A Metrization Theorem for Pseudocompact Spaces^{*}

Chris Good and A.M. Mohamad

November 7, 2001

Abstract

In this paper we prove that a completely regular pseudocompact space with a quasi-regular- G_{δ} -diagonal is metrizable.

1 Introduction

Recently, we have considered the question of what topological properties imply metrizability in the presence of a weak diagonal property. For example, it is well-known that the existence of a quasi- G_{δ} -diagonal is sufficient for metrizability in countably compact spaces [7]. In [3] we have proven that a manifold with a quasi-regular- G_{δ} -diagonal is metrizable. In this present paper, we give a diagonal condition on pseudocompact space to get metrizability.

A countable family $\{\mathcal{G}_n\}_{n\in\mathbb{N}}$ of collections of open subsets of a space X is called a **quasi**- G_{δ} -diagonal (**quasi**- G_{δ} -diagonal), if for each $x \in X$ we have $\bigcap_{n\in c(x)} st(x,\mathcal{G}_n) = \{x\}$ ($\bigcap_{n\in c(x)} \overline{st(x,\mathcal{G}_n)} = \{x\}$) where $c(x) = \{n : x \in G \text{ for some } G \in \mathcal{G}_n\}$.

A space X has a **quasi-regular**- G_{δ} -diagonal [3] if and only if there is a countable sequence $\langle U_n : n \in \mathbb{N} \rangle$ of open subsets in X^2 , such that for all $(x, y) \notin \Delta$, there is $n \in \mathbb{N}$ such that $(x, x) \in U_n$ but $(x, y) \notin \overline{U_n}$.

A space X is called **quasi-developable** if there is a countable family $\{\mathcal{G}_n : n \in \mathbb{N}\}\$ of collections of open subsets of X such that for all $x \in X$ the nonempty sets of the form $st(x, \mathcal{G}_n)$ [i.e. the union of all sets in \mathcal{G}_n which contain x] form a local base at x.

^{*}AMS (1991) Subject Classification: 54E30, 54E35. Keywords and phrases: pseudo-compact; metrizable; quasi-developable; quasi- G_{δ} -diagonal; quasi-regular- G_{δ} -diagonal.

In this paper all spaces will be completely regular, unless we state otherwise.

2 The main results

Pseudocompact spaces were first defined and investigated by Hewitt in [4].

Definition 2.1 A space X is **pseudocompact** if every real-valued continuous function on X is bounded.

The following characterization of pseudocompactness may be found in [2].

Lemma 2.2 A space X is pseudocompact if and only if for every decreasing sequence $\langle U_n : n \in \mathbb{N} \rangle$ of nonvoid open subsets of X, $\bigcap_{n \in \mathbb{N}} \overline{U_n} \neq \emptyset$.

W. McArthur in [6] has proven the following lemma.

Lemma 2.3 Let X be a pseudocompact space. Suppose $\langle U_n : n \in \mathbb{N} \rangle$ is a decreasing sequence of open sets such that $\bigcap_{n \in \mathbb{N}} U_n = \bigcap_{n \in \mathbb{N}} \overline{U_n} = \{x\}$ for a point $x \in X$. Then the sets U_n form a local neighborhood base at x.

The proof of our main result relies on a metrization theorem.

Theorem 2.4 [3] Let X be a space with a sequence $\langle \mathcal{G}_n : n \in \mathbb{N} \rangle$ of open families such that, for each $x \in X$, $\{st^2(x, \mathcal{G}_n)\}_{n \in \mathbb{N}} - \{\emptyset\}$ [i.e. the union of all sets $st(y, \mathcal{G}_n)$ which $y \in st(x, \mathcal{G}_n)$] is a local base at x. Then X is metrizable.

Lemma 2.5 Let X be a pseudocompact space with quasi- G^*_{δ} -diagonal. Then X is quasi-developable.

