
MONOTONE INSERTION OF CONTINUOUS FUNCTIONS

CHRIS GOOD AND IAN STARES

Abstract. We consider the problem of inserting continuous functions
between pairs of semicontinuous functions in a monotone fashion. We
answer a question of Pan and in the process provide a new characterisa-
tion of stratifiability. We also provide new proofs of monotone insertion
results by Nyikos and Pan, and Kubiak. We then investigate insertion
theorems for hedgehog-valued functions providing monotone versions of
two theorems due to Blair and Swardson. From this we provide new
characterisations involving hedgehogs of monotonically normal spaces,
stratifiable spaces, normal, countably paracompact spaces, and perfectly
normal spaces. The proofs are mostly geometric in nature.

1. Introduction

Results concerning the possibility of finding, for a given pair of real-valued
functions (g, h) on a space X, a continuous function f such that g ≤ f ≤ h,
form part of the classical theory of general topology. The particular case in
which g is upper semicontinuous and h is lower semicontinuous (that is, the
sets g−1((−∞, r)) and h−1((r,∞)) are open in X for each r in R) was first
investigated by Hahn in 1917 [9], who proved that the necessity in Theo-
rem 1.1 holds for metrizable spaces. Dieudonné [3] later proved that Hahn’s
result, and the necessity part of Theorem 1.2, hold in paracompact spaces.
In fact, these so called insertion results turn out to provide characterisa-
tions of natural and important topological properties as the following three
theorems show.

Theorem 1.1 (Katětov [11], Tong [19]). A space X is normal if and only
if for each upper semicontinuous function g : X → R and lower semicontin-
uous function h : X → R such that g ≤ h, there is a continuous function
f : X → R such that g ≤ f ≤ h.

Strengthening the inequalities g ≤ f ≤ h led to the next two theorems.

Theorem 1.2 (Dowker [5]). A space X is normal and countably paracom-
pact if and only if for each upper semicontinuous function g : X → R and
lower semicontinuous function h : X → R such that g < h, there is a
continuous function f : X → R such that g < f < h.
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Theorem 1.3 (Michael [15]). A space X is perfectly normal if and only if for
each upper semicontinuous function g : X → R and lower semicontinuous
function h : X → R such that g ≤ h, there is a continuous function f : X →
R such that g ≤ f ≤ h and g(x) < f(x) < h(x) whenever g(x) < h(x).

Other results hold if we consider different restrictions on g and h and
we refer the reader to the survey article by Lane [13] for details. How-
ever, one other possibility which has been investigated more recently is the
monotonization of these insertion properties, which requires the inserted
continuous function to increase if the two semicontinuous functions increase.
This question was first considered by Kubiak [12] who investigated a mono-
tone version of the condition in Theorem 1.1. In fact, it turns out that the
monotone versions of each of the above theorems also characterise significant
topological properties.

To state these results, it is convenient to introduce some notation at this
point. For a topological space X the set of continuous functions from X to
R is denoted by C(X). We shall denote by USC(X) the set of real-valued
upper semicontinuous functions on X and by LSC(X) the set of real-valued
lower semicontinuous functions on X. We will denote the set of pairs (g, h)
in USC(X)×LSC(X) such that g ≤ h by UL(X), and UL<(X) will denote
the set of pairs (g, h) in USC(X) × LSC(X) such that g < h. Of course,
g < h is taken to mean that g(x) < h(x) for all x in X (and g ≤ h that
g(x) ≤ h(x)).

Theorem 1.4 (Kubiak [12]). A space X is monotonically normal if and
only if there is an operator Φ : UL(X) → C(X) such that

(a) g ≤ Φ(g, h) ≤ h for each (g, h) ∈ UL(X),
(b) if (g′, h′) ∈ UL(X) and g ≤ g′ and h ≤ h′, then Φ(g, h) ≤ Φ(g′, h′).

Kubiak called this property the monotone insertion property. This result
suggests the possibility of monotone versions of Theorems 1.2 and 1.3 and,
indeed, Nyikos and Pan proved the following (for the definitions of monotone
normality and stratifiability see 1.7 below):

Theorem 1.5 (Nyikos and Pan [16]). A space X is stratifiable if and only
if there is an operator Φ : UL(X) → C(X) such that

(a) for each (g, h) ∈ UL(X), g ≤ Φ(g, h) ≤ h and g(x) < Φ(g, h)(x) <
h(x) whenever g(x) < h(x),

(b) if (g′, h′) ∈ UL(X) and g ≤ g′ and h ≤ h′, then Φ(g, h) ≤ Φ(g′, h′).

So, satisfyingly, these two results are the expected monotone versions of
Theorems 1.1 and 1.3 (stratifiability can be regarded as monotone perfect
normality). The question remains whether there is a monotone version of
Theorem 1.2. In particular, Pan asked [17] whether the obvious monotone
version of the insertion property in Dowker’s result is equivalent to some
known topological property (this question was also stated in the Problems
section of Topology Proceedings 20). The results above suggest that this
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monotone version may be equivalent to monotone normality together with
some notion of monotone countable paracompactness1. However, we show
that it is equivalent to stratifiability. This is perhaps not surprising when
one considers that a space X is normal and countably paracompact if and
only if X × [0, 1] is normal, and is stratifiable if and only if X × [0, 1] is
monotonically normal (see [5] and [8]).

