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ABSTRACT. We prove that if there is a model of set-theory which contains no first countable, locally
compact, scattered, countably paracompact space X, whose Tychonoff square is a Dowker space, then
there is an inner model which contains a measurable cardinal.

In this paper we always take space to mean Hausdorff topological space. A space is normal if
every pair of disjoint closed sets can be separated by disjoint open sets, and binormal if its product
with the closed unit interval is normal. A space is countably paracompact (metacompact) if every
countable open cover has a locally (point) finite open refinement. In [Dk], Dowker shows that a
normal space is binormal iff it is countably paracompact iff it is countably metacompact. A Dowker
space is a normal space that is not countably paracompact. For a survey of Dowker spaces we refer
the reader to [R].

Rudin and Starbird [RS] have shown that for normal, countably paracompact X and metrizable
M, X x M is normal if and only if it is countably paracompact. They asked whether a product of
two normal, countably paracompact spaces could be could be a Dowker space. Beslagi¢ constructs
various positive answers to this question, assuming ¢ or CH, in [B1,B2&B3].

In [G] we prove that if there is a model of set theory which contains no first countable, locally
compact, scattered Dowker spaces, then there is a model of set-theory which contains a measurable
cardinal. Here we extend this result by proving that large cardinals are needed for a model in which
there is no first countable, locally compact, countably paracompact space X with first countable,
locally compact, scattered Dowker square:

1. Theorem. If no inner model of set theory contains a measurable cardinal, then there is a first
countable, locally countable, locally compact, strongly zero-dimensional, collectionwise normal, count-
ably paracompact, scattered space whose Tychonoff square is a first countable, locally compact, col-
lectionwise normal, scattered Dowker space.

Notation and terminology are standard—see [E], [K] or [KV]. We regard cardinals as initial
ordinals, and an ordinal as the set of its predecessors. We use the term club set or club to denote a
closed, unbounded subset of an ordinal—it will be clear from the context which particular ordinal
we mean. For a function f : A — B, we denote by f“C the set {f(x): 2 € C C A}. For a subset
A of @ x 3, we denote the set {7y : (30)(v,0) € A} by dom A, and the set {J : (3v)(v,0) € A} by
ran A. Following [B1], we call a subset A of k™ X £ is said to be 2-unbounded if A4 is not a subset
of (kT x a) U (a x kT) for any o € k™. As usual we use the following characterization from [Dk]:
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a space is countably metacompact if and only if, for every decreasing sequence {D;,}ne, of closed
subsets of X, which has empty intersection, there is a sequence {U,, },c. of open sets, U,, containing
D,, for each n, which also has empty intersection.

A stationary subset E of some uncountable cardinal )\ is said to be non-reflecting if, for every
a < A\, aNE is non-stationary in «.. If E is a non-reflecting stationary subset of kT and o € k%, then
it is easy to see that there is a club set H = {75 : A € § < a} of a such that H and E are disjoint,
and (yx,va+1) is countable for all A € 6. In what follows we shall let E denote a non-reflecting,
stationary subset of £, each member of which has countable cofinality

2. Definition. &, +(FE,2) is the assertion that there is a collection {Ry; : Ra; C a, 0 € EN
LIM and ¢ € 2} such that each R, ; is an w-sequence, cofinal in o, and {o € E : R, ; € X for both i €
2} is stationary whenever X, and X; are unbounded subsets of Kkt

In [G] we deduce, via [Dv], [DJ] and [F],

3. Lemma. If no inner model of set-theory contains a measurable cardinal, then &+ (E,2) for
some k7. O

In the construction of the space X, we use the following two consequences of &+ (F,2).

4. Definition. &, +,.+(F,2) is the assertion that there is a sequence {Sa; : Sa; C @ X @, a €
ENnumand i € 2} such that S,,; is an w-sequence, cofinal in a x a, and {& € E : S,; C
X; for both 4 € 2} is stationary whenever X, and X; are 2-unbounded subsets of kT X xT.