Proof. Let $\langle \mathcal{V}_n : n \in \mathbb{N} \rangle$ be a quasi- G_{δ}^* -diagonal sequence for X. Without loss of generality we may assume that $\mathcal{V}_1 = \{X\}$. Set $c_{\mathcal{V}}(x) = \{n : st(x, \mathcal{V}_n) \neq \emptyset\}$. Then $\bigcap_{n \in c_{\mathcal{V}}(x)} \overline{st(x, \mathcal{V}_n)} = \{x\}$. Let \mathcal{F} denote the non-empty finite subsets of \mathbb{N} . For each $F \in \mathcal{F}$ set

$$\mathcal{G}_F = \{\bigcap_{i \in F} V_i : V_i \in \mathcal{V}_i\}.$$

We show that $\{\mathcal{G}_F : F \in \mathcal{F}\}$ is a quasi-development of X. For each $n \in \mathbb{N}, x \in X$ put $F_n(x) = c_{\mathcal{V}}(x) \cap \{1, 2, ..., n\}$. Then $F_n(x) \neq \emptyset$. Note that $st(x, \mathcal{G}_{F_n(x)}) \subseteq st(x, \mathcal{V}_m)$ for each $n \in \mathbb{N}$, each $x \in X$ and each $m \in F_n(x)$. Note also that

$$\bigcap_{n\in\mathbb{N}}\overline{st(x,\mathcal{G}_{F_n(x)})} = \bigcap_{n\in\mathbb{N}}st(x,\mathcal{G}_{F_n(x)}) = \{x\}.$$

By Lemma 2.3, $\{st(x, \mathcal{G}_{F_n(x)}) : n \in \mathbb{N}\}$ forms a local neighborhood base at x. Hence, $\{st(x, \mathcal{G}_F) : F \in \mathcal{F}\} - \emptyset$ forms a local neighborhood base at x. **Theorem 2.6** Let X be a pseudocompact space with a quasi-regular- G_{δ} -diagonal. Then X is metrizable.

Proof By Theorem 2.4, we only need to show that X has a quasi-development $\langle \mathcal{G}_n : n \in \mathbb{N} \rangle$ such that, for each $x \in X, \{st^2(x, \mathcal{G}_n)\}_{n \in \mathbb{N}} - \{\emptyset\}$ is a local base at x.

Let $\langle U_n : n \in \mathbb{N} \rangle$ be as in the definition of quasi-regular- G_{δ} -diagonal. So, the sets U_n are open in X^2 and for all $(x, y) \notin \Delta$, there is $n \in \mathbb{N}$ such that $(x, x) \in U_n$ but $(x, y) \notin \overline{U}_n$. Put $\mathcal{H}_n = \{H : H \text{ is open }, H \times H \subseteq U_n\}$. As in the proof of Lemma 2.5, let \mathcal{F} denote the non-empty finite subsets of \mathbb{N} , and for $F \in \mathcal{F}$ put

$$\mathcal{G}'_F = \{\bigcap_{i \in F} H_i : H_i \in \mathcal{H}_i\}.$$

We show that for each $x \in X$, $\{st^2(x, \mathcal{G}'_F)\}_{F \in \mathcal{F}} - \{\emptyset\}$ is a local base at x. Take any $x \in X$. For each $n \in \mathbb{N}$ put $F_n(x) = \{i : st(x, \mathcal{H}_i) \neq \emptyset\} \cap \{\underline{1, 2, ..., n}\}$. Without loss, $\mathcal{H}_1 = \{X\}$, so $F_n(x) \neq \emptyset$. We prove that $\bigcap_{n \in \mathbb{N}} \overline{st^2(x, \mathcal{G}'_{F_n(x)})} = \{x\}.$

Suppose, for a contradiction, for all $n \in \mathbb{N}$, $y \in \overline{st^2(x, \mathcal{G}'_{F_n(x)})}$ and $x \neq y$. So by the definition of quasi-regular- G_{δ} -diagonal, there is k such that $(x, x) \in U_k$ but $(x, y) \notin \overline{U}_k$.

