A NOTE ON MONOTONE COUNTABLE
PARACOMPACTNESS
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ABSTRACT. We show that a space is MCP (monotone countable para-
compact) if and only if it has property (x), introduced by Teng, Xia and
Lin. The relationship between MCP and stratifiability is highlighted by
a similar characterization of stratifiability. Using this result, we prove
that MCP is preserved by both countably biquotient closed and periph-
erally countably compact closed mappings, from which it follows that
both strongly Fréchet spaces and g-space closed images of MCP spaces
are MCP. Some results on closed images of wN spaces are also noted.

A space X is said to be monotonically countably metacompact (MCM)
(see [1]) if there is an operator U assigning to each decreasing sequence
(Dj)jew of closed sets with empty intersection, a sequence of open sets
U((Dy)) = (U(n, (Dj))>n€w such that

(1) D, CU(n,(D;)) for each n € w,
(2) if D,, C Ey, then U(n, (D;)) C U(n, (Ej)),
3) Mhew Uln, (Dj)) = 2.
X is said to be monotonically countably paracompact (MCP) if, in addition,

() Maeo Uln, (Dy)) = 2.

MCP spaces are precisely the monotonically cp of Pan [9]. Stratifiable
spaces are MCP and semi-stratifiable spaces are MCM. MCM spaces are
equivalent to (B-spaces and MCP g-spaces coincide with wN-spaces, mirror-
ing the relationship between stratifiable spaces and Nagata spaces, which
are equivalent to stratifiable g-spaces. (Recall that a g-function on a space
X with topology 7 is a mapping g : w x X — 7 such that x € g(n,z) for a
n € w. A space X is a g-space [8] if there is a g-function such that whenever
xpn, € g(n,x), the sequence (xy,)new has a cluster point and is a wN-space [5]
if, in addition, whenever g(n,x) N g(n,x,) # &, the sequence (z,)new has a
cluster point).

A space is said to have property (x) if there is an operator V assigning to
each closed set D a decreasing sequence V(D) = (V,,(D))new of open sets
such that
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(1) D C Vo(D),

(2) if E C D, then V,,(E) C Vy(D) and

(3) if (Dy,) is a decreasing sequence of closed sets with empty intersec-
tion, then (), ., Va(Dn) = @.

Property (*) was introduced by Teng, Xia and Lin [12], who proved that
a space is wN if and only if it is a g-space with property (). In this short
paper, we give a more elegant characterization of MCM and MCP spaces
in terms of property (x), highlighting the relationship between MCP and
stratifiable spaces, which can be characterized in a similar fashion.

Nagata = strat. +q stratifiable — semi-stratifiable

l | |

wN=MCP+q — MCP = (%) —— MCM = 3

It is known that even closed irreducible images of MCP spaces need not be
MCP [1], so one can ask which classes of closed mappings do preserve MCP
and in which classes of space is MCP preserved under closed mappings. Us-
ing our characterization, we prove that MCP is preserved by both countably
biquotient closed and peripherally countably compact closed mappings. It
follows that both strongly Fréchet spaces and g-space closed images of MCP
spaces are MCP. We end with some remarks about closed images of wlN
spaces, showing that an example due to Lutzer [7] answers a question raised
in [1].

All spaces are Ty and regular, w denotes the first infinite ordinal, A denotes
the closure of A, Int A the interior and 0A the boundary. All mappings are
continuous and surjective.

Theorem 1. A space X is MCM if and only if there is an operator U
assigning to each n € w and each closed set D an open set U(n, D) such
that

(1) D € U(n, D),

(2) if EC D thenU(n,E) CU(n,D) and

(3) if (Dj) is a decreasing sequence of closed sets with empty intersec-

tion, then U (n,Dy) = @.
A space X is MCP if and only if it has property (x) if and only if there

is such an operator U satisfying, in addition,

(3) if (Dj) is a decreasing sequence of closed sets with empty intersec-

tion, then (U (n, D,,) = @.

Proof. We shall deal with the MCP case. Clearly a space has property (k)
if and only if it has an operator U satisfying the conditions stated (it does
not matter whether the sequences {V,, (D)} and {U(n, D)} are decreasing or
not) and any such space is MCP.
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Conversely, suppose that V' is an MCP operator on X. We show that
there is an operator U on X satisfying conditions (1), (2) and (3). For each
z in X and n in w, define

Dn(l’) _ {{x} if j < n,

J %] otherwise,

so that, for fixed z and n, (D;L (av))J co i@ decreasing sequence of closed sets
with empty intersection. Now, for each closed set D, define

U(n,D) = | V(n, (D} ().

zeD

Since x € Dy C V(n,(Dj(z)) for each n, D C V(n,D) and clearly, if
E C D, then U(n,E) C U(n,D). Now suppose that (D;) is a decreasing
sequence of closed sets with empty intersection. If x is in D,,, then D?(m) C
Dj for all j, so that, by the monotonicity of V, V(n, (D} (x))) C V(n, (D;)).
Hence U(n,D,) € V(n,(D;)) and U(n,D,) € NV(n,(D;)) = @, as
required. O

Similar characterizations of stratifiability and semi-stratifiability are pos-
sible.