Theorem 1.6. A space X is stratifiable if and only if there is an operator
Φ : UL<(X) → C(X) such that

(a) g < Φ(f, g) < h for all (g, h) ∈ UL<(X),
(b) if (g′, h′) ∈ UL<(X) and g ≤ g′ and h ≤ h′, then Φ(g, h) ≤ Φ(g′, h′).

In Section 2 we prove Theorem 1.6 and in Section 3 we provide alternative
proofs of the results of Nyikos and Pan and of Kubiak. Indeed our proof
of Theorem 1.5 is more direct than that of Nyikos and Pan. Our proofs of
Theorems 1.5 and 1.6 are geometric in nature and rely naturally on Kubiak’s
result and the monotone normality of X×R. We believe that, in some sense,
these are the correct proofs as Theorems 1.2 and 1.3 are intimately connected
with normality in products.

In [1] Blair and Swardson investigated the insertion and extension of
hedgehog-valued functions. They defined the classes of upper and lower
semicontinuous hedgehog-valued functions and by defining a natural par-
tial order on the hedgehog with κ spines they proved theorems in the
same vein as Theorem 1.1 which gave characterisations of normality and
κ-collectionwise normality. In Section 4 we investigate monotone versions of
these results and, in the process, provide new characterisations of perfectly
normal spaces, normal and countably paracompact spaces, monotonically
normal spaces and stratifiable spaces. These results are proved by using the
six real-valued insertion theorems stated above.

All spaces in this paper are T1. Before we proceed we should recall the
definitions of monotone normality and stratifiability. We also prove a lemma,
which we shall use later, providing another characterisation of monotone
normality in terms of separated set rather than disjoint closed sets. Recall
that two sets A and B are separated (in the terminology of [6]) if A ∩ B =
∅ = A ∩B.

Definition 1.7 ([10]). A space X is monotonically normal if to each pair
(A,U) with A closed, U open and A ⊆ U we can assign an open set H(A,U)
such that

(a) A ⊆ H(A,U) ⊆ H(A,U) ⊆ U ,
(b) if A ⊆ A′ and U ⊆ U ′ then H(A,U) ⊆ H(A′, U ′).

X is semi-stratifiable if for each closed set D and n ∈ ω there is an open
set U(n,D), such that

(1) D =
⋂

n U(n,D),

1For a study of monotone countable paracompactness see [7]
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(2) if D ⊆ D′, then U(n,D) ⊆ U(n,D′) for each n.
If, in addition

(3) D =
⋂

n U(n,D), then X is stratifiable.

Theorem 1.8 ([2]). A space X is monotonically normal if and only if for
each point x and open set U containing x we can assign an open set H(x,U)
containing x such that if H(x,U)∩H(y, V ) 6= ∅ then either x ∈ V or y ∈ U .

For a discussion of monotonically normal and stratifiable spaces see [8],
here we point out that a space X is stratifiable if and only if it is monotoni-
cally normal and semi-stratifiable and that X× [0, 1] or, equivalently, X×R
is monotonically normal if and only if X is stratifiable.

Lemma 1.9. A space X is monotonically normal if and only if to each pair
of separated sets (A, B) we can assign open sets U(A,B) and V (A,B) such
that A\B ⊆ V (A,B), B \A ⊆ U(A,B) and U(A,B)∩V (A,B) = A∩B and
such that if A ⊆ A′ and B′ ⊆ B, then U(A′, B′) ⊆ U(A, B) and V (A,B) ⊆
V (A′, B′).

Proof. So assume that X is monotonically normal and that A and B are sep-
arated sets. Let H be as in Theorem 1.8 and define S(A,B) =

⋃
x∈B\A H(x,X\

A) and T (A,B) =
⋃

x∈A\B H(x, X \B). We claim that S(A,B)∩T (A, B) =
∅. If not, then H(z,X \ A) ∩ H(w, X \ B) 6= ∅ for some z ∈ B \ A and
w ∈ A \B which is a contradiction. Now define

U(A,B) =
⋃

x∈B\A
H(x, S(A, B)) V (A,B) =

⋃

x∈A\B
H(x, T (A,B)).

As B∩A = ∅ = A∩B, B ⊆ U(A,B) and A ⊆ V (A,B) and therefore A∩B ⊆
U(A, B) ∩ V (A,B). So assume x ∈ U(A, B) ∩ V (A,B). If x 6∈ B, then
H(x,X \B)∩U(A,B) 6= ∅, that is H(x,X \B)∩H(y, S(A,B)) 6= ∅ for some
y ∈ B\A. Consequently x ∈ S(A,B) and H(x, S(A,B))∩V (A,B) 6= ∅, that
is H(x, S(A,B))∩H(z, T (A,B)) 6= ∅ for some z ∈ A\B. Hence x ∈ T (A,B)
(since z 6∈ S(A,B) as S(A,B) ∩ A = ∅) and so x ∈ S(A,B) ∩ T (A,B), a
contradiction. Therefore x ∈ B. Similarly x ∈ A and U(A,B) ∩ V (A,B) =
A∩B. The monotonicity condition is clear from the monotonicity condition
in Theorem 1.8.