5 Definition. &', (E,2) is the assertion that there is a sequence {Tnin : Tain € a, @ € EN
LM, and 4 € 2} such that J,, ¢, Ta,i,n and each Ty, ; , and is an w-sequence, cofinal in o, To 5.,nN T, j,m
is empty whenever i # j or m # n, and [, {a € E: Toin C X;,, for both i € 2} is stationary
whenever {X; ,, : i € 2, n € w} is a collection of unbounded subsets of x™.

6. Lemma. If &, +(F,2), then &, +,.+(E,2) and &', (E,2)

Proof. Let {Rq,; : @« € ENLIM, i € 2} be a &,+(F,2)-sequence. We may assume that R, o and
R, 1 are disjoint for all & in ENLIM. Let f: k7 — k7 x kT and g : kT — kT x w be any bijections.
F={a: f‘a=axa}and G ={a:g“a=a xw} are both club in xkT.

For a in E N F NLIM such that both f“R, 0 and f“R, 1 are cofinal in o x «, define S, ; to be
the set f“R, ;. Otherwise, for ain E, let S, ; be an arbitrary sequence cofinal in o x . It is easy
to see that {Sa,;:Sa; Caxa,a € ENLIM and i € 2} is a &+ x .+ (E, 2)-sequence.

Ifaisin ENGNLIM, i € 2 and n € w, let T, ;,, be the set dom(g“Bq,; N (o x {n})). Otherwise,
for o in F, let T, ; », be arbitrary.

To see that {Ty,in : Tain C @, € ENLIM, and ¢ € 2} is a &Q+ (E, 2)-sequence, let {Xi»”}ifei
be a collection of unbounded subsets of x*, and let X; = Unew Xin x {n}. S={a € E: R,; C
g 1“X;, i € 2} is stationary. If « is in S then 9“Rq.,; is a subset of X; and hence S is a subset of
ﬂ{O& e FE: Ta,i,n - Xi,nv 1€ 2} U

Our construction is similar to that used by Beslagi¢ in [B1]. We define three normal topologies,
T;,1 € 3, on the point set Y = k* x w. The topologies 7y and 7; both refine 75, which is a Hausdorff
topology, hence the diagonal A of (Y, 7y) x (Y, 7;) is a closed subspace of X2. Our space X is the
disjoint topological sum of (Y,7y) and (Y, 77). &+ .+ (F,2) helps to ensures that the product X?
is normal, and that A is a Dowker space. Since A is closed in X2, X? is also a Dowker space. We
use &', (E,2) to ensure that (Y,7;), i € 2 is countably paracompact (cf §5 [B1]).

7. Example. &,+(E,2)) There is a first countable, locally countable, locally compact, strongly
zero-dimensional, collectionwise normal, countably paracompact, scattered space X, whose Tychonoff
square is a first countable locally compact, collectionwise normal, scattered Dowker space.
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Proof. Let Y be the point set s x w, let m: Y — T be the natural projection, 7((a,n)) = «, and
let IT: Y2 — x+2 be the natural projection, II((a, n), (8,m)) = (a, B). Let {Sq,i: Sai Caxa, a€
EnuMand ¢ € 2} and {Tpim : Tain C o, @« € ENLIM, n € w and i € 2} be o+ .+ (E, 2)- and
&Q+ (E, 2)-sequences respectively. Bearing in mind the proof of Lemma 6, it is not hard to see that
we may assume that | J;c,(ran S, ; Udom S, ;) and U;eezw w,i,n are disjoint for each o in £ N LIM.
We may also assume that each w-sequence S, ; is strictly increasing in both coordinates.

For each a in £ N LIM and each ¢ € 2, partition S, ; into w disjoint sequences Sq ;n, Where
n € w, each cofinal in o x . Let B(a, ¢,n) be the sequence dom Sy ;. Uran Sy ;. For each n € w,
B(a,i,n) is an w-sequence, cofinal in «, and the collection {B(w,i,n) : @« € ENLIM, i € 2} is a
&, (E,2)-sequence. Since S, ; is strictly increasing in both coordinates, B(a,4,n) and B(a,i,m)
are disjoint whenever n # m. Let B(a,n) = B(a,0,n) U B(a,1,n) and let B(a) = U, ., B(a,n).
Enumerate the w-sequence B(«) increasingly as {#(«,j) : j € w}.

