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Abstract. We prove that if there is a model of set-theory which contains no first countable, locally
compact, scattered, countably paracompact space X, whose Tychonoff square is a Dowker space, then
there is an inner model which contains a measurable cardinal.

In this paper we always take space to mean Hausdorff topological space. A space is normal if
every pair of disjoint closed sets can be separated by disjoint open sets, and binormal if its product
with the closed unit interval is normal. A space is countably paracompact (metacompact) if every
countable open cover has a locally (point) finite open refinement. In [Dk], Dowker shows that a
normal space is binormal iff it is countably paracompact iff it is countably metacompact. A Dowker
space is a normal space that is not countably paracompact. For a survey of Dowker spaces we refer
the reader to [R].

Rudin and Starbird [RS] have shown that for normal, countably paracompact X and metrizable
M , X ×M is normal if and only if it is countably paracompact. They asked whether a product of
two normal, countably paracompact spaces could be could be a Dowker space. Bešlagić constructs
various positive answers to this question, assuming ♦ or CH, in [B1,B2&B3].

In [G] we prove that if there is a model of set theory which contains no first countable, locally
compact, scattered Dowker spaces, then there is a model of set-theory which contains a measurable
cardinal. Here we extend this result by proving that large cardinals are needed for a model in which
there is no first countable, locally compact, countably paracompact space X with first countable,
locally compact, scattered Dowker square:

1. Theorem. If no inner model of set theory contains a measurable cardinal, then there is a first
countable, locally countable, locally compact, strongly zero-dimensional, collectionwise normal, count-
ably paracompact, scattered space whose Tychonoff square is a first countable, locally compact, col-
lectionwise normal, scattered Dowker space.

Notation and terminology are standard—see [E], [K] or [KV]. We regard cardinals as initial
ordinals, and an ordinal as the set of its predecessors. We use the term club set or club to denote a
closed, unbounded subset of an ordinal—it will be clear from the context which particular ordinal
we mean. For a function f : A → B, we denote by f“C the set {f(x) : x ∈ C ⊆ A}. For a subset
A of α × β, we denote the set {γ : (∃δ)(γ, δ) ∈ A} by dom A, and the set {δ : (∃γ)(γ, δ) ∈ A} by
ranA. Following [B1], we call a subset A of κ+ × κ+ is said to be 2-unbounded if A is not a subset
of (κ+ × α) ∪ (α × κ+) for any α ∈ κ+. As usual we use the following characterization from [Dk]:
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a space is countably metacompact if and only if, for every decreasing sequence {Dn}n∈ω of closed
subsets of X, which has empty intersection, there is a sequence {Un}n∈ω of open sets, Un containing
Dn for each n, which also has empty intersection.

A stationary subset E of some uncountable cardinal λ is said to be non-reflecting if, for every
α < λ, α∩E is non-stationary in α. If E is a non-reflecting stationary subset of κ+ and α ∈ κ+, then
it is easy to see that there is a club set H = {γλ : λ ∈ θ ≤ α} of α such that H and E are disjoint,
and (γλ, γλ+1) is countable for all λ ∈ θ. In what follows we shall let E denote a non-reflecting,
stationary subset of κ+, each member of which has countable cofinality

2. Definition. ♣κ+(E, 2) is the assertion that there is a collection {Rα,i : Rα,i ⊆ α, α ∈ E ∩
lim and i ∈ 2} such that each Rα,i is an ω-sequence, cofinal in α, and {α ∈ E : Rα,i ⊆ Xi for both i ∈
2} is stationary whenever X0 and X1 are unbounded subsets of κ+.

In [G] we deduce, via [Dv], [DJ] and [F],

3. Lemma. If no inner model of set-theory contains a measurable cardinal, then ♣κ+(E, 2) for
some κ+. ¤

In the construction of the space X, we use the following two consequences of ♣κ+(E, 2).