The converse is straightforward: if A is a closed set and U an open set
containing A, then A and X \ U are completely separated. ¤

2. Proof of Theorem 1.6

Proof. Assume that X is stratifiable so that both X and X × R are mono-
tonically normal. We shall define an operator Φ : UL<(X) → C(X) such
that

(a) g < Φ(f, g) < h for all (g, h) ∈ UL<(X) and
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(b) if (g′, h′) ∈ UL<(X) and g ≤ g′ and h ≤ h′, then Φ(g, h) ≤ Φ(g′, h′).

Let (g, h) ∈ UL<(X) and define A(h) = {(x, r) : r ≥ h(x)} and B(g) =
{(x, r) : r ≤ g(x)}. If (x, r) 6∈ B(g) then there is a t such that g(x) < t < r.
It is easy to see that (x, r) is in the set U = g−1((−∞, t))× (t,∞) ⊆ (X ×
R)\B(g). Since g is upper semicontinuous, U is a basic open neighbourhood
of (x, r) disjoint from B(g), which is, therefore, a closed subset of X × R.
Similarly A(h) is also closed in X × R and, since g < h, A(h) and B(g) are
disjoint.

Since X × R is monotonically normal, let U(g, h) = U(A(h), B(g)) and
V (g, h) = V (A(h), B(g)), as in Lemma 1.9. Note that U(g, h)∩V (g, h) = ∅.
Define

u(g, h)(x) = sup{r : (x, s) ∈ U(g, h) for all s < r}
l(g, h)(x) = inf{r : (x, s) ∈ V (g, h) for all s > r}.

Since (x, s) ∈ U(g, h) for all s < g(x) and since (x, h(x)) 6∈ U(g, h), u(g, h)
is well defined and u(g, h)(x) ≥ g(x) for all x. Indeed, since U(g, h) is
open and (x, g(x)) ∈ U(g, h), there is ε > 0 such that (x, s) ∈ U(g, h) for
all s < g(x) + ε so, in fact, u(g, h)(x) > g(x). Similarly l(g, h) is well-
defined and l(g, h)(x) < h(x). As R is connected, for each x there is an
sx such that (x, sx) 6∈ U(g, h) ∪ V (g, h), so u(g, h)(x) ≤ sx ≤ l(g, h)(x).
Moreover, u(g, h) is upper semicontinuous, that is u(g, h)−1(−∞, t) is open
for every t in R. To see this, assume that u(g, h)(x) < t. We therefore have
sx ∈ [u(g, h)(x), t) such that (x, sx) 6∈ U(g, h). This implies that there is
some open W containing x such that (y, sx) 6∈ U(g, h) for all y ∈ W and
hence that u(g, h)(y) ≤ sx < t for all y ∈ W . In a similar fashion we can
show that l(g, h) is lower semicontinuous so that (u(g, h), l(g, h)) ∈ UL(X).

As X is monotonically normal, there is an operator Ψ : UL(X) →
C(X) satisfying the conditions in Theorem 1.4. We now define Φ(g, h) =
Ψ(u(g, h), l(g, h)), a continuous function. Clearly g < u(g, h) ≤ Φ(g, h) ≤
l(g, h) < h, so it remains to check the monotonicity condition. Suppose that
g ≤ g′ and h ≤ h′. Then A(h′) ⊆ A(h) and B(g) ⊆ B(g′). Consequently
U(g, h) ⊆ U(g′, h′) and V (g′, h′) ⊆ V (g, h) and therefore u(g, h) ≤ u(g′, h′)
and l(g, h) ≤ l(g′, h′). By the monotonicity of Ψ, Φ(g, h) ≤ Φ(g′, h′).

Conversely, assume X has an operator Φ : UL<(X) → C(X) satisfying
conditions (a) and (b). We shall prove that X is both monotonically normal
and semi-stratifiable (and hence stratifiable).

To prove monotone normality we follow Dowker’s proof of the corre-
sponding (non-monotone) result (see [5, Theorem 4, (β) ⇒ (α)]). Suppose
that A is a closed subset of X and that U is an open subset containing
A. Obviously, the pair (χA, χU + 1) is in UL<(X) and so Φ(χA, χU + 1)
is a continuous, real valued function on X. Condition (a) implies that
Φ(χA, χU + 1)−1((1,∞)) is an open set containing A, whose closure is con-
tined in U . The monotonicity condition (b) now implies that the operator
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H, defined by H(A,U) = Φ(χA, χU +1)−1((1,∞)), is a monotone normality
operator on X of the form described in Definition 1.7.