For i € 2 let C(a,i,n) = To,, and let C(a,2,n) = C(a,0,n) U C(a,1,n). Let C(a) =
Unew C(a;2,n). Enumerate the w-sequence C(c) increasingly as {y(c, j) : j € w}.

By assumption B(«) and C(«) are disjoint for all & in ENLIM. Let A(a) = B(«a) U C(a) and
index A(«) increasingly as {a(k) : k € w}.

We define the topologies 7; by induction on the lexicographical order on kT x w. At each stage
of the induction (o, n), and for each i € 3, we define a topology 7; , on Y, = a X w and then a
neighbourhood base N;(a,n) = {N;((a,n),k)}rew at the point (a,n). Our inductive hypotheses
are, fory < < aand i€ 3:

new

(1) 7;p is a Hausdorff, conservative extension of 7; ,, and Y, is a 7; g-clopen subset of Yg;

(2) Ni(v,k) is a decreasing neighbourhood base of sets which are clopen, compact and countable
under 7; g, and are subsets of Y, 1;

(3) N;((B,n), k) and N;((8,m), k) are disjoint whenever n # m;

(4) No((B,n),k) UN1((8,n),k) is a subset of Na((8,n),k) for all k € w;

(5) if d(n, k) = inf{m “N;((a,n), k) }, then, for all n € w, the sequence {d(n, k) : k € w} is cofinal
in a;

(6) for all 0 < r € w, the point (v, 0) is a 7y g-limit of each sequence C(v,0,r) x {r}, a 71 g-limit
of each sequence C(v,1,r) x {r}, and a T g-limit of both sequences;

(7) if Ny € No(B,0) and Ny € N1(8,0), then Nog N Ny = {(3,0)};

(8) for all 0 < p < m, the point (8, m + 1) is a Z;-limit of the sequence B(a, m) x {p}.

If « =0, let 7,0 = @ and let NV;(0,n) = {{(0,n)}} for each i € 3. Suppose that we have defined
Ni(B,k) for each i € 3, all B € « and all k € w. Define 7; , to be the topology generated by
UNi(B,k) i kew, B < a}.

If « = 3+ 1 for some 3, or a is not in E, then we declare the point («,n) to be isolated and
define N;(a,n) to be {{(a,n)}} for each i € 3.

Now suppose that « is a limit ordinal in F.

First let us suppose that n = 0. The sequence C(«) is enumerated as {vy(«a,j) : j € w}. Each
v(e, j) in C(a) occurs uniquely in Ty i, », for some i; € 2 and some r; € w, and is indexed as a(k;)
in A(e). By inductive hypotheses (4) and (5), whenever r; > 0, we can choose a basic open set
No(y(a, j),7;) from Na(vy(ex, ), ;) such that

(1) m“Na(y(a, j),7;) is a subset of the interval (a(k; — 1), a(k;)] in & (by (5)).
For i € 3, and each k € w, define

Nl((a70)7k) = {(OZ,O)} U U{NQ(’V(avj)vrj) : 7(0‘7]) € C(Oé,’i,?“j)7 Ty > O, J > k}

Now suppose that n = m + 1 for some m € w. The sequence B(«) is enumerated as {5(«,j) :
J € w}, and each 3(a, j) occurs uniquely in some B(a,r;), and is indexed in A(a) as a(k;). By (4),
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(5) and the fact that 75, is Hausdorff, for each (e, 7;) such that r; = m and for each p < r;, we
can choose disjoint basic open neighbourhoods N;(3(«;, j),p) from N;(5(«, j),p), i € 3 of the point
(B(a, j),p) such that N;(8(a,7),p) is a subset of No(B(c,j),p), for each ¢ € 2, and

(f) m“Ni(B(ev,5),p) is a subset of the interval (a(k; — 1), a(k;)] in 7.
For i € 3, and each k € w, define

Ni((ayn), k) = {(an)} ULV (B(0, 5),p) : Bla,5) € Blaym), p < m, and j > k}.

It is not hard to check that the inductive hypotheses hold

Let 7; be the topology generated by U(a,n)eyM(a7 n).