Theorem 2. A space X is semi-stratifiable if and only if there is an operator
U assigning to each n € w and each closed set D an open set U(n, D) such
that

(1) D € U(n, D),
(2) if EC D thenU(n,E) CU(n,D) and
(3) if (Dj) is a decreasing sequence of closed sets, then
N U(n, Dy) =) Dn.
X is stratifiable if and only if there is such an operator U satisfying, in
addition,

(3) if (D;) is a decreasing sequence of closed sets, then

N U(n,D,,) =) Dn.

Proof. Again one direction is obvious and we prove only the stratifiable case.
But if X is stratifiable with operator H assigning to each n € w and closed
set D, an open set H(n,D), then H satisfies conditions (1), (2) and (3).
The first two conditions are obvious. For the third, if (D;) is a decreasing
sequence of closed sets and y ¢ () D;, then for some n, y ¢ D,,. As D; C D,
for all j > n, the monotonicity of H implies that H(j, D;) € H(j, Dy) and

hence that y ¢ ;¢ H(J, Dj) € (e, H(j; Dn) = Dy as required. O

The assumption that the sequence (D)) is a decreasing sequence is essen-
tial, however, as the following example shows.
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Example 3. Let us say for the moment that a space X is SSS (strongly semi-
stratifiable) if it has an operator U satisfying (1), (2) and (3) of Theorem 3
but without the requirement in (3) that the sequence (D;) is decreasing.

R? is not SSS: suppose, to the contrary, that U is an SSS operator for
R2. For each r in R, consider the closed set D, = (R x {0}) U ({r} x [0, 1]).
For some uncountable subset R; of R and some n; € w,

(r—1/n1,r+1/n1) x {1/2} CU(1, D,)

for each r in Ry. Moreover there is some uncountable subset S; of R;
and some closed interval [p, ¢1] with rational end points such that [p1,¢1] C
(r—1/ny,r+1/ny) for all € S;. Now we can inductively choose an n; € w,
an uncountable S; C S;_1 and an interval [p;, ¢;] C [pj—1,¢;—1] such that

[Py, a5) x {1/2} € (r = 1/nj,r + 1/n;) x {1/2} CU(j, Dr)

for each r in S;. Let « € ([pj, ¢;] and for each n choose some r,, # x from
Sp. Then (z,1/2) is in U(n, D,.,) for all n, but is not in () D,,,.

We mention in passing the following characterizations in terms of g-
functions. The proofs are easy and are omitted (see [2, 4]).

Theorem 4. The following are equivalent for any space X :
(1) X is MCP;
(2) there is a g-function g such that for any decreasing sequence of closed
sets { Dy} with empty intersection and any y € X, there is somen €
w and some open U containing y such that UN,cp g(n,v) = 2.

Theorem 5. The following are equivalent for any space X :

(1) X is stratifiable;

(2) there is a g-function g such that for any decreasing sequence of closed
sets {Dyn} and any y & (e, Dn, there is somen € w and some open
U containing y such that UN,cp g(n,z) = 2.

Theorem 6. The following are equivalent for any space X :

(1) X is wN;

(2) there is a g-function g such that for any decreasing sequence of closed
sets {Dy} with empty intersection and any y € X, there is some
n € w such that g(n,y) N U,ep, 9(n,7) = 3;

(3) there is a monotone operator U such that for any decreasing sequence
of closed sets { Dy} with empty intersection and any y € X, there is
some n € w such that U(n,{y}) NU(n,Dy) = .

Theorem 7. The following are equivalent for any space X :
(1) X is Nagata;
(2) there is a g-function g such that for any decreasing sequence of closed
sets {Dyp} and any y ¢ (\,ep Dn, there is some n € w g(n,y) N
LJmGDn g(”? $) =4;
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(3) there is a monotone operator U such that for any decreasing sequence
of closed sets {Dy} and any y ¢ () Dy, there is some n € w such
that U(n,{y}) NU(n,D,) = 2.

We note that Heath [3] has characterized stratifiable spaces as those spaces
with a g-function such that for any open set U and y € U, there is some
n € w and some neighbourhood V of y and such that x is in U whenever
WnNg(n,z) # @. Heath also has a similar characterization of Nagata spaces.

We now turn our attention to the images of MCP spaces under closed
mappings. Recall that a space X is said to be strongly Fréchet [10] if,
whenever (A,) is decreasing sequence of subsets of X and z € 0, 4, then
there is x,, € A, for each n € w such that x,, — x. Moreover if f: X — Y,
then f is said to be:

(1) (quasi-)perfect if and only if it is closed and has (countably) compact
fibres;

(2) (countably) biquotient if and only if for each y € Y and (countable)
open cover U of f~1(y), there is a finite subcollection ¢’ such that
y € Int[f(UU")];

(3) peripherally (countably) compact if and only if for each y € Y,
O0f~1(y) is (countably) compact.