By the same argument as in Lemma 2.5, we know that $\{\mathcal{G}'_F : F \in \mathcal{F}\}\$ is a quasi-development of X. Therefore there exists I and $J \in \mathcal{F}$ such that

$$(x,y) \in st(x,\mathcal{G}'_{I}) \times st(y,\mathcal{G}'_{J}) \subseteq X^{2} - \overline{U_{n}}.$$

Choose $m \ge \max\{I, k\}$, so that $I \subseteq F_m(x)$. It follows that $y \in \overline{st^2(x, \mathcal{G}'_{F_m(x)})}$, so $st^2(x, \mathcal{G}'_{F_m(x)}) \cap st(y, \mathcal{G}'_J) \ne \emptyset$. Then there exists, $G_1, G_2 \in \mathcal{G}'_{F_m(x)}$ and $G_3 \in \mathcal{G}'_J$ such that $y \in G_3$, $x \in G_1, G_1 \cap G_2 \ne \emptyset$ and $G_2 \cap G_3 \ne \emptyset$. Let $z_1 \in G_1 \cap G_2$ and $z_2 \in G_2 \cap G_3$. Then $(z_1, z_2) \in (G_1 \times G_3) \cap (G_2 \times G_2)$. Now, $G_1 \in \mathcal{G}'_{F_m(x)}, G_3 \in \mathcal{G}'_J$, so $G_1 \times G_3 \subseteq st(x, \mathcal{G}'_{F_m(x)}) \times st(y, \mathcal{G}'_J)$. Also, $G_2 \in \mathcal{G}'_{F_m(x)}$ and $k \in F_m(x)$, so $G_2 \subseteq H$ for some $H \in \mathcal{H}_k$. Therefore $G_2 \times G_2 \subseteq H \times H \subseteq U_k$, so $(z_1, z_2) \in U_k$.

In other words, $(z_1, z_2) \in (G_2 \times G_3) \cap U_k \subseteq (st(x, \mathcal{G}'_{F_m(x)}) \times st(y, \mathcal{G}'_J)) \cap U_k$, and this is a contradiction. Therefore, $\bigcap_{n \in \mathbb{N}} \overline{st^2(x, \mathcal{G}'_{F_n(x)})} = \{x\}$. We conclude by Lemma 2.3 that for each $x \in X$, $\{st^2(x, \mathcal{G}'_F)\}_{F \in \mathcal{F}} - \{\emptyset\}$ is a local base at x. Hence, X is metrizable.

Example 2.7 The space $E \cap [0, 1]$ of [2, Problem 3J] is submetrizable (i.e. is a space with a coarser metric topology) pseudocompact and Hausdorff. Since the space is not completely regular, it is not metrizable.

Example 2.8 The Mrowka space Ψ (see [2], [1] and [5]) is completely regular, pseudocompact and developable but does not have a quasi-regular- G_{δ} diagonal, and hence is not metrizable.

References

- D. Burke, Covering properties, Handbook of Set-Theoretic Topology, Elsevier Science Publishers (1984), 347-422.
- [2] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, N. J., 1960.
- [3] P. M. Gartside and A. M. Mohamad, Cleavability of manifolds, Topology Proc., 23 (1998), 151–166.
- [4] E. Hewitt, Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc., 64 (1948), 45–99.
- [5] K. Lee, Spaces in which compact aare uniformly regular G_{δ} , Pacific J. Math., 81 (1979), 435-445.
- [6] W. McArthur, G_{δ} -diagonals and metrization theorems, Pacific J. Math., 44 (1973), 613-617.
- [7] H. Shiraki, A note on spaces with a uniform base, Proc. Japan. Acad., 47 (1971), 1036-1041.

School of Mathematics and Statistics, University of Birmingham, Birmingham, B15 2TT, UK. c.good@bham.ac.uk

Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, Muscat, Oman. mohamad@squ.edu.om