Clearly both 75 and 77 refine 73, and it is not hard to check that each (Y,7;) is Hausdorff.
Moreover, in each of these topologies, a point («,n) of Y is either isolated or has a neighbourhood
homeomorphic to the ordinal space w™ + 1, for some m < n. Therefore, for each i € 3, (Y,7;) is
regular, first countable, locally countable, locally compact, zero-dimensional and locally metrizable.

Claim 1. For each i € 3 and all a € k™, the subspace Yo = o X w of (Y, T;) is metrizable.

Proof of Claim 1. Fix ¢ € 3. The proof is by induction so assume that Y is metrizable for all 3 € a.

Since F is a non-reflecting stationary set, each of whose elements has countable cofinality, if « is
a limit ordinal (either in E or not), or @ < wy, then there is a sequence {a, : v € 8 < a}, which is
both closed, cofinal in «, and disjoint from E. But then

{(ey, q41) X w7y € 6} UU{{aV} Xw:y€b}

partitions Y, into disjoint, clopen, metrizable subsets.

Now suppose that o = 4 1. Without loss of generality, we may assume that [ is a limit ordinal.
If 3 is not in E, then the two sets Y3 and {(8,n) : n € w} partition Y,, into disjoint, clopen,
metrizable sets, and we are done. Assume that § is an element of E. By construction, {N;};cu,
where N; = N;((3,7),1) € Ni(B,7), forms a disjoint collection of clopen, metrizable subsets of Y.
Furthermore, by 1 and I, if z; is any point of N;, then the set {m(x;)};c. forms an w-sequence,
cofinal in § (though not necessarily indexed in increasing order), so the only possible limit point of
the sequence {z;};c. is (4, k) for some k in w, which is impossible. Therefore {N;};c., is a discrete
collection of countable, clopen sets. But now N = (J jcw N; and Z = Y, — N partition Y, into
disjoint, clopen, metrizable subspaces, and again Y, is metrizable.

Claim 2. Fizi € 3. If H is a subset of (Y, T;) of size kT, then H has a limit point, and, if C and
D are closed subsets of (Y, T;), both of size k*, then C and D are not disjoint.

Proof of Claim 2. For any subset A of Y let A(n) = AN (k* x {n})

Suppose that H has size kT, then H(n) also has size k™ for some n € w. By &+t (F,2),
B(a,n) x {n}, is contained in H(n), for some « in E, so H has (a,n + 1) as a limit point in
kT x {n+1}. In fact, since £ is a regular cardinal, H has x* limit points in k™ x {n + 1}.

Now let C and D be closed subsets of (Y, 7;) of cardinality x*. From the previous paragraph it
is clear that |C'(n)| = |D(n)| = k™, for some n. By &+ .+ (E,2), there is an « in E for which both
B(a,0,n) x {n} is a subset of C(n), and B(a,1,n) x {n} is a subset of D(n), so C and D have a
common limit point.

For each ¢ € 3, the (strong) collectionwise normality of (Y, 7;) is immediate from Claims 1 and 2:
D be discrete collection of closed sets. By Claim 2, D has size less than ™ and there is some
successor « such that Y, contains all but at most one of the sets in D. Since Y, is clopen and
metrizable we are done.
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The strong zero-dimensionality of (Y, 7;) also follows from Claims 1 and 2: Suppose that A and B
are subsets of Y which are completely separated by the function f : (Y, 7;) — [0, 1] in that f“A = {0}
and f“B = {1}. The sets f~1%[0,1/4] and f~1%[3/4,1] are disjoint, closed sets containing A and B
respectively, so, as above, there is a successor a such that Y, contains A, say. Y, is a metrizable,
locally compact, zero-dimensional subspace of Y and is, therefore, strongly zero-dimensional (by
6.2.10 [E]).

Claim 3. (Y,7;) is countably paracompact for each i € 3.

Proof of Claim 3. Fix i € 3. Since (Y,7;) is normal it suffices to show that, for every decreasing
sequence of closed subsets {D, }neo of (Y,7;) with empty intersection, there is a sequence of open
subsets {Uy, }new with empty intersection such that U,, contains D,,.