To prove semi-stratifiability we proceed as follows. Let D be a closed
subset of X. We define four families of real-valued functions on X. For
n ≥ 1 define g(n, D), h(n,D) : X → R by

g(n,D)(x) =
{

2− 1
n x ∈ D

0 otherwise h(n,D)(x) = 2 for all x ∈ X.

For y 6∈ D we define g(y, D), h(y, D) : X → R by

g(y,D)(x) =





1 x = y
2 x ∈ D
0 otherwise

h(y,D)(x) =
{

2 x = y
3 otherwise.

It is easily seen that for all n ≥ 1 and for all y 6∈ D, (g(n,D), h(n,D))
and (g(y, D), h(y, D)) are in UL<(X) and that both

(1) g(n,D) ≤ g(y,D) and h(n,D) ≤ h(y, D).

Let f(n,D) = Φ(g(n,D), h(n,D)) and f(y, D) = Φ(g(y, D), h(y, D)), so
that

g(n,D) < f(n, D) < h(n,D) and g(y,D) < f(y, D) < h(y,D).

By Equation 1 and the monotonicity of Φ we also have

(2) f(n,D) ≤ f(y,D) for all n ≥ 1 and y 6∈ D.

Now define U(n, D) to be the open set f(n,D)−1((2− 1
n ,∞)).

Claim 1. D =
⋂∞

n=1 U(n,D)

If x ∈ D, then f(n,D)(x) > g(n,D)(x) = 2 − 1
n and hence x ∈ U(n,D)

for all n ≥ 1. On the other hand, if y 6∈ D and y ∈ ⋂∞
n=1 U(n, D) then

f(n,D)(y) > 2− 1
n for all n and hence f(n,D)(y) ≥ 2. However, by Equa-

tion 2, this implies that f(y, D)(y) ≥ 2 which contradicts f(y, D)(y) <
h(y,D)(y) = 2. The claim is therefore proved.

Claim 2. If D ⊆ D′ then U(n,D) ⊆ U(n,D′) for all n ≥ 1.

If D ⊆ D′ then it is easily seen that g(n,D) ≤ g(n,D′) (and h(n,D) =
h(n,D′)) for all n. Consequently, by the monotonicity of Φ, f(n,D) ≤
f(n,D′) for all n and hence the desired result follows.

This completes our proof. ¤

3. Alternative proofs of Theorems 1.5 and 1.4

We now give a new proof of Theorem 1.5 based on the proof of Theorem
1.6. As mentioned in the introduction, these proofs are geometric in nature,
relying on Kubiak’s result and the monotone normality of X × R. They
highlight the connection between stratifiability and monotone normality in
products and, as such, are perhaps the ‘right’ proofs.
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For completeness we also include an alternative proof of Kubiak’s result,
which may be of some interest, reminiscent as it is of the onion-skin proof
of Urysohn’s Lemma. The proof is based on a construction introduced by
Mandelkern [14].

Proof of Theorem 1.5. Assume X is stratifiable and hence X × R is mono-
tonically normal. If (g, h) ∈ UL(X), define A(h) = {(x, r) : h(x) < r} and
B(g) = {(x, r) : r < g(x)}. Note that any open set in X × R containing
(x, g(x)) meets B(g) and, as in the proof of Theorem 1.6, {(x, r) : r ≤ g(x)}
is closed. Thus B(g) = {(x, r) : r ≤ g(x)}. Similarly A(h) = {(x, r) : h(x) ≤
r}. Since g ≤ h, A(h) and B(g) are separated. Let U(g, h) = U(A(h), B(g))
and V (g, h) = V (A(h), B(g)) as in Lemma 1.9 and define

u(g, h)(x) = sup{r : (x, s) ∈ U(g, h) for all s < r}
l(g, h)(x) = inf{r : (x, s) ∈ V (g, h) for all s > r}.

If s > h(x) then choose t ∈ (h(x), s). Now (x, t) ∈ A(h) but (x, t) 6∈ B(g)
so (x, t) 6∈ U(g, h). Also (x, s) ∈ U(g, h) for all s < g(x), thus u(g, h) is
well defined and g(x) ≤ u(g, h)(x) ≤ h(x). Similarly l(g, h) is well defined
and g(x) ≤ l(g, h)(x) ≤ h(x). As in the proof of Theorem 1.6, u(g, h) and
l(g, h) are upper and lower semicontinuous functions respectively. When
g(x) = h(x) then clearly g(x) = u(g, h)(x) = l(g, h)(x) = h(x). When
g(x) < h(x) then (x, g(x)) ∈ B(g) \ A(h) ⊆ U(g, h) and so there is ε > 0
such that (x, r) ∈ U(g, h) for all r < g(x) + ε. Hence u(g, h)(x) > g(x).
Similarly l(g, h)(x) < h(x). Now if l(g, h)(x) < u(g, h)(x) then there is
an r ∈ (l(g, h)(x), u(g, h)(x)) such that (x, r) ∈ U(g, h) ∩ V (g, h). Thus
(x, r) ∈ A(h) ∩ B(g) which is a contradiction. So we have proved that if
g(x) < h(x), then g(x) < u(g, h)(x) ≤ l(g, h)(x) < h(x). Finally since X
is monotonically normal there is an operator Ψ satisfying the conditions in
Theorem 1.4. Define Φ(g, h) = Ψ(u(g, h), l(g, h)), then g ≤ Φ(g, h) ≤ h
and g(x) < Φ(g, h)(x) < h(x) whenever g(x) < h(x). The monotonicity
condition follows in exactly the same way as in the proof of Theorem 1.6.