The following implications for closed maps are obvious.
perfect — quasi-perfect

l l

open ——— biquotient ——— countably biquotient

Lemma 8. If a topological property P is closed hereditary, then quasi-perfect
mappings preserve property P if and only if peripherally countably compact
closed mappings preserve property P.

Proof. Since quasi-perfect mappings are peripherally countably compact, we
only need prove the ‘if’ part.
Note first that if f: X — Y is a closed mapping and, for each y € Y,

4, {8f‘1(y) if0f ! (y) # 2

{zy} for some z,, € f~1(y), otherwise,

then Z = |J,cy Ay is a closed subset of X and f(Z) =Y (see [8]).

Now if f : X — Y is a peripherally countably compact closed map and P
is a X closed hereditary property of X, then Z = Uer A, is a closed subset
of X with property P and g = f [z is a closed map from Z onto Y with
countably compact fibres, i.e. ¢ is quasi-perfect and Y has property P. [

We use the following characterization, which follows from Theorem 2 triv-
ially by de Morgan’s laws and the fact that a finite union of closed sets is
closed.
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Lemma 9. A space is MCP, i.e. has property (x), if and only if there is
an operator F' assigning to n € w and each open set U a closed set F(n,U)
such that
(1) F(n,U) C F(n+1,U) and F(n,U) C U,
(2) if U CV, then F(n,U) C F(n,V) and
(3) if (Uj) is an increasing open cover of X, then
Unew It [F(n,Uy)] = X.

Theorem 10. Let X be an MCP space and let f : X — Y. ThenY is
MCP if any of the following conditions hold.

)

) f is quasi-perfect closed [1].

) f is open and closed [1].

) f is peripherally countably compact closed.

) [ is closed and 'Y is strongly Fréchet or a g-space.

Proof. Parts (2) and (3) follow from (1) and, since MCP is closed hereditary,
(4) follows from (1) and Lemma 9. Moreover, if X is countably paracompact,
Y is either a g-space or strongly Fréchet and f: X — Y is closed, then f is
peripherally countably compact [6]. Hence (5) follows from (4).

It remains to prove (1). To this end, suppose that f is countably biquo-
tient and let E be an operator on X satisfying the conditions of Lemma 10.
For each n € w and open subset U of Y let F(n,U) = f(E(n, f~1(U))). We
claim that F satisfies the conditions of Lemma 10.

If y € F(n,U), then y = f(x) for some x € E(n, f~1(U)), which is a
subset of f~1(U) and E(n+1, f~1(U)),so that y € U and y € F(n+1,U).
If U CV, then f~Y(U) C f~YV) and E(n, f~Y(U)) C E(n, f~Y(U)) for
each n € w. Hence

F(n,U) = f(E(n, f71(U))) C f(E(n, f71(V))) = F(n,V).
Finally, if (Up)new is an increasing open cover of Y, then (f~1(U,))

ncw
is an increasing open cover of X and |, Int[E(n, f~1(Uy))] = X. HeDCGe,
for each y € Y, (Int[E(n, f~(Un))] )nEw is a countable open cover of f~1(y)
and, since [ is countably biquotient, y € Int [f(UnG}-E(n, f_l(Un)))], for
some finite F C w. Let ng = maxF. As (E(n, f~'(U,)), __is an increasing
sequence of sets,

y € Int[f(E(no, 1 (Un,)))] = Int [F(ng, Un,)]-
S0 Unew Int[F(n,Uy)] =Y as required. O

new

In [1] the authors ask whether perfect mappings preserve wN-spaces.
In fact they do not: Lutzer [7, Example 4.3] (see also [12]) describes a
perfect image of a first countable stratifiable space that is not even a g-
space. However, since both finite-to-one closed images and open images of
g-spaces are ¢g-spaces and since a space is wN if and only if it is an MCP
g-spaces, we obtain the following corollary from Theorem 11, (2) and (3).
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Corollary 11. The open and closed and finite-to-one closed images of wN
spaces are wN.

Tanaka [11, Example 3.2] constructs a completely regular finite-to-one
open image of a metrizable space, which nevertheless fails to be countably
paracompact (so certainly not MCP or wN), showing that [1, Proposition
18] is wrong.

In [12], it is shown that if Y is the closed image of the wN space X and
Y is a g-space, then Y is wN. It is not difficult to see that the assumption
that X is a g-spaces can be omitted, so the following theorem is obtained
(in fact, it can also be obtained from Theorem 11 (5)).

Theorem 12. IfY is the closed image of an MCP space and Y is a q-space,
them Y is wN.

The authors would like to thank Professor J. Nagata for his suggestions
and the referee for some valuable comments.
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