Let {Dy}new be such a sequence of closed sets. Suppose that each D,, has size k', then, with
the notation used above, Claim 2 implies that D,, (k) has size k™ for all k greater than some k,, € w.
By relabelling and adding repetitions if necessary, we may assume that D,,(n) has size k™ for all n
larger than some ng > 0. Now, by &', (E,2),

S=(V{a€E:TuinC Du(n),ic2}

new

is a stationary set, and therefore non-empty. By the construction of the topology 7;, if « is in .S,
then (,0) is in D, for all n € w, and so [ D,, is not empty—a contradiction.

Pick ng such that |D,| < & for all n > ng. By Claim 1 there is a successor « such that D,, is a
subset of Y, for n > ng. The claim follows since Y, is clopen and metrizable we are done.

Claim 4. Fori,j €2, (Y,T;) x (Y,T;) is normal.

Proof of Claim 4. Let C and D be disjoint closed subsets of (Y,7;) x (Y,7;), and recall that II :
(kt x w)? — kT x kT is the natural projection.

Suppose that both IT1“C and I1“D are 2-unbounded in k¥ x k*. There are integers m,n, j, k € w
such that Cy, = {(v,0) : ((7,n),(0,k)) € C} and Dy, j = {(7,9) : ((v,m),(6,5)) € D} are both
2-unbounded. Let s = n+ m + j + k + 1, so that s is strictly greater than n, m, j and k. By
&, o+ (E,2), there is some « in E such that S, ¢ is a subset of C,, 5 and Sy 1 is a subset of D,, ;.
By the definition of the sequence B(«, 0, s)

Cn,k N (Ba,O,s X B(CY, 0) S))
is infinite and cofinal in (o, ). By the definition of the topologies 7; and 7;,
CN((B(a,0,s) x {n}) x (Ba,o,s x {k}))

is cofinal in ((a, s), (o, s)), which is therefore a limit point of C. Similarly ((o,s), (e, s)) is a limit
point of D, and C and D are not disjoint.
So suppose that I1“C' is not 2-unbounded. Choose v not in F such that C' is a subset of

K =((yxw) x (57 xw)) U (5" xw) x (v xw))

. Since v is not in E, K is a clopen subset of (Y,7;) x (Y,7;). Since E is a non-reflecting stationary
set, there is a club set H of 7, enumerated as {7, : A € 6§ < ~}, which misses F and such that
Gx = {a : v\ < a < yaq1} is countable. Now {{ya} X w} o U{Gx X w},y partitions Y, into
countable, metrizable, T;-clopen subsets of Y, for ¢ = 0 or 1. Lemma 2.8 of [B1] states that, for
normal, countably paracompact space X and a countable metric space M, X x M is normal. It is
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easy to see, then, that K is normal. Since K is clopen, (Y,7;) x (Y,7;) is now, itself, seen to be
normal—proving the claim.

The proof that (Y,7;) x (Y, 7;) is collectionwise normal is similar

Now, let X be the disjoint topological sum of (Y, 7y) and (Y, 77). From the above, it is clear that
X satifies the properties listed in the statement of the Theorem 1, except that it remains to show
that X? is not countably paracompact:

Claim 5. The closed subspace A = {((a,n),(a,n)) : « € T, n € w} of (Y,Tp) x (Y,T1) is not
countably metacompact.

Proof of Claim 5. Let D,, = {((o,7),(c,j)) : @ € kT, j > n}, and let U, be any open subset of A
containing D,,. {Dy}necw is a decreasing sequence of closed subsets of A with empty intersection,
so it is enough to show that (U, is non-empty.

Notice that, since the sequences C(«,0) and C(a,1) are disjoint, the point ((«,0), (e, 0)) is
isolated for each a € k* (by hypothesis (7)). However, if « is a limit in F, then («,n+ 1) is both a
To- and a 7;-limit of the sequence B(a,n)x {n}. So, as {B(«a,i,n)} " is a .+ (E, 2)-sequence,
the proof of Claim 2 is, almost verbatim, a proof of:

* If H is a subset of A of size kT, then H has a limit point in A, and, if C and D are closed
subsets of A, both of size kT, then C and D are not disjoint.

D,, and A — U, are disjoint closed subsets. D,, has cardinality x*, so, by *, |A —U,| < k. Hence
|Unew Un)l = T and in particular A is not countably metacompact. This completes the proof of
the Theorem. [
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