The converse may easily be proved directly or deduced from Theorem
1.6. ¤

Proof of Theorem 1.4. Assume that X is monotonically normal with opera-
tor H and suppose that (g, h) ∈ UL(X). For t ∈ Q define A(h, t) = {x ∈ X :
h(x) ≤ t}, a closed set, and U(g, t) = {x ∈ X : g(x) < t}, an open set. Now,
index the set P = {(r, s) : r, s ∈ Q and r < s} so that P = {(rn, sn) : n ∈ N}.

Note that if r < s then A(h, r) ⊆ U(g, s). Suppose closed sets D(g, h, k)
have been constructed for all k < n such that,

A(h, rk) ⊆ D(g, h, k)◦ ⊆ D(g, h, k) ⊆ U(g, sk) for k < n

D(g, h, j) ⊆ D(g, h, k)◦ whenever j, k < n, rj < rk, and sj < sk

(where Y ◦ denotes the interior of Y ). Let Jn = {j : j < n, rj < rn and
sj < sn} and let Kn = {k : k < n, rn < rk and sn < sk}. We now define
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D(g, h, n) as follows:

D(g, h, n) = H


A(h, rn) ∪

⋃

j∈Jn

D(g, h, j), U(g, sn) ∩
⋂

k∈Kn

D(g, h, k)◦


.

Writing D(g, h, r, s) for D(g, h, n) where rn = r and sn = s we have, by
induction (the details are straightforward), a family of closed subsets of X,
{D(g, h, r, s) : (r, s) ∈ P} such that,

A(h, r) ⊆ D(g, h, r, s)◦ ⊆ D(g, h, r, s) ⊆ U(g, s) (r, s) ∈ P

D(g, h, r, s) ⊆ D(g, h, t, u)◦ when r < t, and s < u.

For each t ∈ Q let F (g, h, t) be the closed set
⋂

u>t D(g, h, t, u). If t <
s ∈ Q pick r ∈ Q such that t < r < s. Then, F (g, h, t) ⊆ D(g, h, t, r) ⊆
D(g, h, r, s)◦ ⊆ D(g, h, r, s) ⊆ ⋂

u>s D(g, h, s, u) = F (g, h, s), so that

(3) F (g, h, t) ⊆ F (g, h, s)◦ whenever t < s.

Now it is also easy to see that A(h, t) ⊆ F (g, h, t) for all t and that F (g, h, t) ⊆
D(g, h, t, s) ⊆ U(g, s) whenever t < s. Consequently, we also have

(4)
⋃

t∈Q
F (g, h, t) ⊇

⋃

t∈Q
A(h, t) = X

(5)
⋂

t∈Q
F (g, h, t) ⊆

⋂

t∈Q
U(g, t) = ∅.

By Equations 3, 4, and 5, Φ(g, h)(x) = inf{t : x ∈ F (g, h, t)} defines a
continuous function.

If Φ(g, h)(x) = y then x ∈ F (g, h, s) for all s > y and hence x ∈ U(g, s)
for all s > y. Therefore, g(x) ≤ y. If h(x) = y, then x ∈ A(h, s) ⊆ F (g, h, s)
for all s ≥ y and hence Φ(g, h)(x) ≤ y. Thus g ≤ Φ(g, h) ≤ h.

To check the monotonicity condition, assume (g′, h′) ∈ UL(X) and g ≤
g′ and h ≤ h′. Then A(h′, t) ⊆ A(h, t) and U(g′, t) ⊆ U(g, t) for all t.
By a simple induction one can show that D(g′, h′, r, s) ⊆ D(g, h, r, s) for
all (r, s) ∈ P and hence F (g′, h′, t) ⊆ F (g, h, t) for all t. Consequently,
Φ(g, h) ≤ Φ(g′, h′). ¤

4. Hedgehog-valued functions

In [1] Blair and Swardson investigated the insertion and extension of func-
tions from a topological space X into the hedgehog with κ spines J(κ) where
κ is some cardinal.

We first recall the definition of this space. Define an equivalence relation
∼ on [0, 1] × κ by (a, η) ∼ (b, ζ) if and only if a = 0 = b or (a, η) = (b, ζ).
Then J(κ) is the set of equivalence classes with the metric d defined by

d([(a, η)], [(b, ζ)]) =
{ |a− b| if ζ = η

a + b if ζ 6= η.
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We will use the shorthand 0 for the equivalence class [(0, η)] and ignore the
equivalence class notation for all other points. We will denote the ε-ball
around 0 by B(0, ε). The natural projection map πκ : J(κ) → [0, 1] is
defined by πκ((a, η)) = a for all η < κ. It is continuous.

