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Abstract. We show that a space is MCP (monotone countable para-
compact) if and only if it has property (∗), introduced by Teng, Xia and
Lin. The relationship between MCP and stratifiability is highlighted by
a similar characterization of stratifiability. Using this result, we prove
that MCP is preserved by both countably biquotient closed and periph-
erally countably compact closed mappings, from which it follows that
both strongly Fréchet spaces and q-space closed images of MCP spaces
are MCP. Some results on closed images of wN spaces are also noted.

A space X is said to be monotonically countably metacompact (MCM)
(see [1]) if there is an operator U assigning to each decreasing sequence
(Dj)j∈ω of closed sets with empty intersection, a sequence of open sets
U((Dj)) =

(
U(n, (Dj))

)
n∈ω

such that

(1) Dn ⊆ U(n, (Dj)) for each n ∈ ω,
(2) if Dn ⊆ En, then U(n, (Dj)) ⊆ U(n, (Ej)),
(3)

⋂
n∈ω U(n, (Dj)) = ∅.

X is said to be monotonically countably paracompact (MCP) if, in addition,

(3′)
⋂

n∈ω U(n, (Dj)) = ∅.
MCP spaces are precisely the monotonically cp of Pan [9]. Stratifiable

spaces are MCP and semi-stratifiable spaces are MCM. MCM spaces are
equivalent to β-spaces and MCP q-spaces coincide with wN-spaces, mirror-
ing the relationship between stratifiable spaces and Nagata spaces, which
are equivalent to stratifiable q-spaces. (Recall that a g-function on a space
X with topology T is a mapping g : ω ×X → T such that x ∈ g(n, x) for a
n ∈ ω. A space X is a q-space [8] if there is a g-function such that whenever
xn ∈ g(n, x), the sequence (xn)n∈ω has a cluster point and is a wN-space [5]
if, in addition, whenever g(n, x)∩ g(n, xn) 6= ∅, the sequence (xn)n∈ω has a
cluster point).

A space is said to have property (∗) if there is an operator V assigning to
each closed set D a decreasing sequence V (D) = (Vn(D))n∈ω of open sets
such that
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(1) D ⊆ Vn(D),
(2) if E ⊆ D, then Vn(E) ⊆ Vn(D) and
(3) if (Dn) is a decreasing sequence of closed sets with empty intersec-

tion, then
⋂

n∈ω Vn(Dn) = ∅.
Property (∗) was introduced by Teng, Xia and Lin [12], who proved that

a space is wN if and only if it is a q-space with property (∗). In this short
paper, we give a more elegant characterization of MCM and MCP spaces
in terms of property (∗), highlighting the relationship between MCP and
stratifiable spaces, which can be characterized in a similar fashion.

Nagata ≡ strat. + q stratifiable semi-stratifiable

wN ≡ MCP + q MCP ≡ (∗) MCM ≡ β
? ? ?

- -

- -

It is known that even closed irreducible images of MCP spaces need not be
MCP [1], so one can ask which classes of closed mappings do preserve MCP
and in which classes of space is MCP preserved under closed mappings. Us-
ing our characterization, we prove that MCP is preserved by both countably
biquotient closed and peripherally countably compact closed mappings. It
follows that both strongly Fréchet spaces and q-space closed images of MCP
spaces are MCP. We end with some remarks about closed images of wN
spaces, showing that an example due to Lutzer [7] answers a question raised
in [1].

All spaces are T1 and regular, ω denotes the first infinite ordinal, A denotes
the closure of A, IntA the interior and ∂A the boundary. All mappings are
continuous and surjective.

Theorem 1. A space X is MCM if and only if there is an operator U
assigning to each n ∈ ω and each closed set D an open set U(n,D) such
that

(1) D ⊆ U(n,D),
(2) if E ⊆ D then U(n,E) ⊆ U(n,D) and
(3) if (Dj) is a decreasing sequence of closed sets with empty intersec-

tion, then
⋂

U(n,Dn) = ∅.
A space X is MCP if and only if it has property (∗) if and only if there

is such an operator U satisfying, in addition,
(3′) if (Dj) is a decreasing sequence of closed sets with empty intersec-

tion, then
⋂

U(n,Dn) = ∅.

