σ is the shift map. Then⋃
n∈N

Γn =
⋃
n∈N

Γn ∪ {σj(1k0311031∞) : 0 ≤ k, j ≤ 8} ∪ {1∞},

which is a Cantor set. The advantage of considering a countable col-
lection of Cantor sets comes later in the paper.

Let L = {Bm,0 : m > 5}∪ {104}. Let Σ be the set of all finite length
words made up of words from L. Let Σ∞ be the set of all infinite length
words of that form, and let

Σ =
⋃
n∈N

σn(Σ∞).

It is easy to see that Σ ⊆ {0, 1}∞ is a Cantor set. Since Σ is a collection
of finite length words, it is countable. Let (Ri)i∈N be some enumeration
of Σ. Enumerate {0, 1}<N by

{γj = (γj,0, γj,1, . . . γj,k)}∞j=1 = {0, 1}<N

Let S = {1n0Cn,γj : n, j ∈ N, n > 5}, and, since S is countable, let
{Sm}m∈N be an enumeration of S. Define k(m) to be the unique n such
that Sm = 1n0Cn,j for some j ∈ N. Let

Tm = (104)mRm(104)mSmB
m
k(m),0

Finally define a kneading sequence by

S = AAT1T2T3 . . .

It is easy to check that S is the kneading sequence of a tent map, f ,
see [10, Lemma III.1.6].

Theorem 2.1. Let f be the tent map with kneading sequence S and
critical point cf . Then x ∈ ω(cf ) if and only if the itinerary of x, I(x),
is a shift of one of the following:

(1) U ∈ Σ
(2) (104)K1t0Ut where Un ∈ Γn and K ∈ N
(3) (104)K1∞ where K ∈ N
(4) 1K01031∞ where K ∈ N.

Moreover, ω(cf ) is a Cantor set.

We will call the collection of all such itineraries IS.
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Proof. Notice that x ∈ ω(cf ) if, and only if every initial segment of
the itinerary of x occurs infinitely often in S. So we see that if the
itinerary of x is of one of the forms above then x ∈ ω(cf ). So suppose
that x ∈ ω(cf ). We will show that the itinerary of x, I(x), is one of
the sequences listed above.

Either every initial segment of I of I(x) occurs across the boundary
between Tm and Tm+1 for infinitely many m, or it occurs inside Tm for
infinitely many m.

In the first case, I actually occurs inBm
k(m),0(104)m+1, for large enough

m, and hence I(x) satisfies type (1). In the second case, for infinitely
many m, I occurs in words of the form

(a) (104)mRm(104)m,
(b) (104)m1k(m)0Ck(m),γj , or
(c) Ck(m),γjB

m
k(m),0.

By the definition of Σ, (a) implies that I(x) satisfies type (1). Notice
(c) is a special case of case (b), so we consider (b). As m→∞, j →∞
but k(m) can either remain fixed or increase. If k(m) is fixed, I(x) is
of type (2). If k(m) increases, I(x) is either of type (3) or (4).

Finally to see that ω(cf ) is a Cantor set, we show that it has no
isolated points. Let x ∈ ω(cf ). Since Σ is a Cantor set, if x has
itinerary in type (1), then x is not isolated. The same is true for type
(2) since Γt is a Cantor set for all t ∈ N. If x has itinerary satisfying
type (3) or (4) then it is a limit of points with itinerary in type (2).

�

For each positive integer r > 5, there is a subset ∆r ⊆ Γr which is
countable and has a single point, B∞r,0, with limit type r such that for

every x ∈ ∆r there is an integer k with σk(x) = B∞r,0. In fact we have
that ∆r is homeomorphic to the ordinal ωr + 1. So if h : ∆r → ωr + 1
is the homeomorphism we see that whenever h(x) = α then x and α
must have the same limit type. So we use ωr + 1 to index

∆r = {xr,α}α∈ωr+1.

For each r > 5 and for each α ∈ ωr + 1 there is an infinite word δr,α ∈
{0, 1}N such that xr,α = Cr,δr,α in the above notation. Let (Wr,n)n∈N
enumerate all of the finite words in points of ∆r.

In order to alter the previous kneading sequence to obtain one with
postcritical ω-limit set with the topological structure that we are after,
we will insert the finite words that make up each ∆r carefully into S in
such a way that we can see a homeomorphic copy of each ∆r isolated
from the Cantor set but limiting to one point in Γr with limit type r.
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For each r ∈ N, let pr be the rth prime number. We will insert a copy
of each finite word of ∆r sandwiched between the words

Bpnr ,0 = 10312pnr 031

and
B
pnr
n,0 = (10312n031)p

n
r .