In order to discuss insertion theorems for hedgehog-valued functions we
also need appropriate notions of semi-continuity and order. Blair and Sward-
son proceeded as follows. Let

BU (κ) = {B(0, ε) ∪ ((0, a)× {η}) : ε > 0, a > 0, and η ∈ κ}

BL(κ) = {(a, 1]× {η} : a > 0 and η ∈ κ} ∪ {J(κ)}.
It is clear that BU (κ) and BL(κ) are bases for topologies on J(κ) (the upper
and lower topologies). A function f : X → J(κ) is upper (lower) semicon-
tinuous if it is continuous with respect to the upper (lower) topology on
J(κ). Finally a partial order is defined on J(κ) as follows: (a, η) ≤ (b, ζ) if
(a, η) = 0 or η = ζ and a ≤ b.

Blair and Swardson proved the following two theorems.

Theorem 4.1. The following are equivalent for a space X

(1) X is normal,
(2) for all κ, whenever g, h : X → J(κ) are upper (resp. lower) semicon-

tinuous and g ≤ h, then there is a continuous function f : X → J(κ)
such that g ≤ f ≤ h,

(3) for some κ, whenever g, h : X → J(κ) are upper (resp. lower)
semicontinuous and g ≤ h, then there is a continuous function
f : X → J(κ) such that g ≤ f ≤ h.

Theorem 4.2. A space X is κ-collectionwise normal if and only if for each
closed subspace A of X and every pair g, h : A → J(κ) of upper (resp. lower)
semicontinuous functions such that g ≤ h, there exists a continuous function
f : X → J(κ) such that g ≤ f |A ≤ h

We now give monotone versions of these two theorems. The proof of
4.3 contains a proof of Theorem 4.1 that is perhpas more direct than that
of Blair and Swardson. In contrast to the non-monotone case, when we
consider the monotone versions of the properties in Theorems 4.1 and 4.2
they are all equivalent and, in turn, equivalent to monotone normality. We
state the result as two theorems however since the proof of the second relies
on that of the first. We first define ULκ(X) to be the set of pairs (g, h) such
that g, h : X → J(κ) with g upper semicontinuous, h lower semicontinuous
and g ≤ h. We define ULκ

<(X) similarly (and analogously to UL<(X)).
The set of continuous functions from X to J(κ) is denoted C(X, J(κ)).

The monotone version of Theorem 4.1 is the following result.

Theorem 4.3. The following are equivalent for a space X

(1) X is monotonically normal,
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(2) for all κ, there is an operator Φκ : ULκ(X) → C(X, J(κ)) such
that g ≤ Φκ(g, h) ≤ h and such that if g ≤ g′ and h ≤ h′ then
Φκ(g, h) ≤ Φκ(g′, h′),

(3) for some κ, there is an operator Φκ : ULκ(X) → C(X, J(κ)) such
that g ≤ Φκ(g, h) ≤ h and such that if g ≤ g′ and h ≤ h′ then
Φκ(g, h) ≤ Φκ(g′, h′).

Proof. (2) implies (3) is obvious. To prove (3) implies (1) we use Theorem
1.4. Fix any η < κ. If (g, h) ∈ UL(X) then define gκ, hκ : X → J(κ) by
gκ(x) = (g(x), η) and hκ(x) = (h(x), η) (note, without loss of generality,
g, h : X → (0, 1)). It is easy to check that these two functions are upper
and lower semicontinuous as hedgehog-valued functions and hence (gκ, hκ) ∈
ULκ(X). Now define Φ(g, h) = πκ ◦ Φκ(gκ, hκ) where Φκ is as in (3). It is
clear now that Φ satisfies the conditions in Kubiak’s result and hence X is
monotonically normal.

(1) implies (2). Assume X is monotonically normal and (g, h) ∈ ULκ(X).
First we claim that (πκ ◦ g) ∈ USC(X) (that is, it is an upper semicon-

tinuous real-valued function). This follows since

(πκ ◦ g)−1((−∞, b)) = {x ∈ X : g(x) = (a, η) for some η < κ and a < b}
= g−1(B(0, b)),

which is open since B(0, b) is open in the upper topology and g is upper
semicontinuous. Also (πκ ◦ h) ∈ LSC(X) since,

(πκ ◦ h)−1((b,∞)) = {x ∈ X : h(x) = (a, η) for some η < κ and a > b}
= h−1(

⋃
η<κ

(b, 1]× {η})

which is open since h is lower semicontinuous.
So (πκ◦g, πκ◦h) ∈ UL(X). Using Theorem 1.4, let f(g, h) = Φ(πκ◦g, πκ◦

h), a continuous function from X to [0, 1]. Now define Φκ(g, h) : X → J(κ)
by

Φκ(g, h)(x) = (f(g, h)(x), η) whenever h(x) ∈ [0, 1]× {η}.
It is clear that g(x) ≤ Φκ(g, h)(x) ≤ h(x). Note there is no ambiguity if
h(x) = 0 since then Φκ(g, h)(x) = 0 too.