Proof. We shall deal with the MCP case. Clearly a space has property (∗)
if and only if it has an operator U satisfying the conditions stated (it does
not matter whether the sequences {Vn(D)} and {U(n,D)} are decreasing or
not) and any such space is MCP.
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Conversely, suppose that V is an MCP operator on X. We show that
there is an operator U on X satisfying conditions (1), (2) and (3′). For each
x in X and n in ω, define

Dn
j (x) =

{
{x} if j 6 n,

∅ otherwise,

so that, for fixed x and n,
(
Dn

j (x)
)
j∈ω

is a decreasing sequence of closed sets
with empty intersection. Now, for each closed set D, define

U(n,D) =
⋃

x∈D

V (n, (Dn
j (x))).

Since x ∈ Dn
n ⊆ V (n, (Dn

j (x)) for each n, D ⊆ V (n,D) and clearly, if
E ⊆ D, then U(n,E) ⊆ U(n,D). Now suppose that (Dj) is a decreasing
sequence of closed sets with empty intersection. If x is in Dn, then Dn

j (x) ⊆
Dj for all j, so that, by the monotonicity of V , V (n, (Dn

j (x))) ⊆ V (n, (Dj)).
Hence U(n,Dn) ⊆ V (n, (Dj)) and

⋂
U(n,Dn) ⊆ ⋂

V (n, (Dj)) = ∅, as
required. ¤

Similar characterizations of stratifiability and semi-stratifiability are pos-
sible.

Theorem 2. A space X is semi-stratifiable if and only if there is an operator
U assigning to each n ∈ ω and each closed set D an open set U(n,D) such
that

(1) D ⊆ U(n,D),
(2) if E ⊆ D then U(n,E) ⊆ U(n,D) and
(3) if (Dj) is a decreasing sequence of closed sets, then⋂

U(n,Dn) =
⋂

Dn.

X is stratifiable if and only if there is such an operator U satisfying, in
addition,

(3′) if (Dj) is a decreasing sequence of closed sets, then⋂
U(n,Dn) =

⋂
Dn.

Proof. Again one direction is obvious and we prove only the stratifiable case.
But if X is stratifiable with operator H assigning to each n ∈ ω and closed
set D, an open set H(n, D), then H satisfies conditions (1), (2) and (3).
The first two conditions are obvious. For the third, if (Dj) is a decreasing
sequence of closed sets and y /∈ ⋂

Dj , then for some n, y /∈ Dn. As Dj ⊆ Dn

for all j ≥ n, the monotonicity of H implies that H(j,Dj) ⊆ H(j, Dn) and
hence that y /∈ ⋂

j∈ω H(j,Dj) ⊆
⋂

j∈ω H(j, Dn) = Dn as required. ¤

The assumption that the sequence (Dn) is a decreasing sequence is essen-
tial, however, as the following example shows.
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Example 3. Let us say for the moment that a space X is SSS (strongly semi-
stratifiable) if it has an operator U satisfying (1), (2) and (3) of Theorem 3
but without the requirement in (3) that the sequence (Dj) is decreasing.
R2 is not SSS: suppose, to the contrary, that U is an SSS operator for

R2. For each r in R, consider the closed set Dr = (R× {0}) ∪ ({r} × [0, 1]).
For some uncountable subset R1 of R and some n1 ∈ ω,

(r − 1/n1, r + 1/n1)× {1/2} ⊆ U(1, Dr)

for each r in R1. Moreover there is some uncountable subset S1 of R1

and some closed interval [p1, q1] with rational end points such that [p1, q1] ⊆
(r−1/n1, r+1/n1) for all r ∈ S1. Now we can inductively choose an nj ∈ ω,
an uncountable Sj ⊆ Sj−1 and an interval [pj , qj ] ⊆ [pj−1, qj−1] such that

[pj , qj ]× {1/2} ⊆ (r − 1/nj , r + 1/nj)× {1/2} ⊆ U(j, Dr)

for each r in Sj . Let x ∈ ⋂
[pj , qj ] and for each n choose some rn 6= x from

Sn. Then (x, 1/2) is in U(n,Drn) for all n, but is not in
⋂

Drn .