4. Definition. ♣κ+×κ+(E, 2) is the assertion that there is a sequence {Sα,i : Sα,i ⊆ α × α, α ∈
E ∩ lim and i ∈ 2} such that Sα,i is an ω-sequence, cofinal in α × α, and {α ∈ E : Sα,i ⊆
Xi for both i ∈ 2} is stationary whenever X0 and X1 are 2-unbounded subsets of κ+ × κ+.

5 Definition. ♣∩κ+(E, 2) is the assertion that there is a sequence {Tα,i,n : Tα,i,n ⊆ α, α ∈ E ∩
lim, and i ∈ 2} such that

⋃
n∈ω Tα,i,n and each Tα,i,n and is an ω-sequence, cofinal in α, Tα,i,n∩Tα,j,m

is empty whenever i 6= j or m 6= n, and
⋂

n∈ω{α ∈ E : Tα,i,n ⊆ Xi,n, for both i ∈ 2} is stationary
whenever {Xi,n : i ∈ 2, n ∈ ω} is a collection of unbounded subsets of κ+.

6. Lemma. If ♣κ+(E, 2), then ♣κ+×κ+(E, 2) and ♣∩κ+(E, 2)

Proof. Let {Rα,i : α ∈ E ∩ lim, i ∈ 2} be a ♣κ+(E, 2)-sequence. We may assume that Rα,0 and
Rα,1 are disjoint for all α in E ∩ lim. Let f : κ+ → κ+ × κ+ and g : κ+ → κ+×ω be any bijections.
F = {α : f“α = α× α} and G = {α : g“α = α× ω} are both club in κ+.

For α in E ∩ F ∩ lim such that both f“Rα,0 and f“Rα,1 are cofinal in α × α, define Sα,i to be
the set f“Rα,i. Otherwise, for α in E, let Sα,i be an arbitrary sequence cofinal in α× α. It is easy
to see that {Sα,i : Sα,i ⊆ α× α, α ∈ E ∩ lim and i ∈ 2} is a ♣κ+×κ+(E, 2)-sequence.

If α is in E ∩G∩ lim, i ∈ 2 and n ∈ ω, let Tα,i,n be the set dom(g“Bα,i ∩ (α×{n})). Otherwise,
for α in E, let Tα,i,n be arbitrary.

To see that {Tα,i,n : Tα,i,n ⊆ α, α ∈ E ∩ lim, and i ∈ 2} is a ♣∩κ+(E, 2)-sequence, let {Xi,n}i∈2
n∈ω

be a collection of unbounded subsets of κ+, and let Xi =
⋃

n∈ω Xi,n × {n}. S = {α ∈ E : Rα,i ⊆
g−1“Xi, i ∈ 2} is stationary. If α is in S then g“Rα,i is a subset of Xi and hence S is a subset of⋂{α ∈ E : Tα,i,n ⊆ Xi,n, i ∈ 2}. ¤

Our construction is similar to that used by Bešlagić in [B1]. We define three normal topologies,
Ti, i ∈ 3, on the point set Y = κ+×ω. The topologies T0 and T1 both refine T2, which is a Hausdorff
topology, hence the diagonal ∆ of (Y, T0) × (Y, T1) is a closed subspace of X2. Our space X is the
disjoint topological sum of (Y, T0) and (Y, T1). ♣κ+×κ+(E, 2) helps to ensures that the product X2

is normal, and that ∆ is a Dowker space. Since ∆ is closed in X2, X2 is also a Dowker space. We
use ♣∩κ+(E, 2) to ensure that (Y, Ti), i ∈ 2 is countably paracompact (cf §5 [B1]).