We must check that Φκ(g, h) is continuous. So let V be a basic open
neighbourhood in J(κ). If V = (a − ε, a + ε) × {η} for some a > 0 and ε
such that 0 < ε < a, then it is clear by definition that Φκ(g, h)(x) ∈ V only
if h(x) ∈ (a− ε, 1]× {η} and therefore

Φκ(g, h)−1(V ) = h−1 ((a− ε, 1]× {η}) ∩ f(g, h)−1((a− ε, a + ε)).

The first of the two sets on the right hand side is open because h is lower
semicontinuous and the second because f(g, h) is continuous. We therefore
have that Φκ(g, h)−1(V ) is open. If V = B(0, ε) for some ε > 0, then it
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is easy to check that Φκ(g, h)−1(V ) = f(g, h)−1([0, ε)) which is open by
continuity of f(g, h).

It remains to check the monotonicity condition, but if g ≤ g′ and h ≤ h′,
then πκ◦g ≤ πκ◦g′ and πκ◦h ≤ πκ◦h′ and therefore f(g, h) ≤ f(g′, h′). Also,
if h(x) ∈ [0, 1]× {η} then h′(x) ∈ [0, 1]× {η}. The result now follows. ¤

The monotone version of Theorem 4.2 is the following.

Theorem 4.4. A space X is monotonically normal if and only if for each
closed subspace A of X and every (some) κ, there is an operator Φκ :
ULκ(A) → C(X, J(κ)) such that g ≤ Φκ(g, h)|A ≤ h and such that if g ≤ g′
and h ≤ h′ then Φκ(g, h) ≤ Φκ(g′, h′)

Before we prove this result we need two theorems. The following is a
monotone version of the Tietze-Urysohn theorem which was proved by the
second author in [18].

Theorem 4.5. If X is monotonically normal, then for each closed subspace
A of X there is an operator ΨA : C(A, [0, 1]) → C(X, [0, 1]) such that for
each f ∈ C(A, [0, 1]), ΨA(f) extends f and such that if A0 ⊆ A1 are closed
subspaces and fi ∈ C(Ai, [0, 1]) such that f1|A0 ≤ f0 and f1(x) = 0 for all
x ∈ A1 \A0 then ΨA1(f1) ≤ ΨA0(f0).

We now prove that a hedgehog-valued version of the monotone exten-
sion property (see [10, Theorem 3.3]) holds in monotonically normal spaces.
Recall that if X is monotonically normal then every closed subspace of X
is K1-embedded in X, that is for each closed subspace A of X there is a
function k : τA → τX (where for a space Y , τY denotes the topology on
Y ) such that k(U) ∩ A = U for each open U in A and if U ∩ V = ∅ then
k(U) ∩ k(V ) = ∅. Without loss of generality we may assume that if U ⊆ V
then k(U) ⊆ k(V ).

Theorem 4.6. If X is monotonically normal, then for each κ and for each
closed subspace A of X there is an operator Ψκ : C(A, J(κ)) → C(X, J(κ))
such that Ψκ(f) extends f and if f ≤ f ′ then Ψκ(f) ≤ Ψκ(f ′).

Proof. So assume A is a closed subspace of X and f : A → J(κ) is contin-
uous. For each η < κ define V (f, η) = f−1((0, 1]× {η}). Thus (V (f, η))η<κ

is a pairwise disjoint family of open sets in A. Let k : τA → τX be a
K1-operator and let U(f, η) = k(V (f, η)) so that (U(f, η))η<κ is a pair-
wise disjoint family of open sets in X. Let U(f) =

⋃
η<κ U(f, η) and let

B(f) = A ∪ (X \ U(f)), a closed subspace of X. Define gf : B(f) → [0, 1]
by

gf (x) =
{

πκ(f(x)) if x ∈ A
0 otherwise.

Clearly gf is a continuous function, since πκ ◦ f and 0 are continuous on
each of the closed sets A and X \ U(f) respectively and they agree on the
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intersection of the two sets. Now using Theorem 4.5, let Gf : X → [0, 1] be
defined by Gf = ΨB(f)(gf ) and define

Ψκ(f) =
{

(Gf (x), η) if x ∈ U(f, η)
0 otherwise.

Since Gf is continuous on X and Gf (x) = 0 for all x 6∈ U(f) and since
(U(f, η))η<κ is a pairwise disjoint family of open sets in X, Ψκ(f) is con-
tinuous. It is easy to check that Ψκ(f) extends f . We finally check the
monotonicity condition. If f ≤ f ′ then V (f, η) ⊆ V (f ′, η) for all η < κ and
so U(f, η) ⊆ U(f ′, η) for all η < κ. Hence B(f ′) ⊆ B(f). By definition
gf |B(f ′) ≤ gf ′ and gf (x) = 0 for all x ∈ B(f) \ B(f ′). By Theorem 4.5,
Gf ≤ G′

f and consequently Ψκ(f) ≤ Ψκ(f ′). ¤
We note that Theorem 4.6 is a monotone version of the following theorem,

the proof of which can be found as Exercise 5.5.1 in [6]. The proof described
there does not, however, monotonize readily.