We mention in passing the following characterizations in terms of g-
functions. The proofs are easy and are omitted (see [2, 4]).

Theorem 4. The following are equivalent for any space X:
(1) X is MCP;
(2) there is a g-function g such that for any decreasing sequence of closed

sets {Dn} with empty intersection and any y ∈ X, there is some n ∈
ω and some open U containing y such that U ∩⋃

x∈Dn
g(n, x) = ∅.

Theorem 5. The following are equivalent for any space X:
(1) X is stratifiable;
(2) there is a g-function g such that for any decreasing sequence of closed

sets {Dn} and any y /∈ ⋂
n∈ω Dn, there is some n ∈ ω and some open

U containing y such that U ∩⋃
x∈Dn

g(n, x) = ∅.

Theorem 6. The following are equivalent for any space X:
(1) X is wN;
(2) there is a g-function g such that for any decreasing sequence of closed

sets {Dn} with empty intersection and any y ∈ X, there is some
n ∈ ω such that g(n, y) ∩⋃

x∈Dn
g(n, x) = ∅;

(3) there is a monotone operator U such that for any decreasing sequence
of closed sets {Dn} with empty intersection and any y ∈ X, there is
some n ∈ ω such that U(n, {y}) ∩ U(n,Dn) = ∅.

Theorem 7. The following are equivalent for any space X:
(1) X is Nagata;
(2) there is a g-function g such that for any decreasing sequence of closed

sets {Dn} and any y /∈ ⋂
n∈ω Dn, there is some n ∈ ω g(n, y) ∩⋃

x∈Dn
g(n, x) = ∅;
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(3) there is a monotone operator U such that for any decreasing sequence
of closed sets {Dn} and any y /∈ ⋂

Dn, there is some n ∈ ω such
that U(n, {y}) ∩ U(n, Dn) = ∅.

We note that Heath [3] has characterized stratifiable spaces as those spaces
with a g-function such that for any open set U and y ∈ U , there is some
n ∈ ω and some neighbourhood V of y and such that x is in U whenever
W ∩g(n, x) 6= ∅. Heath also has a similar characterization of Nagata spaces.

We now turn our attention to the images of MCP spaces under closed
mappings. Recall that a space X is said to be strongly Fréchet [10] if,
whenever (An) is decreasing sequence of subsets of X and x ∈ ⋂

n An, then
there is xn ∈ An for each n ∈ ω such that xn → x. Moreover if f : X → Y ,
then f is said to be:

(1) (quasi-)perfect if and only if it is closed and has (countably) compact
fibres;

(2) (countably) biquotient if and only if for each y ∈ Y and (countable)
open cover U of f−1(y), there is a finite subcollection U ′ such that
y ∈ Int

[
f(

⋃U ′)];
(3) peripherally (countably) compact if and only if for each y ∈ Y ,

∂f−1(y) is (countably) compact.
The following implications for closed maps are obvious.

perfect quasi-perfect

open biquotient countably biquotient
? ?

-

- -

Lemma 8. If a topological property P is closed hereditary, then quasi-perfect
mappings preserve property P if and only if peripherally countably compact
closed mappings preserve property P .

Proof. Since quasi-perfect mappings are peripherally countably compact, we
only need prove the ‘if’ part.

Note first that if f : X → Y is a closed mapping and, for each y ∈ Y ,

Ay =

{
∂f−1(y) if ∂f−1(y) 6= ∅
{xy} for some xy ∈ f−1(y), otherwise,

then Z =
⋃

y∈Y Ay is a closed subset of X and f(Z) = Y (see [8]).
Now if f : X → Y is a peripherally countably compact closed map and P

is a X closed hereditary property of X, then Z =
⋃

y∈Y Ay is a closed subset
of X with property P and g = f ¹Z is a closed map from Z onto Y with
countably compact fibres, i.e. g is quasi-perfect and Y has property P . ¤

We use the following characterization, which follows from Theorem 2 triv-
ially by de Morgan’s laws and the fact that a finite union of closed sets is
closed.
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Lemma 9. A space is MCP, i.e. has property (∗), if and only if there is
an operator F assigning to n ∈ ω and each open set U a closed set F (n,U)
such that

(1) F (n,U) ⊆ F (n + 1, U) and F (n,U) ⊆ U ,
(2) if U ⊆ V , then F (n, U) ⊆ F (n, V ) and
(3) if (Uj) is an increasing open cover of X, then⋃

n∈ω Int
[
F (n,Un)

]
= X.