But we need to do this in such a way that we still have Bpnr ,0B
pnr
n,0

occurring in the kneading sequence infinitely often. To accomplish
this, for each r ∈ N let (Rr,n)n∈N ⊆ (Rm)m∈N = Σ be chosen such that

(1) Rr,n contains the word Bpnr ,0B
pnr
n,0;

(2) (Rr,n)n∈N ∩ (Rr′,n)n∈N = ∅ for all r 6= r′;
(3) each Rr,n occurs infinitely often as a subword of terms in

(Ri)i∈N −

[⋃
k∈N

(Rk,n)n∈N

]
.

Let Ur,n be the word in Rr,n before the first occurrence of Bpnr ,0B
pnr
n,0,

and let U ′r,n be the word in Rr,n that occurs after the first occurrence

of Bpnr ,0B
pnr
n,0 in Rr,n. So

Rr,n = Ur,nBpnr ,0B
pnr
n,0U

′
r,n.

We alter each Rr,n by inserting

1031p
n
r 0Wr,n

in between Bpnr ,0B
pnr
n,0 and define

R′m =

{
Ur,nBpnr ,01031p

n
r 0Wr,nB

pnr
n,0U

′
r,n, if Rm = Rr,n;

Rm, otherwise.

Just as before, for each m ∈ N let

T ′m = (104)mR′m(104)mSmB
m
k(m),0

where the Sms and k(m)s are defined as above. Let

S ′ = AAT ′1T
′
2T
′
3 . . .

Again, it is easy to check that S ′ is the kneading sequence of a tent
map, g.

Theorem 2.2. Let g be the tent map with kneading sequence S ′ and
critical point cg. Then x ∈ ω(cg) if and only if the itinerary of x, I(x),
is a shift of one of the following:

(1) U where U ∈ IS
(2) 1k0xr,α for k ∈ N, r > 5, α ∈ ωr + 1
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Moreover, ω(cg) = C ∪ P where C is the largest Cantor set in ω(cg)
and P =

⋃
r>5 Pr where Pr contains points with limit type r but not

any points with higher limit type.

Proof. Clearly, if x ∈ [0, 1] and the itinerary of x is in IS then x ∈ ω(cg),
because we ensured that every word that occurred infinitely often in S
still occurs infinitely often in S ′. The new points in ω(cg) must occur
due to the changed R′ms. Note that r and n depend on m and as
m→∞, pnr →∞ which can occur in two ways: either the prs are the
same prime but with increasing powers in n or the prs are an increasing
sequence of primes.

This implies that every initial segment of I(x) occurs in infinitely
many R′ms which are of the form:

Ur,nBpnr ,01031p
n
r 0Wr,nB

pnr
n,0U

′
r,n

Since pnr →∞, |Bpnr ,0| → ∞ and |Wr,n| → ∞. So every initial segment
of I(x) occurs infinitely often in one of:

(1) Ur,nBpnr ,0;
(2) Bpnr ,01031p

n
r ;

(3) 1p
n
r 0Wr,n;

(4) Wr,nB
pnr
n,0; or

(5) B
pnr
n,0U

′
r,n.

Notice that (3) is the only possibly new form of an allowed initial
segment. Recall that the words Wr,n are finite subwords that describe
∆r. Thus I(x) = 1k0xr,α for some k ∈ N, r > 5 and α ∈ ωr + 1.

For each r > 5, let Pr = {x ∈ ω(cg) : I(x) = 1k0xr,α : k > r, α ∈
ωr + 1} and let C = ω(cg) \

⋃
r>5 Pr. Since 1k0xr,α ∈ IS if and only

if k ≤ r, we see that the Prs contain all of the points of ω(cg) that
have itineraries that are not in IS. So C is a Cantor set that contains
every point with itinerary that was an itinerary of some point in ω(cf ).
If x ∈ Pr then I(x) = 1k0xr,α with k > r and α ∈ ωr + 1. Let Vr,k
be the set of all points in ω(cg) with itineraries that start 1k010312r03

or 1k010312r+103. Each Vr,k is a subset of Pr that is homeomorphic to
ωr + 1 and is open in ω(cg) because it is a cylinder set. So we see that
C is the largest Cantor set in ω(cg), and that each Pr contains points
with limit type r and none with higher limit type. �

Thus we have constructed an ω-limit set with isolated points that
violates the restriction on ω-limit sets given in [11]. Notice that the
specific construction we employed used subsets of the Cantor set with
limit height n for each n but without anything of limit type ω. It
is easy to see that the technique can be altered to allow the subsets
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∆r have any limit type structure. Thus for every countable ordinal γ,
there exists a tent map such that ω(c) is uncountable and its perfect
kernel occurs at level γ.

3. An uncountable ω-limit set with a minimal perfect
kernel and a dense set of isolated points.

In this section we address a question of the referee by constructing
the following example.

Example 3.1. There is a tent map h with critical point ch with the
property that ω(ch) = C ∪ R where C is a minimal Cantor set and R
is a scattered set. Moreover the set R is dense in ω(ch).