7. Example. ♣κ+(E, 2)) There is a first countable, locally countable, locally compact, strongly
zero-dimensional, collectionwise normal, countably paracompact, scattered space X, whose Tychonoff
square is a first countable locally compact, collectionwise normal, scattered Dowker space.
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Proof. Let Y be the point set κ+ × ω, let π : Y → κ+ be the natural projection, π((α, n)) = α, and
let Π : Y 2 → κ+2 be the natural projection, Π((α, n), (β, m)) = (α, β). Let {Sα,i : Sα,i ⊆ α×α, α ∈
E ∩ lim and i ∈ 2} and {Tα,i,n : Tα,i,n ⊆ α, α ∈ E ∩ lim, n ∈ ω and i ∈ 2} be ♣κ+×κ+(E, 2)- and
♣∩κ+(E, 2)-sequences respectively. Bearing in mind the proof of Lemma 6, it is not hard to see that
we may assume that

⋃
i∈2(ran Sα,i ∪ domSα,i) and

⋃
i∈2
n∈ω

Tα,i,n are disjoint for each α in E ∩ lim.
We may also assume that each ω-sequence Sα,i is strictly increasing in both coordinates.

For each α in E ∩ lim and each i ∈ 2, partition Sα,i into ω disjoint sequences Sα,i,n, where
n ∈ ω, each cofinal in α× α. Let B(α, i, n) be the sequence dom Sα,i,n ∪ ran Sα,i,n. For each n ∈ ω,
B(α, i, n) is an ω-sequence, cofinal in α, and the collection {B(α, i, n) : α ∈ E ∩ lim, i ∈ 2} is a
♣κ+(E, 2)-sequence. Since Sα,i is strictly increasing in both coordinates, B(α, i, n) and B(α, i,m)
are disjoint whenever n 6= m. Let B(α, n) = B(α, 0, n) ∪ B(α, 1, n) and let B(α) =

⋃
n∈ω B(α, n).

Enumerate the ω-sequence B(α) increasingly as {β(α, j) : j ∈ ω}.
For i ∈ 2 let C(α, i, n) = Tα,i,n and let C(α, 2, n) = C(α, 0, n) ∪ C(α, 1, n). Let C(α) =⋃

n∈ω C(α, 2, n). Enumerate the ω-sequence C(α) increasingly as {γ(α, j) : j ∈ ω}.
By assumption B(α) and C(α) are disjoint for all α in E ∩ lim. Let A(α) = B(α) ∪ C(α) and

index A(α) increasingly as {α(k) : k ∈ ω}.
We define the topologies Ti by induction on the lexicographical order on κ+ × ω. At each stage

of the induction (α, n), and for each i ∈ 3, we define a topology Ti,α on Yα = α × ω and then a
neighbourhood base Ni(α, n) = {Ni((α, n), k)}k∈ω at the point (α, n). Our inductive hypotheses
are, for γ < β < α and i ∈ 3:

(1) Ti,β is a Hausdorff, conservative extension of Ti,γ , and Yγ+1 is a Ti,β-clopen subset of Yβ ;
(2) Ni(γ, k) is a decreasing neighbourhood base of sets which are clopen, compact and countable

under Ti,β , and are subsets of Yγ+1;
(3) Ni((β, n), k) and Ni((β, m), k) are disjoint whenever n 6= m;
(4) N0((β, n), k) ∪N1((β, n), k) is a subset of N2((β, n), k) for all k ∈ ω;
(5) if δ(n, k) = inf{π“Ni((α, n), k)}, then, for all n ∈ ω, the sequence {δ(n, k) : k ∈ ω} is cofinal

in α;
(6) for all 0 < r ∈ ω, the point (γ, 0) is a T0,β-limit of each sequence C(γ, 0, r)×{r}, a T1,β-limit

of each sequence C(γ, 1, r)× {r}, and a T2,β-limit of both sequences;
(7) if N0 ∈ N0(β, 0) and N1 ∈ N1(β, 0), then N0 ∩N1 = {(β, 0)};
(8) for all 0 ≤ p ≤ m, the point (β, m + 1) is a Ti-limit of the sequence B(α, m)× {p}.
If α = 0, let Ti,0 = ∅ and let Ni(0, n) = {{(0, n)}} for each i ∈ 3. Suppose that we have defined