Theorem 10. Let X be an MCP space and let f : X → Y . Then Y is
MCP if any of the following conditions hold.

(1) f is countably biquotient closed.
(2) f is quasi-perfect closed [1].
(3) f is open and closed [1].
(4) f is peripherally countably compact closed.
(5) f is closed and Y is strongly Fréchet or a q-space.

Proof. Parts (2) and (3) follow from (1) and, since MCP is closed hereditary,
(4) follows from (1) and Lemma 9. Moreover, if X is countably paracompact,
Y is either a q-space or strongly Fréchet and f : X → Y is closed, then f is
peripherally countably compact [6]. Hence (5) follows from (4).

It remains to prove (1). To this end, suppose that f is countably biquo-
tient and let E be an operator on X satisfying the conditions of Lemma 10.
For each n ∈ ω and open subset U of Y let F (n,U) = f

(
E(n, f−1(U))

)
. We

claim that F satisfies the conditions of Lemma 10.
If y ∈ F (n,U), then y = f(x) for some x ∈ E(n, f−1(U)), which is a

subset of f−1(U) and E(n + 1, f−1(U)), so that y ∈ U and y ∈ F (n + 1, U).
If U ⊆ V , then f−1(U) ⊆ f−1(V ) and E(n, f−1(U)) ⊆ E(n, f−1(U)) for
each n ∈ ω. Hence

F (n,U) = f
(
E(n, f−1(U))

) ⊆ f
(
E(n, f−1(V ))

)
= F (n, V ).

Finally, if (Un)n∈ω is an increasing open cover of Y , then
(
f−1(Un)

)
n∈ω

is an increasing open cover of X and
⋃

n∈ω Int
[
E(n, f−1(Un))

]
= X. Hence,

for each y ∈ Y ,
(
Int

[
E(n, f−1(Un))

])
n∈ω

is a countable open cover of f−1(y)
and, since f is countably biquotient, y ∈ Int

[
f
(⋃

n∈F E(n, f−1(Un))
)]

, for
some finite F ⊆ ω. Let n0 = maxF . As

(
E(n, f−1(Un)

)
n∈ω

is an increasing
sequence of sets,

y ∈ Int
[
f
(
E(n0, f

−1(Un0))
)]

= Int
[
F (n0, Un0)

]
.

So
⋃

n∈ω Int
[
F (n,Un)

]
= Y as required. ¤

In [1] the authors ask whether perfect mappings preserve wN -spaces.
In fact they do not: Lutzer [7, Example 4.3] (see also [12]) describes a
perfect image of a first countable stratifiable space that is not even a q-
space. However, since both finite-to-one closed images and open images of
q-spaces are q-spaces and since a space is wN if and only if it is an MCP
q-spaces, we obtain the following corollary from Theorem 11, (2) and (3).
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Corollary 11. The open and closed and finite-to-one closed images of wN
spaces are wN.

Tanaka [11, Example 3.2] constructs a completely regular finite-to-one
open image of a metrizable space, which nevertheless fails to be countably
paracompact (so certainly not MCP or wN), showing that [1, Proposition
18] is wrong.

In [12], it is shown that if Y is the closed image of the wN space X and
Y is a q-space, then Y is wN. It is not difficult to see that the assumption
that X is a q-spaces can be omitted, so the following theorem is obtained
(in fact, it can also be obtained from Theorem 11 (5)).

Theorem 12. If Y is the closed image of an MCP space and Y is a q-space,
them Y is wN.

The authors would like to thank Professor J. Nagata for his suggestions
and the referee for some valuable comments.
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