To begin we let K ′ be the kneading sequence of a tent map f :
[0, 1] → [0, 1] with critical point cf such that ω(cf ) is minimal. An
example of such a kneading sequence can be found in [8], other example
are provided strange adding machines [9], [14]. Consider the inverse
limit of f , and let Fd(f) be the set of folding points in lim

←
{[0, 1], f},

[15]. It is known that Fd(f) = lim
←
{ωf (cf ), f |ωf (cf )}. Let

x̂ = (x1, x2, . . . ) ∈ Fd(f)−
⋃
n∈N

π−1
n (cf )

such that
x1 6∈

⋃
n∈N

f−n(cf ).

Then x1 has a unique itinerary made up of 0s and 1s which we denote
by If (x1), and x̂ has a unique symbolic representation, If (x̂) ∈ {0, 1}Z

where

If (x̂) = (. . . if (x3), if (x2), if (x1).if (f(x1)), if (f
2(x1)), if (f

3(x1)) . . . )

and if (z) = 0 if z < cf but if (z) = 1 otherwise.
Let V = (V −.V +) denote If (x̂) and, for each n ∈ N, let V −n .V

+
n

be the central segment of V of ‘diameter’ 2n. Notice that V −n .V
+
n is a

central segment of full itinerary of xn. Since x̂ ∈ lim
←
{ωf (cf ), f |ωf (cf )},

we see that xn ∈ ωf (cf ). Thus each V −n .V
+
n occurs infinitely often in

K ′ and we can write

K ′ = W1V
−
m1
V +
m1
W2V

−
m2
V +
m2
W3V

−
m3
V +
m3
. . .

where each Wi is a word in 0 and 1, and both |Wi| → ∞ and mi →∞
as i→∞.

Now, since K ′ is the kneading sequence for a strange adding machine,
we know that ωf (cf ) is minimal [3]. In particular, the orientation
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reversing fixed point, p, with itinerary 1∞ is not in ωf (cf ). This implies
that there is some least N ∈ N such that 1N does not occur in K ′. Let

B = 101N01

and let

K = W1V
−
m1
BV +

m1
W2V

−
m2
V +
m2
W3V

−
m3
BV +

m3
. . . .

Specifically, in K ′, replace every odd occurrence,

V −m2i−1
V +
m2i−1

with

V −m2i−1
BV +

m2i−1
.

It is easy to check that K is shift maximal and primary (see, for ex-
ample, [11] for the terminology) and is therefore the kneading sequence
of a tent map, h with critical point ch. Let x ∈ ω(ch). By construction,
there are three three possibilities for the itinerary of x:

(1) Ih(x) = If (y) for some y ∈ ω(cf );
(2) Ih(x) contains B, in which case Ih(x) = σm(V −n )BV + for some

m < n;
(3) Ih(x) = σk(BV +).

Points of type (1) give rise to a minimal Cantor set C on which h
acts in conjugate fashion to the action of f on ω(cf ). Points of type
(2) are isolated, since every itinerary containing a B terminates with
BV + (hence, any initial segment of the itinerary that contains B de-
fines an open set that contains just this point). Points of type (3) are
either isolated (in particular when k < 3, so that the itinerary contains
1N , which is always followed by 01V +) or are contained in C. Hence
ω(ch) = C ∪R, where C is a minimal Cantor set and R is collection of
isolated points.

Since the only points of ω(ch) that are not isolated are in C, by
compactness there is at least one point z ∈ C that is a limit point of a
sequence (xk) of isolated points, where (without loss) the itinerary of xk
is V −nkBV

+. Since C is minimal, for any y ∈ C and any ε > 0, there is
some m > 0 such that |hm(z)−y| < ε. This is equivalent to saying that
the itineraries of hm(z) and y agree for m′ many terms for some m′ ∈ N.
But then whenever k is chosen so that nk > m + m′, the itineraries
of hm(xk), z and y will agree for the first m′ many terms. Since its
itinerary contains B, it follows that hm(xk) is isolated and, hence, that
the isolated points of ω(ch) are dense. As the referee points out, the
scattered part of such an ω-limit set with a minimal perfect kernel will
always form a dense set. In fact this holds for any continuous function
on a a compact metric space and follows from Šarkovskii’s property of
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ω-limit sets (weak incompressibility): if F is a proper, non-empty closed

subset of an ω-limit set W , then the closure, f(W − F ), of f(W − F )
meets F (see [6]). Now if W = C ∪ R, where C is a Cantor set and
R is a scattered subset of W , then either R = W , in which case we

are done, or f(W −R) meets R. If C is a minimal Cantor set then

f(W −R) is a non-empty subset of C, so that C ∩ R is non-empty.
But C ∩R is a closed, forward invariant subset of the minimal Cantor
set C, and is therefore equal to C and indeed R is dense. This shows
the following.

Proposition 3.2. Let f : X → X be a continuous function on the
compact metric space X. If ω(x) = C ∪ R, where C is a minimal
Cantor set and R is a scattered subset of ω(x), then R is dense in
ω(x).
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