Theorem 4.7. A space X is κ-collectionwise normal if and only if for each
closed subspace A of X and continuous function f : A → J(κ) there is a
continuous function F : X → J(κ) such that F |A = f .

We also note here that the converse of Theorem 4.6 is not true. It is easy
to see that if X is a space in which every closed subspace is a retract of X
then X satisfies the conclusion of the theorem. If A is a closed subspace and
r : X → A is a retraction then we simply define Ψκ(f) to be equal to f ◦ r.
Van Douwen has constructed a space X in which every closed subspace is a
retract of X but which, nevertheless, fails to be monotonically normal (see
[4]).

We are now in a position to prove Theorem 4.4.

Proof of Theorem 4.4. Assume X is monotonically normal, A is a closed
subspace of X and (g, h) ∈ ULκ(A). Since A is itself monotonically nor-
mal, by Theorem 4.3, there is an operator ΦA

κ : ULκ(A) → C(A, J(κ))
such that g ≤ ΦA

κ (g, h) ≤ h and such that if g ≤ g′ and h ≤ h′ then
ΦA

κ (g, h) ≤ ΦA
κ (g′, h′). Using Theorem 4.6, let Φκ(g, h) = Ψκ(ΦA

κ (g, h)). It
is straightforward to check that Φκ satisfies the required conditions. The
converse follows from Theorem 4.3. ¤

So Theorem 4.3 is a hedgehog analogue of Theorem 1.4. The question
arises therefore of the possibility of hedgehog analogues of Theorems 1.5
and 1.6. For stratifiable spaces we can easily amend the proof of Theorem
4.3 to prove the following result.

Theorem 4.8. The following are equivalent for a space X

(1) X is stratifiable,
(2) for all (some) κ, there is an operator Φκ : ULκ

<(X) → C(X, J(κ))
such that g < Φκ(g, h) < h and such that if g ≤ g′ and h ≤ h′ then
Φκ(g, h) ≤ Φκ(g′, h′),
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(3) for all (some) κ, there is an operator Φκ : ULκ(X) → C(X, J(κ))
such that g ≤ Φκ(g, h) ≤ h and g(x) < Φκ(g, h)(x) < h(x) whenever
g(x) < h(x) and such that if g ≤ g′ and h ≤ h′ then Φκ(g, h) ≤
Φκ(g′, h′).

Proof. The proof of (1) implies (2) ((1) implies (3)) is essentially the same
as the proof of (1) implies (2) in Theorem 4.3. The only change is to use
the operator Φ from Theorem 1.6 (Theorem 1.5) rather than from Theorem
1.4, when constructing Φκ. To prove the converses of these two implications
proceed as in the proof of (3) implies (1) in Theorem 4.3. It can be shown
that X has an operator Φ satisfying the conditions in Theorem 1.6 (resp.
Theorem 1.5). ¤

We can now use this result to prove the stronger analogue of Theorem 4.4
as follows.

Theorem 4.9. The following are equivalent for a space X

(1) X is stratifiable,
(2) for all (some) κ, and closed subspace A of X there is an operator

Φκ : ULκ
<(A) → C(X, J(κ)) such that g < Φκ(g, h)|A < h and such

that if g ≤ g′ and h ≤ h′ then Φκ(g, h) ≤ Φκ(g′, h′),
(3) for all (some) κ, and closed subspace A of X there is an operator

Φκ : ULκ(A) → C(X, J(κ)) such that g ≤ Φκ(g, h)|A ≤ h and
g(x) < Φκ(g, h)(x) < h(x) whenever g(x) < h(x) for x ∈ A and
such that if g ≤ g′ and h ≤ h′ then Φκ(g, h) ≤ Φκ(g′, h′).

Proof. Since X is stratifiable, X is monotonically normal and so the con-
clusions of Theorems 4.5 and 4.6 still hold. The result then follows from
Theorem 4.8 in exactly the same way as Theorem 4.4 followed from Theo-
rem 4.3. (Stratifiability, like monotone normality, is hereditary.) ¤

Finally we consider hedgehog analogues of Theorems 1.2 and 1.3. We
can use the proof of Theorem 4.3 again (with the following changes) to
prove the following two (non-monotone) results. We use essentially the same
proof but appeal to Theorems 1.2 and 1.3 (respectively) instead of Theorem
1.4, and ignore the monotonicity conditions. These results provide new
characterisations of countably paracompact, normal spaces and of perfectly
normal spaces.

Theorem 4.10. A space X is countably paracompact and normal if and
only if for all (some) κ, whenever g, h : X → J(κ) are upper (resp. lower)
semicontinuous and g < h, then there is a continuous function f : X → J(κ)
such that g < f < h.

Theorem 4.11. A space X is perfectly normal if and only if for all (some)
κ, whenever g, h : X → J(κ) are upper (resp. lower) semicontinuous and
g ≤ h, then there is a continuous function f : X → J(κ) such that g ≤ f ≤ h
and g(x) < f(x) < h(x) whenever g(x) < h(x).
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