Ni(β, k) for each i ∈ 3, all β ∈ α and all k ∈ ω. Define Ti,α to be the topology generated by⋃{Ni(β, k) : k ∈ ω, β < α}.
If α = β + 1 for some β, or α is not in E, then we declare the point (α, n) to be isolated and

define Ni(α, n) to be {{(α, n)}} for each i ∈ 3.
Now suppose that α is a limit ordinal in E.
First let us suppose that n = 0. The sequence C(α) is enumerated as {γ(α, j) : j ∈ ω}. Each

γ(α, j) in C(α) occurs uniquely in Tα,ij ,rj for some ij ∈ 2 and some rj ∈ ω, and is indexed as α(kj)
in A(α). By inductive hypotheses (4) and (5), whenever rj > 0, we can choose a basic open set
N2(γ(α, j), rj) from N2(γ(α, j), rj) such that

(†) π“N2(γ(α, j), rj) is a subset of the interval (α(kj − 1), α(kj)] in κ+ (by (5)).
For i ∈ 3, and each k ∈ ω, define

Ni((α, 0), k) = {(α, 0)} ∪
⋃
{N2(γ(α, j), rj) : γ(α, j) ∈ C(α, i, rj), rj > 0, j > k}.

Now suppose that n = m + 1 for some m ∈ ω. The sequence B(α) is enumerated as {β(α, j) :
j ∈ ω}, and each β(α, j) occurs uniquely in some B(α, rj), and is indexed in A(α) as α(kj). By (4),
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(5) and the fact that T2α is Hausdorff, for each β(α, rj) such that rj = m and for each p ≤ rj , we
can choose disjoint basic open neighbourhoods Ni(β(α, j), p) from Ni(β(α, j), p), i ∈ 3 of the point
(β(α, j), p) such that Ni(β(α, j), p) is a subset of N2(β(α, j), p), for each i ∈ 2, and

(‡) π“Ni(β(α, j), p) is a subset of the interval (α(kj − 1), α(kj)] in κ+.
For i ∈ 3, and each k ∈ ω, define

Ni((α, n), k) = {(α, n)} ∪
⋃
{Ni(β(α, j), p) : β(α, j) ∈ B(α, m), p ≤ m, and j > k}.

It is not hard to check that the inductive hypotheses hold
Let Ti be the topology generated by

⋃
(α,n)∈Y Ni(α, n).

Clearly both T0 and T1 refine T2, and it is not hard to check that each (Y, Ti) is Hausdorff.
Moreover, in each of these topologies, a point (α, n) of Y is either isolated or has a neighbourhood
homeomorphic to the ordinal space ωm + 1, for some m ≤ n. Therefore, for each i ∈ 3, (Y, Ti) is
regular, first countable, locally countable, locally compact, zero-dimensional and locally metrizable.

Claim 1. For each i ∈ 3 and all α ∈ κ+, the subspace Yα = α× ω of (Y, Ti) is metrizable.

Proof of Claim 1. Fix i ∈ 3. The proof is by induction so assume that Yβ is metrizable for all β ∈ α.
Since E is a non-reflecting stationary set, each of whose elements has countable cofinality, if α is

a limit ordinal (either in E or not), or α ≤ ω1, then there is a sequence {αγ : γ ∈ θ ≤ α}, which is
both closed, cofinal in α, and disjoint from E. But then

{(αγ , αγ+1)× ω : γ ∈ θ} ∪
⋃
{{αγ} × ω : γ ∈ θ}

partitions Yα into disjoint, clopen, metrizable subsets.
Now suppose that α = β +1. Without loss of generality, we may assume that β is a limit ordinal.

If β is not in E, then the two sets Yβ and {(β, n) : n ∈ ω} partition Yα into disjoint, clopen,
metrizable sets, and we are done. Assume that β is an element of E. By construction, {Nj}j∈ω,
where Nj = Ni((β, j), 1) ∈ Ni(β, j), forms a disjoint collection of clopen, metrizable subsets of Yα.
Furthermore, by † and ‡, if xj is any point of Nj , then the set {π(xj)}j∈ω forms an ω-sequence,
cofinal in β (though not necessarily indexed in increasing order), so the only possible limit point of
the sequence {xj}j∈ω is (β, k) for some k in ω, which is impossible. Therefore {Nj}j∈ω is a discrete
collection of countable, clopen sets. But now N =

⋃
j∈ω Nj and Z = Yα − N partition Yα into

disjoint, clopen, metrizable subspaces, and again Yα is metrizable.

Claim 2. Fix i ∈ 3. If H is a subset of (Y, Ti) of size κ+, then H has a limit point, and, if C and
D are closed subsets of (Y, Ti), both of size κ+, then C and D are not disjoint.

Proof of Claim 2. For any subset A of Y let A(n) = A ∩ (κ+ × {n})
Suppose that H has size κ+, then H(n) also has size κ+ for some n ∈ ω. By ♣κ+×κ+(E, 2),

B(α, n) × {n}, is contained in H(n), for some α in E, so H has (α, n + 1) as a limit point in
κ+ × {n + 1}. In fact, since κ+ is a regular cardinal, H has κ+ limit points in κ+ × {n + 1}.

Now let C and D be closed subsets of (Y, Ti) of cardinality κ+. From the previous paragraph it
is clear that |C(n)| = |D(n)| = κ+, for some n. By ♣κ+×κ+(E, 2), there is an α in E for which both
B(α, 0, n) × {n} is a subset of C(n), and B(α, 1, n) × {n} is a subset of D(n), so C and D have a
common limit point.

For each i ∈ 3, the (strong) collectionwise normality of (Y, Ti) is immediate from Claims 1 and 2:
D be discrete collection of closed sets. By Claim 2, D has size less than κ+ and there is some
successor α such that Yα contains all but at most one of the sets in D. Since Yα is clopen and
metrizable we are done.
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The strong zero-dimensionality of (Y, Ti) also follows from Claims 1 and 2: Suppose that A and B
are subsets of Y which are completely separated by the function f : (Y, Ti) → [0, 1] in that f“A = {0}
and f“B = {1}. The sets f−1“[0, 1/4] and f−1“[3/4, 1] are disjoint, closed sets containing A and B
respectively, so, as above, there is a successor α such that Yα contains A, say. Yα is a metrizable,
locally compact, zero-dimensional subspace of Y and is, therefore, strongly zero-dimensional (by
6.2.10 [E]).

Claim 3. (Y, Ti) is countably paracompact for each i ∈ 3.

Proof of Claim 3. Fix i ∈ 3. Since (Y, Ti) is normal it suffices to show that, for every decreasing
sequence of closed subsets {Dn}n∈ω of (Y, Ti) with empty intersection, there is a sequence of open
subsets {Un}n∈ω with empty intersection such that Un contains Dn.

Let {Dn}n∈ω be such a sequence of closed sets. Suppose that each Dn has size κ+, then, with
the notation used above, Claim 2 implies that Dn(k) has size κ+ for all k greater than some kn ∈ ω.
By relabelling and adding repetitions if necessary, we may assume that Dn(n) has size κ+ for all n
larger than some n0 > 0. Now, by ♣∩κ+(E, 2),

S =
⋂
n∈ω

{α ∈ E : Tα,i,n ⊆ Dn(n), i ∈ 2}

is a stationary set, and therefore non-empty. By the construction of the topology Ti, if α is in S,
then (α, 0) is in Dn for all n ∈ ω, and so

⋂
Dn is not empty—a contradiction.

Pick n0 such that |Dn| ≤ κ for all n ≥ n0. By Claim 1 there is a successor α such that Dn is a
subset of Yα for n ≥ n0. The claim follows since Yα is clopen and metrizable we are done.

Claim 4. For i, j ∈ 2, (Y, Ti)× (Y, Tj) is normal.

Proof of Claim 4. Let C and D be disjoint closed subsets of (Y, Ti) × (Y, Tj), and recall that Π :
(κ+ × ω)2 → κ+ × κ+ is the natural projection.

Suppose that both Π“C and Π“D are 2-unbounded in κ+ × κ+. There are integers m,n, j, k ∈ ω
such that Cn,k = {(γ, δ) : ((γ, n), (δ, k)) ∈ C} and Dm,j = {(γ, δ) : ((γ, m), (δ, j)) ∈ D} are both
2-unbounded. Let s = n + m + j + k + 1, so that s is strictly greater than n, m, j and k. By
♣κ+×κ+(E, 2), there is some α in E such that Sα,0 is a subset of Cn,k and Sα,1 is a subset of Dm,j .
By the definition of the sequence B(α, 0, s)

Cn,k ∩ (Bα,0,s ×B(α, 0, s))

is infinite and cofinal in (α, α). By the definition of the topologies Ti and Tj ,

C ∩ ((B(α, 0, s)× {n})× (Bα,0,s × {k}))

is cofinal in ((α, s), (α, s)), which is therefore a limit point of C. Similarly ((α, s), (α, s)) is a limit
point of D, and C and D are not disjoint.

So suppose that Π“C is not 2-unbounded. Choose γ not in E such that C is a subset of

K = ((γ × ω)× (κ+ × ω)) ∪ ((κ+ × ω)× (γ × ω))

. Since γ is not in E, K is a clopen subset of (Y, Ti)× (Y, Tj). Since E is a non-reflecting stationary
set, there is a club set H of γ, enumerated as {γλ : λ ∈ θ ≤ γ}, which misses E and such that
Gλ = {α : γλ < α < γλ+1} is countable. Now {{γλ} × ω}λ∈θ ∪ {Gλ × ω}λ∈θ partitions Yγ into
countable, metrizable, Ti-clopen subsets of Y , for i = 0 or 1. Lemma 2.8 of [B1] states that, for
normal, countably paracompact space X and a countable metric space M , X ×M is normal. It is
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easy to see, then, that K is normal. Since K is clopen, (Y, Ti) × (Y, Tj) is now, itself, seen to be
normal—proving the claim.

The proof that (Y, Ti)× (Y, Tj) is collectionwise normal is similar
Now, let X be the disjoint topological sum of (Y, T0) and (Y, T1). From the above, it is clear that

X satifies the properties listed in the statement of the Theorem 1, except that it remains to show
that X2 is not countably paracompact:

Claim 5. The closed subspace ∆ = {((α, n), (α, n)) : α ∈ κ+, n ∈ ω} of (Y, T0) × (Y, T1) is not
countably metacompact.

Proof of Claim 5. Let Dn = {((α, j), (α, j)) : α ∈ κ+, j ≥ n}, and let Un be any open subset of ∆
containing Dn. {Dn}n∈ω is a decreasing sequence of closed subsets of ∆ with empty intersection,
so it is enough to show that

⋂
Un is non-empty.

Notice that, since the sequences C(α, 0) and C(α, 1) are disjoint, the point ((α, 0), (α, 0)) is
isolated for each α ∈ κ+ (by hypothesis (7)). However, if α is a limit in E, then (α, n + 1) is both a
T0- and a T1-limit of the sequence B(α, n)×{n}. So, as {B(α, i, n)}i∈2

α∈E∩lim
is a ♣κ+(E, 2)-sequence,

the proof of Claim 2 is, almost verbatim, a proof of:
* If H is a subset of ∆ of size κ+, then H has a limit point in ∆, and, if C and D are closed

subsets of ∆, both of size κ+, then C and D are not disjoint.
Dn and ∆−Un are disjoint closed subsets. Dn has cardinality κ+, so, by *, |∆−Un| ≤ κ. Hence

|⋃n∈ω Un)| = κ+ and in particular ∆ is not countably metacompact. This completes the proof of
the Theorem. ¤
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